1
|
Qiao W, Wang L, Luo Y, Yang T. Synthetic approaches and therapeutic applications of FDA-approved antibacterial agents: A comprehensive review from 2003 to 2023. Eur J Med Chem 2025; 285:117267. [PMID: 39808973 DOI: 10.1016/j.ejmech.2025.117267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The increasing threat of antibiotic resistance has necessitated the development of new antibacterial agents. 33 novel antibacterial agents have been approved by the U.S. Food and Drug Administration (FDA) within the two-decade timeframe from 2003 to 2023. These novel antibacterial agents included new chemical classes, such as lipopeptides, 18-membered macrolides, diaromatic quinolones, and nitroimidazoles, as well as modified existing classes, such as quinolones, tetracyclines, β-lactams, macrolides, oxazolidinones, and aminoglycosides. Nonetheless, during these twenty years, approval for new antibiotics was notably absent in 6 different years, and the total number of antibiotics approved was considerably less than that of other drug classes, including anticancer drugs. In this review, we provide an extensive analysis of the synthetic approaches and therapeutic applications of these approved antibacterial agents. We believe that this review will help further research on potential antibacterial agents for clinical use and development of next generation of antibacterial agents.
Collapse
Affiliation(s)
- Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijiao Wang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Youfu Luo
- Lung Cancer Center, Laboratory of Lung Cancer, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Lung Cancer Center, Laboratory of Lung Cancer, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Seraj F, Naz F, Özil M, Baltaş N, Tariq SS, Ul-Haq Z, Salar U, Taha M, Khan KM. Synthesis of arylated tetrahydrobenzo[ H]quinoline-3-carbonitrile derivatives as potential hits for treatment of diabetes. Future Med Chem 2024; 16:2609-2625. [PMID: 39530526 PMCID: PMC11731353 DOI: 10.1080/17568919.2024.2419359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Quinoline scaffolds are serving as the core structure for numerous antifungal, analgesic, antipyretic, anti-inflammatory drugs as well as have also been investigated for their potential antidiabetic properties. Though further exploration is required in this area as the current antidiabetic agents, such as acarbose, miglitol and voglibose, are associated with several adverse side effects. In this context, arylated tetrahydrobenzo[H]quinoline-3-carbonitrile derivatives were designed and evaluated as potential antidiabetic agents.Materials & methods: A one-pot multicomponent reaction of 6-methoxy-1-tetralone with ethyl cyanoacetate, ammonium acetate and varying aldehydes yielded a range of new arylated tetrahydrobenzo[h]quinoline-3-carbonitrile molecules 1-36.Results: Compounds 2-5, 12, 13, 19 and 32-34 showed excellent inhibition against α-amylase (IC50 = 3.42-15.14 μM) and α-glucosidase (IC50 = 0.65-9.23 μM) enzymes in comparison to the standard acarbose (IC50 = 14.35 μM). In addition, all compounds revealed significant to moderate DPPH radical scavenging activity (SC50 = 21.30-138.30 μM) compared with BHT (SC50 = 64.40 μM). Kinetic studies confirmed competitive inhibition mode, while molecular docking studies comprehend ligands' interaction with enzyme's active sites and absorption, distribution, metabolism, and excretion analysis confirms that all synthetic derivatives are nontoxic.Conclusion: This research offers a range of lead candidates to become antidiabetic agents after further advanced study.
Collapse
Affiliation(s)
- Faiza Seraj
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fouzia Naz
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, 53100, Turkiye
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, 53100, Turkiye
| | - Syeda Sumayya Tariq
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Pakistan Academy of Science, 3-Constitution Avenue, G-5/2, Islamabad, 44000, Pakistan
| |
Collapse
|
3
|
Robey JMS, Maity S, Aleshire SL, Ghosh A, Yadaw AK, Roy S, Mear SJ, Jamison TF, Sirasani G, Senanayake CH, Stringham RW, Gupton BF, Donsbach KO, Nelson RC, Shanahan CS. Application of Chiral Transfer Reagents to Improve Stereoselectivity and Yields in the Synthesis of the Antituberculosis Drug Bedaquiline. Org Process Res Dev 2023; 27:2146-2159. [PMID: 38025988 PMCID: PMC10661061 DOI: 10.1021/acs.oprd.3c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Indexed: 12/01/2023]
Abstract
Bedaquiline (BDQ) is an important drug for treating multidrug-resistant tuberculosis (MDR-TB), a worldwide disease that causes more than 1.6 million deaths yearly. The current synthetic strategy adopted by the manufacturers to assemble this molecule relies on a nucleophilic addition reaction of a quinoline fragment to a ketone, but it suffers from low conversion and no stereoselectivity, which subsequently increases the cost of manufacturing BDQ. The Medicines for All Institute (M4ALL) has developed a new reaction methodology to this process that not only allows high conversion of starting materials but also results in good diastereo- and enantioselectivity toward the desired BDQ stereoisomer. A variety of chiral lithium amides derived from amino acids were studied, and it was found that lithium (R)-2-(methoxymethyl)pyrrolidide, obtained from d-proline, results in high assay yield of the desired syn-diastereomer pair (82%) and with considerable stereocontrol (d.r. = 13.6:1, e.r. = 3.6:1, 56% ee), providing BDQ in up to a 64% assay yield before purification steps toward the final API. This represents a considerable improvement in the BDQ yield compared to previously reported conditions and could be critical to further lowering the cost of this life-saving drug.
Collapse
Affiliation(s)
- Juliana M. S. Robey
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Sanjay Maity
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Sarah L. Aleshire
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Angshuman Ghosh
- R&D
Centre, TCG Life Sciences Pvt. Limited, Kolkata, WB 700091, India
| | - Ajay K. Yadaw
- R&D
Centre, TCG Life Sciences Pvt. Limited, Kolkata, WB 700091, India
| | - Subho Roy
- R&D
Centre, TCG Life Sciences Pvt. Limited, Kolkata, WB 700091, India
| | - Sarah Jane Mear
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy F. Jamison
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Gopal Sirasani
- TCG
GreenChem, Inc., Richmond, Virginia 23219, United States
| | | | - Rodger W. Stringham
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - B. Frank Gupton
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Kai O. Donsbach
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Ryan C. Nelson
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Charles S. Shanahan
- Medicines
for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| |
Collapse
|
4
|
Guo K, Wang Y, Ma C. Characterization of stress degradation products of bedaquiline fumarate and bedaquiline by LC-PDA and LC-MS. J Pharm Biomed Anal 2023; 235:115658. [PMID: 37619292 DOI: 10.1016/j.jpba.2023.115658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Bedaquiline fumarate was a first-in-class diarylquinoline drug used for the treatment of M. tuberculosis and its main biologically active form was bedaquiline. This paper studied and compared the degradation products of bedaquiline fumarate and bedaquiline using LC-PDA, LC-MS, and NMR techniques under thermal, alkaline, acidic, oxidative, and photolytic conditions respectively. A LC method was established and optimized to separate all analytes of bedaquiline fumarate and bedaquiline. All degradation products were identified by LC-HRMS/MS and LC-MSn. Bedaquiline fumarate formed three degradation products (DP1, DP2, and DP3) related to fumarate under photolytic condition and formed demethylation product DP4 under acid condition. Bedaquiline formed four degradation products (IM1, IM2, IM3, and IM4) related to the side chains of tertiary alcohol and tertiary amine groups under photolytic condition and formed DP4 under acid condition. The two compounds were stable under thermal, alkaline, and oxidative conditions. DP1 and DP2 indicate that the fumarate could take cis-trans isomerization under light condition. DP3, IM3 and IM4 were first reported degradation products of bedaquiline fumarate and bedaquiline. Compared the degradation behavior of bedaquiline fumarate with bedaquiline, the fumarate form can make the side chain of bedaquiline more stable. It is better to avoid acid and light contact during their storage and manufacturing process.
Collapse
Affiliation(s)
- Kaijing Guo
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yanan Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Chen Ma
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Ahmad T, Gao F, Li J, Zhang Z, Song T, Yuan Q, Zhang W. Synergistic Li/Li Bimetallic System for the Asymmetric Synthesis of Antituberculosis Drug TBAJ-587. J Org Chem 2023. [PMID: 37125776 DOI: 10.1021/acs.joc.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
TBAJ-587, an analogue of the antituberculosis drug bedaquiline (BDQ), bearing a diarylquinoline skeleton retains the high bacterial potency, is less toxic, and has a better pharmacokinetic profile than the parent molecule, which has entered phase I clinical trials. In contrast to its fascinating bioactivity, however, the highly efficient synthesis of this molecule is still an unsolved challenge. Herein, the first asymmetric synthesis of TBAJ-587 based on a synergistic Li/Li bimetallic system is reported. The product could be obtained in an excellent yield of 90% and an enantiomeric ratio (er) of 80:20. Furthermore, the reaction could be conducted on a 5 g scale, and the product was obtained with 99.9:0.1 er after a simple recrystallization. The realization of this protocol will greatly aid the demand for clinical drug production.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Feng Gao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tao Song
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qianjia Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Verma S, Lal S, Narang R, Sudhakar K. Quinoline Hydrazide/Hydrazone Derivatives: Recent Insights on Antibacterial Activity and Mechanism of Action. ChemMedChem 2023; 18:e202200571. [PMID: 36617503 DOI: 10.1002/cmdc.202200571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Antibiotics are becoming gradually ineffective due to drug resistance, leading to greater difficulty in the treatment of infectious diseases. Therefore, the development of new chemical entities with different mechanisms of action is essential in the fight against resistant microorganisms. Various studies have shown that quinoline hydrazide/hydrazone derivatives possess several biological activities, such as antimalarial, antitubercular, anticancer, anti-inflammatory, and antimicrobial. Among these activities, the antibacterial activity of quinoline hydrazide/hydrazone derivatives is noteworthy. The synthetic flexibility of the quinoline ring has led to the development of a wide range of structurally diverse quinoline hydrazide/hydrazone derivatives, which can act at various bacterial targets such as DNA gyrase, glucosamine-6-phosphate synthase, enoyl ACP reductase, and 3-ketoacyl ACP reductase. This review emphasizes the antibacterial potential of various reported quinoline hydrazide/hydrazone derivatives based on substitution in the quinoline ring. The antibacterial activity of various metal-quinoline hydrazide/hydrazone complexes is also discussed. The aim of this review is to assemble and scrutinize the latest reports in this promising area of drug development.
Collapse
Affiliation(s)
- Sangeeta Verma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Sukhbir Lal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Bengaluru, Phagwara, 144402, India
| |
Collapse
|
7
|
Patil NP, Alegaon SG, Parchure PS, Kavalapure RS. Inverse Molecular Docking and Evaluation of Antitubercular Activities of Some Quinoline Based Heterocyclic Compounds. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Asymmetric synthesis of bedaquiline based on bimetallic activation and non-covalent interaction promotion strategies. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Mear SJ, Lucas T, Ahlqvist GP, Robey JMS, Dietz J, Khairnar PV, Maity S, Williams CL, Snead DR, Nelson RC, Opatz T, Jamison TF. Diastereoselectivity is in the Details: Minor Changes Yield Major Improvements to the Synthesis of Bedaquiline**. Chemistry 2022; 28:e202201311. [PMID: 35675114 PMCID: PMC9545417 DOI: 10.1002/chem.202201311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/23/2022]
Abstract
Bedaquiline is a crucial medicine in the global fight against tuberculosis, yet its high price places it out of reach for many patients. Herein, we describe improvements to the key industrial lithiation‐addition sequence that enable a higher yielding and therefore more economical synthesis of bedaquiline. Prioritization of mechanistic understanding and multi‐lab reproducibility led to optimized reaction conditions that feature an unusual base‐salt pairing and afford a doubling of the yield of racemic bedaquiline. We anticipate that implementation of these improvements on manufacturing scale will be facile, thereby substantially increasing the accessibility of this essential medication.
Collapse
Affiliation(s)
- Sarah Jane Mear
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Tobias Lucas
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Grace P. Ahlqvist
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Juliana M. S. Robey
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Jule‐Philipp Dietz
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Pankaj V. Khairnar
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Sanjay Maity
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Corshai L. Williams
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - David R. Snead
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Ryan C. Nelson
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Till Opatz
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Timothy F. Jamison
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
10
|
Rodríguez-Silva CN, Prokopczyk IM, Dos Santos JL. The Medicinal Chemistry of Chalcones as Anti-Mycobacterium tuberculosis Agents. Mini Rev Med Chem 2022; 22:2068-2080. [DOI: 10.2174/1389557522666220214093606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Tuberculosis (TB), a highly fatal infectious disease, is caused by Mycobacterium tuberculosis (Mtb) that has inflicted mankind for several centuries. In 2019, the staggering number of new cases reached 10 million resulting in 1.2 million deaths. The emergence of multidrug-resistance-Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant-Mycobacterium tuberculosis (XDR-TB) is a global concern that requires the search for novel, effective, and safer short-term therapies. Nowadays, among the few alternatives available to treat resistant-Mtb strains, the majority have limitations, which include drug-drug interactions, long-term treatment, and chronic induced toxicities. Therefore, it is mandatory to develop new anti-Mtb agents to achieve health policy goals to mitigate the disease by 2035. Among the several bioactive anti-Mtb compounds, chalcones have been described as the privileged scaffold useful for drug design. Overall, this review explores and analyzes 37 chalcones that exhibited anti-Mtb activity described in the literature up to April 2021 with minimum inhibitory concentration (MIC90) values inferior to 20 µM and selective index superior to 10. In addition, the correlation of some properties for most active compounds was evaluated, and the main targets for these compounds were discussed.
Collapse
Affiliation(s)
- Cristhian N. Rodríguez-Silva
- Universidad Nacional de Trujillo, Facultad de Farmacia y Bioquímica, Unidad de Posgrado en Farmacia y Bioquímica, Av. Juan Pablo II s/n. 13011. Trujillo-Perú
| | - Igor Muccilo Prokopczyk
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Jean Leandro Dos Santos
- Universidad Nacional de Trujillo, Facultad de Farmacia y Bioquímica, Unidad de Posgrado en Farmacia y Bioquímica, Av. Juan Pablo II s/n. 13011. Trujillo-Perú
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| |
Collapse
|
11
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:82-95. [PMID: 34703878 PMCID: PMC8517097 DOI: 10.1016/j.omto.2021.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Mitochondrial ATP synthase (MAS) produces most of the ATP that drives the cell. High expression of the MAS-composing proteins is found during cancer and is linked to a poor prognosis in glioblastoma, ovarian cancer, prostate cancer, breast cancer, and clear cell renal cell carcinoma. Cell surface-expressed ATP synthase, translocated from mitochondrion to cell membrane, involves the angiogenesis, tumorigenesis, and metastasis of cancer. ATP synthase has therefore been considered a therapeutic target. We review recent various ATP synthase inhibitors that suppress tumor growth and are being tested for the clinic.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
13
|
Roy D, Ali K, Panda G. Unveiling p-quinone methide (QM) chemistry to synthesize bedaquiline (TMC 207) like architectures. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Barbaro L, Nagalingam G, Triccas JA, Tan L, West NP, Baell JB, Priebbenow DL. Synthesis and evaluation of pyridine-derived bedaquiline analogues containing modifications at the A-ring subunit. RSC Med Chem 2021; 12:943-959. [PMID: 34223160 DOI: 10.1039/d1md00063b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Despite promising efficacy, the clinical use of the anti-tubercular therapeutic bedaquiline has been restricted due to safety concerns. To date, limited SAR studies have focused on the quinoline ring (A-ring), and as such, we set out to explore modifications within this region in an attempt to discover new bedaquiline variants with an improved safety profile. We herein report the development of unique synthetic strategies that facilitated access to novel bedaquiline analogues leading to the discovery that anti-tubercular activity could be retained following replacement of the quinoline motif with pyridine heterocycles. This discovery is anticipated to open up multiple new avenues for exploration in the design of improved anti-tubercular therapeutics.
Collapse
Affiliation(s)
- Lisa Barbaro
- Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Gayathri Nagalingam
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney Sydney NSW 2006 Australia
| | - James A Triccas
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney Sydney NSW 2006 Australia
| | - Lendl Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland St Lucia Queensland 4072 Australia.,Australian Infectious Diseases Research Centre St. Lucia Queensland 4067 Australia
| | - Nicholas P West
- School of Chemistry and Molecular Bioscience, The University of Queensland St Lucia Queensland 4072 Australia.,Australian Infectious Diseases Research Centre St. Lucia Queensland 4067 Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Daniel L Priebbenow
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
15
|
Inhibitors of F 1F 0-ATP synthase enzymes for the treatment of tuberculosis and cancer. Future Med Chem 2021; 13:911-926. [PMID: 33845594 DOI: 10.4155/fmc-2021-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The spectacular success of the mycobacterial F1F0-ATP synthase inhibitor bedaquiline for the treatment of drug-resistant tuberculosis has generated wide interest in the development of other inhibitors of this enzyme. Work in this realm has included close analogues of bedaquiline with better safety profiles and 'bedaquiline-like' compounds, some of which show potent antibacterial activity in vitro although none have yet progressed to clinical trials. The search has lately extended to a range of new scaffolds as potential inhibitors, including squaramides, diaminoquinazolines, chloroquinolines, dihydropyrazolo[1,5-a]pyrazin-4-ones, thiazolidinediones, diaminopyrimidines and tetrahydroquinolines. Because of the ubiquitous expression of ATP synthase enzymes, there has also been interest in inhibitors of other bacterial ATP synthases, as well as inhibitors of human mitochondrial ATP synthase for cancer therapy. The latter encompass both complex natural products and simpler small molecules. The review seeks to demonstrate the breadth of the structural types of molecules able to effectively inhibit the function of variants of this intriguing enzyme.
Collapse
|