1
|
Kowalczyk K, Błauż A, Krawczyk K, Rychlik B, Plażuk D. Design and synthesis of ferrocenyl 1,4-dihydropyridines and their evaluation as kinesin-5 inhibitors. Dalton Trans 2024; 53:16038-16053. [PMID: 39291736 DOI: 10.1039/d4dt01853b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Kinesin-5 inhibitors offer cancer cell-targeted approach, thus securing reduced systemic toxicity compared to other antimitotic agents. By modifying the 1,4-dihydropyridine-based kinesin-5 inhibitor CPUYL064 with a ferrocenyl moiety (Fc), we designed and prepared a series of organometallic hybrids that show high antiproliferative activity, with the best compounds exhibiting up to 19-fold increased activity. This enhanced activity can be attributed to the presence of the ferrocenyl moiety.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| | - Andrzej Błauż
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Krzysztof Krawczyk
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Błażej Rychlik
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
2
|
He X, Xie X, Xiang J, Yang M. Convenient Size Analysis of Nanoplastics on a Microelectrode. Anal Chem 2024; 96:6180-6185. [PMID: 38593062 DOI: 10.1021/acs.analchem.3c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chemical recycling is a promising approach to reduce plastic pollution. Timely and accurate size analysis of produced nanoplastics is necessary to monitor the process and assess the quality of chemical recycling. In this work, a sandwich-type microelectrode sensor was developed for the size assessment of nanoplastics. β-Mercaptoethylamine was modified on the microelectrode to enhance its surface positive charge density. Polystyrene (PS) nanoplastics were captured on the sensor through electrostatic interactions. Ferrocene was used as an electrochemical beacon and attached to PS via hydrophobic interactions. The results show a nonlinear dependence of the sensor's current response on the PS particle size. The size resolving ability of the microelectrode is mainly attributed to the small size of the electrode and the resulting attenuation of the electric field strength. For mixed samples with different particle sizes, this method can provide accurate average particle sizes. Through an effective pretreatment process, the method can be applied to PS nanoplastics with different surface properties, ensuring its application in evaluating different chemical recycling methods.
Collapse
Affiliation(s)
- Xuan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Xin Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| |
Collapse
|
3
|
Ochiai K, Yonezawa R, Fujii S. Structural Development of Androgen Receptor Antagonists Using Phenylferrocene Framework as a Hydrophobic Pharmacophore. ChemMedChem 2024; 19:e202400040. [PMID: 38291942 DOI: 10.1002/cmdc.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
We previously identified nitrophenylferrocenes and cyanophenylferrocenes as promising lead structures of novel androgen receptor (AR) antagonists, based on the structural similarity between ferrocene and the steroidal skeleton. In the present research, we explored the structure-activity relationship (SAR) of phenylferrocene derivatives. Introduction of a hydrophobic substituent such as a chlorine atom at the 2-position or 3-position of phenylferrocene derivatives significantly increased the antagonistic activity toward wild-type AR, and among the synthesized compounds, 3-chloro-4-cyanophenylferrocene (29) exhibited the most potent anti-proliferative activity toward the androgen-dependent growth of SC-3 cells expressing wild-type AR (IC50 14 nM). Like conventional antiandrogens such as hydroxyflutamide, the major active metabolite of flutamide, compound 29 exhibited agonistic activity toward T877A-AR, a mutant AR expressed in human prostate cancer cell line LNCaP. Notably, however, the 2-chloro isomer 27 showed potent antagonistic activity toward wild-type AR (IC50 49 nM) and also exhibited antagonistic activity toward T877A-AR. Our SAR data should prove helpful for the development of new-generation AR antagonists based on phenylferrocene as candidate agents to treat drug-resistant prostate cancer.
Collapse
Affiliation(s)
- Kotaro Ochiai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Ryo Yonezawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
4
|
Rauf U, Shabir G, Bukhari S, Albericio F, Saeed A. Contemporary Developments in Ferrocene Chemistry: Physical, Chemical, Biological and Industrial Aspects. Molecules 2023; 28:5765. [PMID: 37570735 PMCID: PMC10420780 DOI: 10.3390/molecules28155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ferrocenyl-based compounds have many applications in diverse scientific disciplines, including in polymer chemistry as redox dynamic polymers and dendrimers, in materials science as bioreceptors, and in pharmacology, biochemistry, electrochemistry, and nonlinear optics. Considering the horizon of ferrocene chemistry, we attempted to condense the neoteric advancements in the synthesis and applications of ferrocene derivatives reported in the literature from 2016 to date. This paper presents data on the progression of the synthesis of diverse classes of organic compounds having ferrocene scaffolds and recent developments in applications of ferrocene-based organometallic compounds, with a special focus on their biological, medicinal, bio-sensing, chemosensing, asymmetric catalysis, material, and industrial applications.
Collapse
Affiliation(s)
- Umair Rauf
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Saba Bukhari
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| |
Collapse
|
5
|
Hammoud MM, Khattab M, Abdel-Motaal M, Van der Eycken J, Alnajjar R, Abulkhair HS, Al-Karmalawy AA. Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity. J Biomol Struct Dyn 2022:1-18. [PMID: 35674744 DOI: 10.1080/07391102.2022.2082533] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this article, we describe a set of subsequent five-steps chemical reactions to synthesize a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10). Structural characterization of 10 and its intermediate products was also performed and reported to attest to their formation. A molecular docking study was performed to propose the novel synthesized ferrocene derivative (10) as a potential antitumor candidate targeting the mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1. The computed docking score of (10) at -9.50 kcal/mol compared to the native anticancer staurosporine at -8.72 kcal/mol postulated a promising anticancer activity. Also, molecular dynamics (MD) simulations were carried out for 500 ns followed by MM-GBSA-binding free energy calculations for both the docked complexes of ferrocene and staurosporine to give more deep insights into their dynamic behavior in physiological conditions. Furthermore, DFT calculations were performed to unravel some of the physiochemical characteristics of the ferrocene derivative (10). The quantum mechanics calculations shed the light on some of the structural and electrochemical configurations of (10) which would open the horizon for further investigation. HighlightsThe synthesis of a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10) was described.Structural characterizations of ferrocene derivative (10) and its intermediate products were also performed.DFT calculations, molecular docking, molecular dynamics, and MM-GBSA calculations were carried out.Computational studies revealed the antitumor potential of ferrocene derivative (10) through targeting and inhibiting mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed M Hammoud
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute National Research Centre, Dokki, Cairo, Egypt
| | - Marwa Abdel-Motaal
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Johan Van der Eycken
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya.,Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ahmed Ali Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
6
|
A prodrug of 3-(ferrocenylaminocarbonyloxymethyl)phenol activated by reactive oxygen species in cancer cells. J Inorg Biochem 2022; 233:111859. [DOI: 10.1016/j.jinorgbio.2022.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 05/08/2022] [Indexed: 11/22/2022]
|
7
|
Fujii S. Design Strategy of Biologically Active Compounds Using Various Elements. YAKUGAKU ZASSHI 2022; 142:131-137. [DOI: 10.1248/yakushi.21-00173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
8
|
Li Z, Zhang M, Haenen GRMM, Vervoort L, Moalin M. Flavonoids Seen through the Energy Perspective. Int J Mol Sci 2021; 23:187. [PMID: 35008613 PMCID: PMC8745170 DOI: 10.3390/ijms23010187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
In all life forms, opposing forces provide the energy that flows through networks in an organism, which fuels life. In this concept, health is the ability of an organism to maintain the balance between these opposing forces, which creates resilience, and a deranged flow of energy is the basis for diseases. Treatment should focus on adjusting the deranged flow of energy, e.g., by the redox modulating activity of antioxidants. A major group of antioxidants is formed by flavonoids, a group of polyphenolic compounds abundantly present in our diet. The objective here is to review how the redox modulation by flavonoids fits in the various concepts on the mode of action of bioactive compounds, so we can 'see' where there is overlap and where the missing links are. Based on this fundament, we should choose our research path aiming to 'understand' the redox modulating profile of specific flavonoids, so we can ultimately rationally apply the redox modulating power of flavonoids to improve our health.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
| | - Ming Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands
| |
Collapse
|