1
|
Song ZJ, Wu XF, Zhou ZY, Zhang JJ, Pan YY, Dong X, Pang X, Xie YP, Sun J, Zhang Y, Qin J. Design, synthesis, and evaluation of carboxylic acid-substituted celecoxib isosteres as potential anti-inflammatory agents. Eur J Med Chem 2025; 286:117286. [PMID: 39854941 DOI: 10.1016/j.ejmech.2025.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
A library comprising twenty-four isosteric derivatives of celecoxib substituted with carboxylic acid (labeled as 5a-5x), was synthesized and characterized through 1H NMR, 13C NMR, HRMS, and elemental analysis. Molecular docking studies revealed that all compounds successfully docked into the binding pocket of COX-2, and the introduction of carboxyl group enhances the interaction between the derivatives and COX-2. The compounds were further evaluated for cell toxicity, and in vitro anti-inflammatory activity. Notably, compound 5l exhibited significant inhibition of both COX-2 and NO release in vitro in comparison to the standard compound, displaying the highest selectivity towards the COX-2 enzyme (SI = 295.9) in comparison to celecoxib (SI = 261.3). 5l also exhibited the most potent anti-inflammatory activity and safety (ulcer index = 5.2) in vivo comparable to celecoxib at the same concentration. Through the molecular modeling and dynamics analysis, it was observed that compound 5l effectively stabilized within the active binding site of COX-2 through strong hydrogen bond interactions, and through the ADMET studies investigated the physiochemical properties and drug-likeliness behavior of compound 5l. In conclusion, compound 5l demonstrated to be a potential selective COX-2 anti-inflammatory candidate with reduced gastrointestinal risks.
Collapse
Affiliation(s)
- Zi-Jie Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Xiao-Fei Wu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Zhi-Ya Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Jing-Jing Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Yan-Yan Pan
- Qilu Medical University, Zibo, 255300, PR China
| | - Xue Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Xuan Pang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Ya-Ping Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China.
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China.
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China.
| |
Collapse
|
2
|
Zhu JJ, Guo T, Liu HX, Tan XR, Zhang ZW, Wu WJ, Zhang JW. Design, synthesis and insecticidal activity of benzenesulfonamide derivatives containing various alkynyl, alkenyl and cyclopropyl groups in para position. Nat Prod Res 2024; 38:549-553. [PMID: 36200705 DOI: 10.1080/14786419.2022.2130303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/20/2022] [Indexed: 10/10/2022]
Abstract
Celangulin V is a natural β-dihydrofuran sesquiterpene polyester with anti Mythimna separate activity and unique mechanism of action. Further study showed that its target was the H subunit of V-ATPase in the midgut of M. separate. Thus, combined with the previous work, thirty-two benzene sulfonamide derivatives were systematically synthesised to discover efficient and low-budget insecticidal candidates for the H subunit of V-ATPase. Screening results showed that compounds C2, C4, C5, C6 and C8 could significantly cause death of tested third-instar larvae of M. separate, and provided the corresponding LC50 values of 0.844, 0.953, 0.705, 0.599 and 0.887 mg/mL, which were extremely better than Celangulin V (LC50 = 11.5 mg/mL). The docking results indicated that this novel framework might target H subunit of V-ATPase. Given these excellent bioactivity results, this kind of sulfonamide framework could provide a suitable point for exploring highly efficient insecticidal agents.
Collapse
Affiliation(s)
- Jian-Jun Zhu
- College of Chemistry & Pharmacy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Tao Guo
- College of Chemistry & Pharmacy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Hong-Xiang Liu
- College of Chemistry & Pharmacy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Xin-Ru Tan
- College of Chemistry & Pharmacy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Zi-Wei Zhang
- College of Chemistry & Pharmacy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Wen-Jun Wu
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Ji-Wen Zhang
- College of Chemistry & Pharmacy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| |
Collapse
|
3
|
Israfilova Z, Taslimi P, Gülçin İ, Abdullayev Y, Farzaliyev V, Karaman M, Sujayev A, Alwasel SH. Some Thiocyanate Containing Heterocyclic Compounds: Synthesis, Bioactivity and Molecular Docking Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202203653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zubeyda Israfilova
- Laboratory of Physiologically Active Organic Compounds Institute of Chemistry of Additives 1029 Baku Azerbaijan
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100- Bartin Turkey
| | - İlhami Gülçin
- Department of Chemistry Faculty of Sciences Atatürk University 25240 -Erzurum Turkey
| | - Yusif Abdullayev
- Institute of Petrochemical Processes 1025 Baku Azerbaijan
- Baku Engineering University 0101- Baku Azerbaijan
| | - Vagif Farzaliyev
- Laboratory of Physiologically Active Organic Compounds Institute of Chemistry of Additives 1029 Baku Azerbaijan
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics Faculty of Arts and Science Kilis 7 Aralık University 79000- Kilis Turkey
| | - Afsun Sujayev
- Laboratory of Physiologically Active Organic Compounds Institute of Chemistry of Additives 1029 Baku Azerbaijan
| | - Saleh H. Alwasel
- Department of Zoology College of Science King Saud University 11451- Riyadh Saudi Arabia
| |
Collapse
|
4
|
Dzeagu FO, Carrick JD. Synthetic Access to Unsymmetric, Tridentate, Pyridyl-1,3,4-oxadiazole Complexants via Intramolecular Oxidative Annulation of Arylhydrazides with Heteroaryl Carbaldehydes. J Org Chem 2023; 88:419-432. [PMID: 36575899 DOI: 10.1021/acs.joc.2c02421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the last four decades, an ideal complexant for the chemoselective liquid-liquid separation of the minor actinides from the lanthanides contained within spent nuclear fuel has yet to be realized. As strategic performance objectives continue to evolve as a function of time, solubility in process-relevant diluents, fast complexation kinetics, as well as robustness to hydro- and radiolytic degradation remain at the forefront of this grand challenge. While the vast majority of soft-N-donors are symmetric in nature, this laboratory has focused on defining synthetic methods to afford unsymmetric complexants for further study to explore the impact subtle changes to the molecular topography of the complexant moiety have on performance, in addition to working toward the definition of structure-activity relationships. The development of an intramolecular iodine-mediated oxidative annulation of heteroaryl-aryl-hydrazones for the production of functionalized, tridentate, and unsymmetric 1,3,4-oxadiazole-based complexants is reported. Optimization of reaction conditions afforded numerous products in high isolated yield over two linear steps in one pot in one hour of reaction time. The cleanliness of the optimized conditions negated the need for the chromatographic purification of 32 of 44 examples attempted. Method development, optimization, substrate scope, application to related heteroarenes, and a scale-up reaction are described herein.
Collapse
Affiliation(s)
- Fortune O Dzeagu
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| |
Collapse
|
5
|
Celik I, Sarıaltın SY, Çoban T, Kılcıgil G. Design, Synthesis,
in Vitro
and
in Silico
Studies of Benzimidazole‐Linked Oxadiazole Derivatives as Anti‐inflammatory Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ismail Celik
- Erciyes University Faculty of Pharmacy Department of Pharmaceutical Chemistry 38039 Kayseri Turkey
| | - Sezen Yılmaz Sarıaltın
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Toxicology 06100 Tandoğan Ankara Turkey
| | - Tülay Çoban
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Toxicology 06100 Tandoğan Ankara Turkey
| | - Gülgün Kılcıgil
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Chemistry 06100 Tandoğan Ankara Turkey
| |
Collapse
|
6
|
Osmaniye D, Türkeş C, Demir Y, Özkay Y, Beydemir Ş, Kaplancıklı ZA. Design, synthesis, and biological activity of novel dithiocarbamate-methylsulfonyl hybrids as carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200132. [PMID: 35502846 DOI: 10.1002/ardp.202200132] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022]
Abstract
Carbonic anhydrase (CA) enzymes are involved in many physiological events. These enzymes, which contain Zn2+ in their structure, can be easily inhibited by dithiocarbamate compounds. In addition, CA enzyme inhibitory activities are known in groups such as sulfonamide and methylsulfonyl. For this purpose, in this study, a series of 23 new dithiocarbamate-methylsulfonyl derivatives were synthesized and their CA enzyme inhibitory activities were investigated. The inhibition potentials of the obtained compounds against the human CA I and CA II enzymes were investigated by the in vitro enzyme isolation method. It is seen that the compounds show activity at the nanomolar level. Molecular docking studies of the compounds were carried out by in silico methods. The poses of compounds 2a, 2e, 2o, and 2t are presented.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
7
|
Khatua S, Taraphder S. In the footsteps of an inhibitor unbinding from the active site of human carbonic anhydrase II. J Biomol Struct Dyn 2022; 41:3187-3204. [PMID: 35257634 DOI: 10.1080/07391102.2022.2048075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The crystal structure of human carbonic anhydrase (HCA) II bound to an inhibitor molecule, 6-hydroxy-2-thioxocoumarin (FC5), shows FC5 to be located in a hydrophobic pocket at the active site. The present work employs classical molecular dynamics (MD) simulation to follow the FC5 molecule for 1 μs as it unbinds from its binding location, adopts the path of substrate/product diffusion (path 1) to leave the active site at around 75 ns. It is then found to undergo repeated binding and unbinding at different locations on the surface of the enzyme in water. Several transient excursions through different regions of the enzyme are also observed prior to its exit from the active site. These transient paths are combined with functionally relevant cavities/channels to enlist five additional pathways (path 2-6). Pathways 1-6 are subsequently explored using steered MD and umbrella sampling simulations. A free energy barrier of 0.969 kcal mol-1 is encountered along path 1, while barriers in the range of 0.57-2.84 kcal mol-1 are obtained along paths 2, 4 and 5. We also analyze in detail the interaction between FC5 and the enzyme along each path as the former leaves the active site of HCA II. Our results indicate path 1 to be the major exit pathway for FC5, although competing contributions may also come from the paths 2, 4 and 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Khatua
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
8
|
Yang C, Sun X, Li Z, Cheng Y, Lei Y, Lu L, Liu X, Zhuang X, Wang T, He X. The effect of benzenesulfonamide's side chains on their human carbonic anhydrase Ⅰ/Ⅱ inhibitory activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Kumar S, Rulhania S, Jaswal S, Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur J Med Chem 2021; 209:112923. [PMID: 33121862 DOI: 10.1016/j.ejmech.2020.112923] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) is an enzyme and a very omnipresent zinc metalloenzyme which catalyzed the reversible hydration and dehydration of carbon dioxide and bicarbonate; a reaction which plays a crucial role in many physiological and pathological processes. Carbonic anhydrase is present in human (h) with sixteen different isoforms ranging from hCA I-hCA XV. All these isoforms are widely distributed in different tissues/organs and are associated with a range of pivotal physiological activities. Due to their involvement in various physiological roles, inhibitors of different human isoforms of carbonic anhydrase have found clinical applications for the treatment of various diseases including glaucoma, retinopathy, hemolytic anemia, epilepsy, obesity, and cancer. However, clinically used inhibitors of CA (acetazolamide, brinzolamide, dorzolamide, etc.) are not selective causing the undesirable side effects. One of the major hurdles in the design and development of carbonic anhydrase inhibitors is the lack of balanced isoform selectivity which thrived to new chemotypes. In this review, we have compiled the recent strategies of various researchers related to the development of carbonic anhydrase inhibitors belonging to different structural classes like pyrimidine, pyrazoline, selenourea, isatin, indole, etc. This review also summarizes the structure-activity relationships, analysis of isoform selectivity including mechanistic and in silico studies to afford ideas and to provide focused direction for the design and development of novel isoform-selective carbonic anhydrase inhibitors with therapeutic implications.
Collapse
Affiliation(s)
- Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sandeep Rulhania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|