1
|
Lederberg OL, Yan NL, Sanchez J, Ren W, Ash C, Wilkens SJ, Qiu H, Qin B, Grant VH, Jackman AB, Stanfield RL, Wilson IA, Petrassi HM, Rhoades D, Kelly JW. Discovery of Potent and Selective Pyridone-Based Small Molecule Kinetic Stabilizers of Amyloidogenic Immunoglobulin Light Chains. J Med Chem 2024; 67:21070-21105. [PMID: 39626211 DOI: 10.1021/acs.jmedchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Kinetic stabilization of amyloidogenic immunoglobulin light chains (LCs) through small molecule binding may become the first treatment for the proteinopathy component of light chain amyloidosis (AL). Kinetic stabilizers selectively bind to the native state over the misfolding transition state, slowing denaturation. Prior λ full-length LC dimer (FL LC2) kinetic stabilizers exhibited considerable plasma protein binding. We hypothesized that the coumarin "aromatic core" of the stabilizers was responsible for the undesirable plasma protein binding. Here, we describe structure-activity relationship (SAR) data initially focused on replacing the coumarin aromatic core. 2-pyridones proved suitable replacements. We subsequently optimized the "anchor substructure" in the context of 2-pyridones, resulting in potent λ FL LC2 kinetic stabilizers exhibiting reduced plasma protein binding. The 3-methyl- or 3-ethyl-3-phenylpyrrolidine-2-pyridone scaffold stabilized multiple AL patient-derived λ FL LC2s in human plasma. This, coupled with X-ray crystallographic data, indicates that 3-alkyl-3-phenylpyrrolidine-2-pyridone-based stabilizers are promising candidates for treating the proteinopathy component of AL.
Collapse
Affiliation(s)
- Oren L Lederberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Julian Sanchez
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wen Ren
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carl Ash
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Steven J Wilkens
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Huang Qiu
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Bo Qin
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Virginia H Grant
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Alex B Jackman
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road., La Jolla, California 92037, United States
| | - H Michael Petrassi
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, California 92130, United States
| | - Derek Rhoades
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road., La Jolla, California 92037, United States
| |
Collapse
|
2
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Priyanka, Raymandal B, Mondal S. Native State Stabilization of Amyloidogenic Proteins by Kinetic Stabilizers: Inhibition of Protein Aggregation and Clinical Relevance. ChemMedChem 2024; 19:e202400244. [PMID: 38863235 DOI: 10.1002/cmdc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Proteinopathies or amyloidoses are a group of life-threatening disorders that result from misfolding of proteins and aggregation into toxic insoluble amyloid aggregates. Amyloid aggregates have low clearance from the body due to the insoluble nature, leading to their deposition in various organs and consequent organ dysfunction. While amyloid deposition in the central nervous system leads to neurodegenerative diseases that mostly cause dementia and difficulty in movement, several other organs, including heart, liver and kidney are also affected by systemic amyloidoses. Regardless of the site of amyloid deposition, misfolding and structural alteration of the precursor proteins play the central role in amyloid formation. Kinetic stabilizers are an emerging class of drugs, which act like pharmacological chaperones to stabilize the native state structure of amyloidogenic proteins and to increase the activation energy barrier that is required for adopting a misfolded structure or conformation, ultimately leading to the inhibition of protein aggregation. In this review, we discuss the kinetic stabilizers that stabilize the native quaternary structure of transthyretin, immunoglobulin light chain and superoxide dismutase 1 that cause transthyretin amyloidoses, light chain amyloidosis and familial amyotrophic lateral sclerosis, respectively.
Collapse
Affiliation(s)
- Priyanka
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Bitta Raymandal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Santanu Mondal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| |
Collapse
|
4
|
Wang J, Li J, Zhong L. Current status and prospect of anti-amyloid fibril therapy in AL amyloidosis. Blood Rev 2024; 66:101207. [PMID: 38692939 DOI: 10.1016/j.blre.2024.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
Amyloid light-chain (AL) amyloidosis is a rare hematological disease that produces abnormal monoclonal immunoglobulin light chains to form amyloid fibrils that are deposited in tissues, resulting in organ damage and dysfunction. Advanced AL amyloidosis has a very poor prognosis with a high risk of early mortality. The combination of anti-plasma cell therapy and amyloid fibrils clearance is the optimal treatment strategy, which takes into account both symptoms and root causes. However, research on anti-amyloid fibrils lags far behind research on anti-plasma cells, and there is currently no approved treatment that could clear amyloid fibrils. Nevertheless, anti-amyloid fibril therapies are being actively investigated recently and have shown potential in clinical trials. In this review, we aim to outline the preclinical work and clinical efficacy of fibril-directed therapies for AL amyloidosis.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liye Zhong
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Broggini L, Barzago MM, Speranzini V, Schulte T, Sonzini F, Giono M, Romeo M, Milani P, Caminito S, Mazzini G, Rognoni P, Merlini G, Pappone C, Anastasia L, Nuvolone M, Palladini G, Diomede L, Ricagno S. Nanobodies counteract the toxicity of an amyloidogenic light chain by stabilizing a partially open dimeric conformation. J Mol Biol 2023; 435:168320. [PMID: 37865287 DOI: 10.1016/j.jmb.2023.168320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 VL domain and stabilise an unexpected partially open LC dimer in which the two VL domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.
Collapse
Affiliation(s)
- Luca Broggini
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy
| | - Maria Monica Barzago
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | | | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy
| | - Federica Sonzini
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Matteo Giono
- Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | - Paolo Milani
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Serena Caminito
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giulia Mazzini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Paola Rognoni
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giampaolo Merlini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, Milan 20097, Italy; Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Mario Nuvolone
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giovanni Palladini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy.
| |
Collapse
|
6
|
Fernández Ramírez MDC, Afrin S, Saelices L. Conformational inhibitors of protein aggregation. Curr Opin Struct Biol 2023; 83:102700. [PMID: 37717490 DOI: 10.1016/j.sbi.2023.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Amyloidoses are fatal conditions associated with the aggregation of proteins into amyloid fibrils that deposit systemically and/or locally. Possibly because the causal mechanism of protein aggregation and deposition is not fully understood, this group of diseases remains uncurable. Advances in structural biology, such as the use of nuclear magnetic resonance and cryo-electron microscopy, have enabled the study of the structures and the conformational nature of the proteins whose aggregation is associated with the underlying pathogenesis of amyloidosis. As a result, the last years of research have translated into the development of directed therapeutic strategies that target the specific conformations of precursors, fibrils, and intermediary species. Current efforts include the use of small molecules, peptides, and antibodies. This review summarizes the recent progress in developing strategies that target specific protein conformations for the treatment of amyloidoses.
Collapse
Affiliation(s)
- María Del Carmen Fernández Ramírez
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA. https://twitter.com/FernandezR_MC
| | - Shumaila Afrin
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA. https://twitter.com/Shumyla44
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA.
| |
Collapse
|
7
|
Yan NL, Morgan GJ, Petrassi HM, Wilson IA, Kelly JW. Pharmacological stabilization of the native state of full-length immunoglobulin light chains to treat light chain amyloidosis. Curr Opin Chem Biol 2023; 75:102319. [PMID: 37279624 PMCID: PMC10523890 DOI: 10.1016/j.cbpa.2023.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023]
Abstract
Immunoglobulin light chain amyloidosis (AL) is a cancer of plasma cells that secrete unstable full-length immunoglobulin light chains. These light chains misfold and aggregate, often with aberrant endoproteolysis, leading to organ toxicity. AL is currently treated by pharmacological elimination of the clonal plasma cells. Since it remains difficult to completely kill these cells in the majority of patients, we seek a complementary drug that inhibits light chain aggregation, which should diminish organ toxicity. We discovered a small-molecule binding site on full-length immunoglobulin light chains by structurally characterizing hit stabilizers emerging from a high-throughput screen seeking small molecules that protect full-length light chains from conformational excursion-linked endoproteolysis. The x-ray crystallographic characterization of 7 structurally distinct hit native-state stabilizers provided a structure-based blueprint, reviewed herein, to design more potent stabilizers. This approach enabled us to transform hits with micromolar affinity into stabilizers with nanomolar dissociation constants that potently prevent light chain aggregation.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gareth J Morgan
- Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - H Michael Petrassi
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, CA 92130, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Pradhan T, Sarkar R, Meighen-Berger KM, Feige MJ, Zacharias M, Reif B. Mechanistic insights into the aggregation pathway of the patient-derived immunoglobulin light chain variable domain protein FOR005. Nat Commun 2023; 14:3755. [PMID: 37353525 PMCID: PMC10290123 DOI: 10.1038/s41467-023-39280-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Systemic antibody light chain (AL) amyloidosis is characterized by deposition of amyloid fibrils. Prior to fibril formation, soluble oligomeric AL protein has a direct cytotoxic effect on cardiomyocytes. We focus on the patient derived λ-III AL variable domain FOR005 which is mutated at five positions with respect to the closest germline protein. Using solution-state NMR spectroscopy, we follow the individual steps involved in protein misfolding from the native to the amyloid fibril state. Unfavorable mutations in the complementary determining regions introduce a strain in the native protein structure which yields partial unfolding. Driven by electrostatic interactions, the protein converts into a high molecular weight, oligomeric, molten globule. The high local concentration of aggregation prone regions in the oligomer finally catalyzes the conversion into fibrils. The topology is determined by balanced electrostatic interactions in the fibril core implying a 180° rotational switch of the beta-sheets around the conserved disulfide bond.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85747, Garching, Germany
- Institute of Structural Biology (STB), Helmholtz-Zentrum München (HMGU), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Riddhiman Sarkar
- Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85747, Garching, Germany
- Institute of Structural Biology (STB), Helmholtz-Zentrum München (HMGU), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Kevin M Meighen-Berger
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Bernd Reif
- Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85747, Garching, Germany.
- Institute of Structural Biology (STB), Helmholtz-Zentrum München (HMGU), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
9
|
Sun X, Dyson HJ, Wright PE. Role of conformational dynamics in pathogenic protein aggregation. Curr Opin Chem Biol 2023; 73:102280. [PMID: 36878172 PMCID: PMC10033434 DOI: 10.1016/j.cbpa.2023.102280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
The accumulation of pathogenic protein oligomers and aggregates is associated with several devastating amyloid diseases. As protein aggregation is a multi-step nucleation-dependent process beginning with unfolding or misfolding of the native state, it is important to understand how innate protein dynamics influence aggregation propensity. Kinetic intermediates composed of heterogeneous ensembles of oligomers are frequently formed on the aggregation pathway. Characterization of the structure and dynamics of these intermediates is critical to the understanding of amyloid diseases since oligomers appear to be the main cytotoxic agents. In this review, we highlight recent biophysical studies of the roles of protein dynamics in driving pathogenic protein aggregation, yielding new mechanistic insights that can be leveraged for design of aggregation inhibitors.
Collapse
Affiliation(s)
- Xun Sun
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Rottenaicher GJ, Absmeier RM, Meier L, Zacharias M, Buchner J. A constant domain mutation in a patient-derived antibody light chain reveals principles of AL amyloidosis. Commun Biol 2023; 6:209. [PMID: 36823438 PMCID: PMC9950467 DOI: 10.1038/s42003-023-04574-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Light chain (AL) amyloidosis is a debilitating disease in which mutant antibody light chains (LC), secreted by aberrant plasma cell clones, misfold and form insoluble fibrils, which can be deposited in various organs. In the majority of cases, the fibrillar deposits consist of LC variable domains (VL) containing destabilizing mutations compared to their germline counterparts. This is also true for the patient LC FOR005. However, this pathogenic LC sequence contains an additional mutation in the constant domain (CL). The mechanistic impact of CL mutations is not yet understood in the context of AL amyloidosis. Our analysis reveals that the FOR005 CL mutation influences the amyloid pathway in specific ways: (1) folding and stability of the patient CL domain are strongly impaired; (2) the mutation disrupts the LC dimer interface and weakens dimerization; (3) the CL mutation promotes proteolytic cleavage of the LC monomers resulting in an isolated, amyloidogenic VL domain while dimeric LCs are not cleaved. The enhanced proteolysis rates and the inability of full-length LCs to form amyloid fibrils even in the presence of a destabilized CL domain support a model for AL amyloidosis in which the CL domain plays a protective role and in which proteolytic cleavage precedes amyloid formation.
Collapse
Affiliation(s)
- Georg J Rottenaicher
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Ramona M Absmeier
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Laura Meier
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Johannes Buchner
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany.
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany.
| |
Collapse
|
11
|
Yan NL, Nair R, Chu A, Wilson IA, Johnson KA, Morgan GJ, Kelly JW. Amyloidogenic immunoglobulin light chain kinetic stabilizers comprising a simple urea linker module reveal a novel binding sub-site. Bioorg Med Chem Lett 2022; 60:128571. [PMID: 35065233 PMCID: PMC8857066 DOI: 10.1016/j.bmcl.2022.128571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/29/2021] [Accepted: 01/15/2022] [Indexed: 11/29/2022]
Abstract
In immunoglobulin light chain (LC) amyloidosis, the misfolding, or misfolding and misassembly of LC a protein or fragments thereof resulting from aberrant endoproteolysis, causes organ damage to patients. A small molecule "kinetic stabilizer" drug could slow or stop these processes and improve prognosis. We previously identified coumarin-based kinetic stabilizers of LCs that can be divided into four components, including a "linker module" and "distal substructure". Our prior studies focused on characterizing carbamate, hydantoin, and spirocyclic urea linker modules, which bind in a solvent-exposed site at the VL-VL domain interface of the LC dimer. Here, we report structure-activity relationship data on 7-diethylamino coumarin-based kinetic stabilizers. This substructure occupies the previously characterized "anchor cavity" and the "aromatic slit". The potencies of amide and urea linker modules terminating in a variety of distal substructures attached at the 3-position of this coumarin ring were assessed. Surprisingly, crystallographic data on a 7-diethylamino coumarin-based kinetic stabilizer reveals that the urea linker module and distal substructure attached at the 3-position bind a solvent-exposed region of the full-length LC dimer distinct from previously characterized sites. Our results further elaborate the small-molecule binding surface of LCs that could be occupied by potent and selective LC kinetic stabilizers.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reji Nair
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alan Chu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen A Johnson
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gareth J Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; The Amyloidosis Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Morgan GJ, Buxbaum JN, Kelly JW. Light Chain Stabilization: A Therapeutic Approach to Ameliorate AL Amyloidosis. HEMATO 2021; 2:645-659. [PMID: 35757512 PMCID: PMC9218996 DOI: 10.3390/hemato2040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-native immunoglobulin light chain conformations, including aggregates, appear to cause light chain amyloidosis pathology. Despite significant progress in pharmacological eradication of the neoplastic plasma cells that secrete these light chains, in many patients impaired organ function remains. The impairment is apparently due to a subset of resistant plasma cells that continue to secrete misfolding-prone light chains. These light chains are susceptible to the proteolytic cleavage that may enable light chain aggregation. We propose that small molecules that preferentially bind to the natively folded state of full-length light chains could act as pharmacological kinetic stabilizers, protecting light chains against unfolding, proteolysis and aggregation. Although the sequence of the pathological light chain is unique to each patient, fortunately light chains have highly conserved residues that form binding sites for small molecule kinetic stabilizers. We envision that such stabilizers could complement existing and emerging therapies to benefit light chain amyloidosis patients.
Collapse
Affiliation(s)
- Gareth J. Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- The Amyloidosis Center, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence:
| | - Joel N. Buxbaum
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Morgan GJ. Barriers to Small Molecule Drug Discovery for Systemic Amyloidosis. Molecules 2021; 26:3571. [PMID: 34208058 PMCID: PMC8230685 DOI: 10.3390/molecules26123571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.
Collapse
Affiliation(s)
- Gareth J Morgan
- Section of Hematology and Medical Oncology, Amyloidosis Center, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
14
|
Yan NL, Santos-Martins D, Nair R, Chu A, Wilson IA, Johnson KA, Forli S, Morgan GJ, Petrassi HM, Kelly JW. Discovery of Potent Coumarin-Based Kinetic Stabilizers of Amyloidogenic Immunoglobulin Light Chains Using Structure-Based Design. J Med Chem 2021; 64:6273-6299. [PMID: 33939422 DOI: 10.1021/acs.jmedchem.1c00339] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In immunoglobulin light-chain (LC) amyloidosis, transient unfolding or unfolding and proteolysis enable aggregation of LC proteins, causing potentially fatal organ damage. A drug that kinetically stabilizes LCs could suppress aggregation; however, LC sequences are variable and have no natural ligands, hindering drug development efforts. We previously identified high-throughput screening hits that bind to a site at the interface between the two variable domains of the LC homodimer. We hypothesized that extending the stabilizers beyond this initially characterized binding site would improve affinity. Here, using protease sensitivity assays, we identified stabilizers that can be divided into four substructures. Some stabilizers exhibit nanomolar EC50 values, a 3000-fold enhancement over the screening hits. Crystal structures reveal a key π-π stacking interaction with a conserved tyrosine residue that was not utilized by the screening hits. These data provide a foundation for developing LC stabilizers with improved binding selectivity and enhanced physicochemical properties.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Reji Nair
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alan Chu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kristen A Johnson
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gareth J Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States.,The Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - H Michael Petrassi
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|