1
|
Barasa L, Chaudhuri S, Zhou JY, Jiang Z, Choudhary S, Green RM, Wiggin E, Cameron M, Humphries F, Fitzgerald KA, Thompson PR. Development of LB244, an Irreversible STING Antagonist. J Am Chem Soc 2023; 145:20273-20288. [PMID: 37695732 PMCID: PMC11059204 DOI: 10.1021/jacs.3c03637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The cGMP-AMP Synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway plays a critical role in sensing dsDNA localized to the cytosol, resulting in the activation of a robust inflammatory response. While cGAS-STING signaling is essential for antiviral immunity, aberrant STING activation is observed in amyotrophic lateral sclerosis (ALS), lupus, and autoinflammatory diseases such as Aicardi-Goutières syndrome (AGS) and STING associated vasculopathy with onset in infancy (SAVI). Significant efforts have therefore focused on the development of STING inhibitors. In a concurrent submission, we reported that BB-Cl-amidine inhibits STING-dependent signaling in the nanomolar range, both in vitro and in vivo. Considering this discovery, we sought to generate analogs with higher potency and proteome-wide selectivity. Herein, we report the development of LB244, which displays nanomolar potency and inhibits STING signaling with markedly enhanced proteome-wide selectivity. Moreover, LB244 mirrored the efficacy of BB-Cl-amidine in vivo. In summary, our data identify novel chemical entities that inhibit STING signaling and provide a scaffold for the development of therapeutics for treating STING-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Leonard Barasa
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Sauradip Chaudhuri
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jeffrey Y. Zhou
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Shruti Choudhary
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Robert Madison Green
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Elenore Wiggin
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Michael Cameron
- Department of Molecular Medicine, UF Scripps Institute,130 Scripps Way, Jupiter, FL 33458, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Katherine A. Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Paul R. Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Jayasinghe YP, Banco MT, Lindenberger JJ, Favrot L, Palčeková Z, Jackson M, Manabe S, Ronning DR. The Mycobacterium tuberculosis mycothiol S-transferase is divalent metal-dependent for mycothiol binding and transfer. RSC Med Chem 2023; 14:491-500. [PMID: 36970142 PMCID: PMC10034076 DOI: 10.1039/d2md00401a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Mycothiol S-transferase (MST) (encoded by the rv0443 gene) was previously identified as the enzyme responsible for the transfer of Mycothiol (MSH) to xenobiotic acceptors in Mycobacterium tuberculosis (M.tb) during xenobiotic stress. To further characterize the functionality of MST in vitro and the possible roles in vivo, X-ray crystallographic, metal-dependent enzyme kinetics, thermal denaturation studies, and antibiotic MIC determination in rv0433 knockout strain were performed. The binding of MSH and Zn2+ increases the melting temperature by 12.9 °C as a consequence of the cooperative stabilization of MST by both MSH and metal. The co-crystal structure of MST in complex with MSH and Zn2+ to 1.45 Å resolution supports the specific utilization of MSH as a substrate as well as affording insights into the structural requirements of MSH binding and the metal-assisted catalytic mechanism of MST. Contrary to the well-defined role of MSH in mycobacterial xenobiotic responses and the ability of MST to bind MSH, cell-based studies with an M.tb rv0443 knockout strain failed to provide evidence for a role of MST in processing of rifampicin or isoniazid. These studies suggest the necessity of a new direction to identify acceptors of the enzyme and better define the biological role of MST in mycobacteria.
Collapse
Affiliation(s)
- Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska USA
| | - Michael T Banco
- Department of Chemistry and Biochemistry, University of Toledo Toledo Ohio USA
| | | | - Lorenza Favrot
- Department of Chemistry and Biochemistry, University of Toledo Toledo Ohio USA
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins Colorado USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins Colorado USA
| | - Shino Manabe
- Laboratory of Functional Molecule Chemistry, Pharmaceutical Department and Institute of Medicinal Chemistry, Hoshi University Tokyo Japan
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Tohoku University Miyagi Japan
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
3
|
Para-Substituted O-Benzyl Sulfohydroxamic Acid Derivatives as Redox-Triggered Nitroxyl (HNO) Sources. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165305. [PMID: 36014540 PMCID: PMC9414458 DOI: 10.3390/molecules27165305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022]
Abstract
Nitroxyl shows a unique biological profile compared to the gasotransmitters nitric oxide and hydrogen sulfide. Nitroxyl reacts with thiols as an electrophile, and this redox chemistry mediates much of its biological chemistry. This reactivity necessitates the use of donors to study nitroxyl’s chemistry and biology. The preparation and evaluation of a small library of new redox-triggered nitroxyl sources is described. The condensation of sulfonyl chlorides and properly substituted O-benzyl hydroxylamines produced O-benzyl-substituted sulfohydroxamic acid derivatives with a 27–79% yield and with good purity. These compounds were designed to produce nitroxyl through a 1, 6 elimination upon oxidation or reduction via a Piloty’s acid derivative. Gas chromatographic headspace analysis of nitrous oxide, the dimerization and dehydration product of nitroxyl, provides evidence for nitroxyl formation. The reduction of derivatives containing nitro and azide groups generated nitrous oxide with a 25–92% yield, providing evidence of nitroxyl formation. The oxidation of a boronate-containing derivative produced nitrous oxide with a 23% yield. These results support the proposed mechanism of nitroxyl formation upon reduction/oxidation via a 1, 6 elimination and Piloty’s acid. These compounds hold promise as tools for understanding nitroxyl’s role in redox biology.
Collapse
|