1
|
Tarai A, Nath B. A review on oxime functionality: an ordinary functional group with significant impacts in supramolecular chemistry. Chem Commun (Camb) 2024; 60:7266-7287. [PMID: 38916274 DOI: 10.1039/d4cc01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The oxime functional group is pivotal in chemistry, finding extensive applications in medical science, catalysis, organic functional group transformations, and the recognition of essential and toxic analytes. While the coordination chemistry of oxime derivatives has been thoroughly explored and several reviews have been published on this topic in reputable journals, a comprehensive review encompassing various aspects such as crystal engineering, cation and anion recognition, as well as coordination chemistry activities, is still in demand. This feature article highlights the diverse applications of oxime derivatives across multiple domains of chemistry, including medicine, agriculture, crystal engineering, coordination chemistry, and molecular recognition studies. Each of the oxime derivatives in this feature article are meticulously described in terms of their medicinal applications, crop protection, crystal engineering attributes, analyte recognition capabilities, and coordination chemistry aspects. By providing a comprehensive overview of their versatile applications, this article aims to inspire researchers to explore and develop novel oxime-based derivatives for future applications.
Collapse
Affiliation(s)
- Arup Tarai
- School of Advanced Sciences and Languages (SASL), VIT Bhopal University, Bhopal-466114, Madya Pradesh, India.
| | - Bhaskar Nath
- Department of Educational Sciences, Assam University Silchar, Assam-788011, India.
| |
Collapse
|
2
|
Xu D, Gong Y, Zhang L, Xiao F, Wang X, Qin J, Tan L, Yang T, Lin Z, Xu Z, Liu X, Xiao F, Zhang F, Tang F, Zuo J, Luo X, Huang W, Yang L, Yang W. Modular Biomimetic Strategy Enables Discovery and SAR Exploration of Oxime Macrocycles as Influenza A Virus (H1N1) Inhibitors. J Med Chem 2024; 67:8201-8224. [PMID: 38736187 DOI: 10.1021/acs.jmedchem.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Although vaccination remains the prevalent prophylactic means for controlling Influenza A virus (IAV) infections, novel structural antivirus small-molecule drugs with new mechanisms of action for treating IAV are highly desirable. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring oxime, which might target the hemagglutinin (HA)-mediated IAV entry into the host cells. SAR analysis revealed that the size and linker of the macrocycles play an important role in improving potency. Particularly, as a 14-membered macrocyclic oxime, 37 exhibited potent inhibitory activity against IAV H1N1 with an EC50 value of 23 nM and low cytotoxicity, which alleviated cytopathic effects and protected cell survival obviously after H1N1 infection. Furthermore, 37 showed significant synergistic activity with neuraminidase inhibitor oseltamivir in vitro.
Collapse
Affiliation(s)
- Dandan Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Gong
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianju Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Xiao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinran Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji Qin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Tan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeng Lin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujuan Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuling Xiao
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feili Zhang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Tang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yang
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Nunthaboot N, Boonma T, Rajchakom C, Nutho B, Rungrotmongkol T. Efficiency of membrane fusion inhibitors on different hemagglutinin subtypes: insight from a molecular dynamics simulation perspective. J Biomol Struct Dyn 2024:1-12. [PMID: 38415365 DOI: 10.1080/07391102.2024.2322629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The challenge in vaccine development, along with drug resistance issues, has encouraged the search for new anti-influenza drugs targeting different viral proteins. Hemagglutinin (HA) glycoprotein, crucial in the viral replication cycle, has emerged as a promising therapeutic target. CBS1117 and JNJ4796 were reported to exhibit similar potencies against infectious group 1 influenza, which included H1 and H5 HAs; however, their potencies were significantly reduced against group 2 HA. This study aims to explore the molecular binding mechanisms and group specificity of these fusion inhibitors against both group 1 (H5) and group 2 (H3) HA influenza viruses using molecular dynamics simulations. CBS1117 and JNJ4796 exhibit stronger interactions with key residues within the H5 HA binding pocket compared to H3-ligand complexes. Hydrogen bonding and hydrophobic interactions involving residues, such as H381, Q401, T3251 (H5-CBS1117), T3181 (H5-JNJ4796), W212, I452, V482, and V522 predominantly contribute to stabilizing H5-ligand systems. In contrast, these interactions are notably weakened in H3-inhibitor complexes. Predicted protein-ligand binding free energies align with experimental data, indicating CBS1117 and JNJ4796's preference for heterosubtypic group 1 HA binding. Understanding the detailed atomistic mechanisms behind the varying potencies of these inhibitors against the two HA groups can significantly contribute to the development and optimization of effective HA fusion inhibitors. To accomplish this, the knowledge of the transition of HA from its pre- to post-fusion states, the molecular size of ligands, and their potential binding regions, could be carefully considered.
Collapse
Affiliation(s)
- Nadtanet Nunthaboot
- Multidisciplinary Research Unit of Pure and Applied Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Thitiya Boonma
- Multidisciplinary Research Unit of Pure and Applied Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Chananya Rajchakom
- Multidisciplinary Research Unit of Pure and Applied Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Zhukovets AA, Chernyshov VV, Al’mukhametov AZ, Seregina TA, Revtovich SV, Kasatkina MA, Isakova YE, Kulikova VV, Morozova EA, Cherkasova AI, Mannanov TA, Anashkina AA, Solyev PN, Mitkevich VA, Ivanov RA. Novel Hydroxamic Acids Containing Aryl-Substituted 1,2,4- or 1,3,4-Oxadiazole Backbones and an Investigation of Their Antibiotic Potentiation Activity. Int J Mol Sci 2023; 25:96. [PMID: 38203266 PMCID: PMC10779255 DOI: 10.3390/ijms25010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a zinc amidase that catalyzes the second step of the biosynthesis of lipid A, which is an outer membrane essential structural component of Gram-negative bacteria. Inhibitors of this enzyme can be attributed to two main categories, non-hydroxamate and hydroxamate inhibitors, with the latter being the most effective given the chelation of Zn2+ in the active site. Compounds containing diacetylene or acetylene tails and the sulfonic head, as well as oxazoline derivatives of hydroxamic acids, are among the LpxC inhibitors with the most profound antibacterial activity. The present article describes the synthesis of novel functional derivatives of hydroxamic acids-bioisosteric to oxazoline inhibitors-containing 1,2,4- and 1,3,4-oxadiazole cores and studies of their cytotoxicity, antibacterial activity, and antibiotic potentiation. Some of the hydroxamic acids we obtained (9c, 9d, 23a, 23c, 30b, 36) showed significant potentiation in nalidixic acid, rifampicin, and kanamycin against the growth of laboratory-strain Escherichia coli MG1655. Two lead compounds (9c, 9d) significantly reduced Pseudomonas aeruginosa ATCC 27853 growth in the presence of nalidixic acid and rifampicin.
Collapse
Affiliation(s)
- Anastasia A. Zhukovets
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Vladimir V. Chernyshov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Aidar Z. Al’mukhametov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Tatiana A. Seregina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Svetlana V. Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Mariia A. Kasatkina
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Yulia E. Isakova
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Vitalia V. Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Elena A. Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Anastasia I. Cherkasova
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Timur A. Mannanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| | - Anastasia A. Anashkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia; (T.A.S.); (S.V.R.); (V.V.K.); (E.A.M.); (A.A.A.); (P.N.S.); (V.A.M.)
| | - Roman A. Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (A.A.Z.); (A.Z.A.); (M.A.K.); (Y.E.I.); (A.I.C.); (T.A.M.); (R.A.I.)
| |
Collapse
|
5
|
Borisevich SS, Zarubaev VV, Shcherbakov DN, Yarovaya OI, Salakhutdinov NF. Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Viruses 2023; 15:902. [PMID: 37112882 PMCID: PMC10142020 DOI: 10.3390/v15040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.
Collapse
Affiliation(s)
- Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Vladimir V. Zarubaev
- Laboratory of Experimental Virology, Saint-Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia;
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|