1
|
Bérubé R, Murray B, Kocarek TA, Gurdziel K, Kassotis CD. Nonylphenol and Cetyl Alcohol Polyethoxylates Disrupt Thyroid Hormone Receptor Signaling to Disrupt Metabolic Health. Endocrinology 2024; 165:bqae149. [PMID: 39497475 PMCID: PMC11574291 DOI: 10.1210/endocr/bqae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Surfactants are molecules with both hydrophobic and hydrophilic structural groups that adsorb at the air-water or oil-water interface and serve to decrease the surface tension. Surfactants combine to form micelles that surround and break down or remove oils, making them ideal for detergents and cleaners. Two of the most important classes of nonionic surfactants are alkylphenol ethoxylates (APEOs) and alcohol ethoxylates (AEOs). APEOs and AEOs are high production-volume chemicals that are used for many industrial and residential purposes, including laundry detergents, hard-surface cleaners, paints, and pesticide adjuvants. Commensurate with better appreciation of the toxicity of APEOs and the base alkylphenols, use of AEOs has increased, and both sets of compounds are now ubiquitous environmental contaminants. We recently demonstrated that diverse APEOs and AEOs induce triglyceride accumulation and/or preadipocyte proliferation in vitro. Both sets of contaminants have also been demonstrated as obesogenic and metabolism-disrupting in a developmental exposure zebrafish model. While these metabolic health effects are consistent across models and species, the mechanisms underlying these effects are less clear. This study sought to evaluate causal mechanisms through reporter gene assays, relative binding affinity assays, coexposure experiments, and use of both human cell and zebrafish models. We report that antagonism of thyroid hormone receptor signaling appears to mediate at least a portion of the polyethoxylate-induced metabolic health effects. These results suggest further evaluation is needed, given the ubiquitous environmental presence of these thyroid-disrupting contaminants and reproducible effects in human cell models and vertebrate animals.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Brooklynn Murray
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
- Genome Sciences Core, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
2
|
Mo C, Guo J, Qin J, Zhang X, Sun Y, Wei H, Cao D, Zhang Y, Zhao C, Xiong Y, Zhang Y, Sun Y, Shen L, Yue R. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools. EMBO J 2022; 41:e108415. [PMID: 34957577 PMCID: PMC8844986 DOI: 10.15252/embj.2021108415] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
Leptin receptor (LepR)-positive cells are key components of the bone marrow hematopoietic microenvironment, and highly enrich skeletal stem and progenitor cells that maintain homeostasis of the adult skeleton. However, the heterogeneity and lineage hierarchy within this population has been elusive. Using genetic lineage tracing and single-cell RNA sequencing, we found that Lepr-Cre labels most bone marrow stromal cells and osteogenic lineage cells in adult long bones. Integrated analysis of Lepr-Cre-traced cells under homeostatic and stress conditions revealed dynamic changes of the adipogenic, osteogenic, and periosteal lineages. Importantly, we discovered a Notch3+ bone marrow sub-population that is slow-cycling and closely associated with the vasculatures, as well as key transcriptional networks promoting osteo-chondrogenic differentiation. We also identified a Sca-1+ periosteal sub-population with high clonogenic activity but limited osteo-chondrogenic potential. Together, we mapped the transcriptomic landscape of adult LepR+ stem and progenitor cells and uncovered cellular and molecular mechanisms underlying their maintenance and lineage specification.
Collapse
Affiliation(s)
- Chunyang Mo
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jingxin Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Orthopedics Surgery2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jiachen Qin
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xiaoying Zhang
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yuxi Sun
- Department of CardiologyShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Hanjing Wei
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Dandan Cao
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yiying Zhang
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Chengchen Zhao
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yanhong Xiong
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yong Zhang
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yao Sun
- Department of ImplantologySchool & Hospital of StomatologyShanghai Engineering Research Center of Tooth Restoration and RegenerationTongji UniversityShanghaiChina
| | - Li Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Orthopedics Surgery2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Hangzhou Innovation CenterZhejiang UniversityHangzhouChina
| | - Rui Yue
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Bone elongation is a complex process driven by multiple intrinsic (hormones, growth factors) and extrinsic (nutrition, environment) variables. Bones grow in length by endochondral ossification in cartilaginous growth plates at ends of developing long bones. This review provides an updated overview of the important factors that influence this process. RECENT FINDINGS Insulin-like growth factor-1 (IGF-1) is the major hormone required for growth and a drug for treating pediatric skeletal disorders. Temperature is an underrecognized environmental variable that also impacts linear growth. This paper reviews the current state of knowledge regarding the interaction of IGF-1 and environmental factors on bone elongation. Understanding how internal and external variables regulate bone lengthening is essential for developing and improving treatments for an array of bone elongation disorders. Future studies may benefit from understanding how these unique relationships could offer realistic new approaches for increasing bone length in different growth-limiting conditions.
Collapse
Affiliation(s)
- Holly L Racine
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, 26074, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
4
|
Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone 2019; 123:265-273. [PMID: 30946971 DOI: 10.1016/j.bone.2019.03.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Aging is associated with decreased bone mass and accumulation of bone marrow adipocytes. Both bone forming osteoblastic cells and bone marrow adipocytes are derived from a stem cell population within the bone marrow stroma called bone marrow stromal (skeletal or mesenchymal) stem cells (BMSC). In the present review, we provide an overview, based on the current literature, regarding the physiological aging processes that cause changes in BMSC lineage allocation, enhancement of adipocyte and defective osteoblast differentiation, leading to gradual exhaustion of stem cell regenerative potential and defects in bone tissue homeostasis and metabolism. We discuss strategies to preserve the "youthful" state of BMSC, to reduce bone marrow age-associated adiposity, and to counteract the overall negative effects of aging on bone tissues with the aim of decreasing bone fragility and risk of fractures.
Collapse
Affiliation(s)
- Jan O Nehlin
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Clinical Research Center, Copenhagen University Hospital, Hvidovre, Denmark.
| | - Abbas Jafari
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Tencerova
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
| | - Moustapha Kassem
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Abstract
Thyroid hormone has profound effects on skeletal development and adult bone maintenance. Here, we review the current literature concerning thyroid hormone action in bone and cartilage in relation to human disease and animal models. We describe state-of-the-art imaging and biomechanical methods used to determine structural and functional parameters in the skeletal phenotyping of mouse models.
Collapse
|
6
|
Kassotis CD, Stapleton HM. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front Endocrinol (Lausanne) 2019; 10:39. [PMID: 30792693 PMCID: PMC6374316 DOI: 10.3389/fendo.2019.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/17/2019] [Indexed: 01/29/2023] Open
Abstract
Obesity and metabolic disorders are of great societal concern and generate substantial human health care costs globally. Interventions have resulted in only minimal impacts on disrupting this worsening health trend, increasing attention on putative environmental contributors. Exposure to numerous environmental contaminants have, over decades, been demonstrated to result in increased metabolic dysfunction and/or weight gain in cell and animal models, and in some cases, even in humans. There are numerous mechanisms through which environmental contaminants may contribute to metabolic dysfunction, though certain mechanisms, such as activation of the peroxisome proliferator activated receptor gamma or the retinoid x receptor, have received considerably more attention than less-studied mechanisms such as antagonism of the thyroid receptor, androgen receptor, or mitochondrial toxicity. As such, research on putative metabolic disruptors is growing rapidly, as is our understanding of molecular mechanisms underlying these effects. Concurrent with these advances, new research has evaluated current models of adipogenesis, and new models have been proposed. Only in the last several years have studies really begun to address complex mixtures of contaminants and how these mixtures may disrupt metabolic health in environmentally relevant exposure scenarios. Several studies have begun to assess environmental mixtures from various environments and study the mechanisms underlying their putative metabolic dysfunction; these studies hold real promise in highlighting crucial mechanisms driving observed organismal effects. In addition, high-throughput toxicity databases (ToxCast, etc.) may provide future benefits in prioritizing chemicals for in vivo testing, particularly once the causative molecular mechanisms promoting dysfunction are better understood and expert critiques are used to hone the databases. In this review, we will review the available literature linking metabolic disruption to endocrine-mediated molecular mechanisms, discuss the novel application of environmental mixtures and implications for in vivo metabolic health, and discuss the putative utility of applying high-throughput toxicity databases to answering complex organismal health outcome questions.
Collapse
|
7
|
Fazeli PK, Klibanski A. Effects of Anorexia Nervosa on Bone Metabolism. Endocr Rev 2018; 39:895-910. [PMID: 30165608 PMCID: PMC6226604 DOI: 10.1210/er.2018-00063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/21/2018] [Indexed: 01/14/2023]
Abstract
Anorexia nervosa is a psychiatric disease characterized by a low-weight state due to self-induced starvation. This disorder, which predominantly affects women, is associated with hormonal adaptations that minimize energy expenditure in the setting of low nutrient intake. These adaptations include GH resistance, functional hypothalamic amenorrhea, and nonthyroidal illness syndrome. Although these adaptations may be beneficial to short-term survival, they contribute to the significant and often persistent morbidity associated with this disorder, including bone loss, which affects >85% of women. We review the hormonal adaptions to undernutrition, review hormonal treatments that have been studied for both the underlying disorder as well as for the associated decreased bone mass, and discuss the important challenges that remain, including the lack of long-term treatments for bone loss in this chronic disorder and the fact that despite recovery, many individuals who experience bone loss as adolescents have chronic deficits and an increased risk of fracture in adulthood.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Thyroid Hormone Signaling in the Development of the Endochondral Skeleton. VITAMINS AND HORMONES 2018; 106:351-381. [PMID: 29407442 PMCID: PMC9830754 DOI: 10.1016/bs.vh.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thyroid hormone (TH) is an established regulator of skeletal growth and maintenance both in clinical studies and in laboratory models. The clinical consequences of altered thyroid status on the skeleton during development and in adulthood are well known, and genetic mouse models in which elements of the TH signaling axis have been manipulated illuminate the mechanisms which underlie TH regulation of the skeleton. TH is involved in the regulation of the balance between proliferation and differentiation in several skeletal cell types including chondrocytes, osteoblasts, and osteoclasts. The effects of TH are mediated primarily via the thyroid hormone receptors (TRs) α and β, ligand-inducible nuclear receptors which act as transcription factors to regulate target gene expression. Both TRα and TRβ signaling are important for different stages of skeletal development. The molecular mechanisms of TH action in bone are complex and include interaction with a number of growth factor signaling pathways. This review provides an overview of the regulation and mechanisms of TH action in bone, focusing particularly on the role of TH in endochondral bone formation during postnatal growth.
Collapse
|
9
|
|
10
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
11
|
Sulston RJ, Cawthorn WP. Bone marrow adipose tissue as an endocrine organ: close to the bone? Horm Mol Biol Clin Investig 2017; 28:21-38. [PMID: 27149203 DOI: 10.1515/hmbci-2016-0012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
Abstract
White adipose tissue (WAT) is a major endocrine organ, secreting a diverse range of hormones, lipid species, cytokines and other factors to exert diverse local and systemic effects. These secreted products, known as 'adipokines', contribute extensively to WAT's impact on physiology and disease. Adipocytes also exist in the bone marrow (BM), but unlike WAT, study of this bone marrow adipose tissue (MAT) has been relatively limited. We recently discovered that MAT contributes to circulating adiponectin, an adipokine that mediates cardiometabolic benefits. Moreover, we found that MAT expansion exerts systemic effects. Together, these observations identify MAT as an endocrine organ. Additional studies are revealing further secretory functions of MAT, including production of other adipokines, cytokines and lipids that exert local effects within bone. These observations suggest that, like WAT, MAT has secretory functions with diverse potential effects, both locally and systemically. A major limitation is that these findings are often based on in vitro approaches that may not faithfully recapitulate the characteristics and functions of BM adipocytes in vivo. This underscores the need to develop improved methods for in vivo analysis of MAT function, including more robust transgenic models for MAT targeting, and continued development of techniques for non-invasive analysis of MAT quantity and quality in humans. Although many aspects of MAT formation and function remain poorly understood, MAT is now attracting increasing research focus; hence, there is much promise for further advances in our understanding of MAT as an endocrine organ, and how MAT impacts human health and disease.
Collapse
|
12
|
Kassotis CD, Masse L, Kim S, Schlezinger JJ, Webster TF, Stapleton HM. Characterization of Adipogenic Chemicals in Three Different Cell Culture Systems: Implications for Reproducibility Based on Cell Source and Handling. Sci Rep 2017; 7:42104. [PMID: 28176856 PMCID: PMC5296734 DOI: 10.1038/srep42104] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
The potential for chemical exposures to exacerbate the development and/or prevalence of metabolic disorders, such as obesity, is currently of great societal concern. Various in vitro assays are available to assess adipocyte differentiation, though little work has been done to standardize protocols and compare models effectively. This study compares several adipogenic cell culture systems under a variety of conditions to assess variability in responses. Two sources of 3T3-L1 preadipocytes as well as OP9 preadipocytes were assessed for cell proliferation and triglyceride accumulation following different induction periods and using various tissue culture plates. Both cell line and cell source had a significant impact on potencies and efficacies of adipogenic chemicals. Gene expression analyses suggested that differential expression of nuclear receptors involved in adipogenesis underlie the differences between OP9 and 3T3-L1 cells; however, there were also differences based on 3T3-L1 cell source. Induction period modulated potency and efficacy of response depending on cell line and test chemical, and large variations were observed in triglyceride accumulation and cell proliferation between brands of tissue culture plates. Our results suggest that the selection of a cell system and differentiation protocol significantly impacts the detection of adipogenic chemicals, and therefore, influences reproducibility of these studies.
Collapse
Affiliation(s)
| | - Lauren Masse
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Stephanie Kim
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | | |
Collapse
|
13
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
14
|
Liu H, Xia X, Li B. Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues. Exp Biol Med (Maywood) 2015; 240:1099-106. [PMID: 26088863 DOI: 10.1177/1535370215591828] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aging population and the incidence of aging-related diseases such as osteoporosis are on the rise. Aging at the tissue and organ levels usually involves tissue stem cells. Human and animal model studies indicate that aging affects two aspects of mesenchymal stem cell (MSC): a decrease in the bone marrow MSC pool and biased differentiation into adipocyte at the cost of osteoblast, which underlie the etiology of osteoporosis. Aging of MSC cells is also detrimental to some non-skeletal tissues, in particular the hematopoietic system, where MSCs serve as a niche component. In addition, aging compromises the therapeutic potentials of MSC cells, including cells isolated from aged individuals or cells cultured for many passages. Here we discuss the recent progress on our understanding of MSC aging, with a focus on the effects of MSC aging on bone remodeling and hematopoiesis and the mechanisms of MSC aging.
Collapse
Affiliation(s)
- Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuechun Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Revisiting the case for genetically engineered mouse models in human myelodysplastic syndrome research. Blood 2015; 126:1057-68. [PMID: 26077396 DOI: 10.1182/blood-2015-01-624239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/01/2015] [Indexed: 01/11/2023] Open
Abstract
Much-needed attention has been given of late to diseases specifically associated with an expanding elderly population. Myelodysplastic syndrome (MDS), a hematopoietic stem cell-based blood disease, is one of these. The lack of clear understanding of the molecular mechanisms underlying the pathogenesis of this disease has hampered the development of efficacious therapies, especially in the presence of comorbidities. Mouse models could potentially provide new insights into this disease, although primary human MDS cells grow poorly in xenografted mice. This makes genetically engineered murine models a more attractive proposition, although this approach is not without complications. In particular, it is unclear if or how myelodysplasia (abnormal blood cell morphology), a key MDS feature in humans, presents in murine cells. Here, we evaluate the histopathologic features of wild-type mice and 23 mouse models with verified myelodysplasia. We find that certain features indicative of myelodysplasia in humans, such as Howell-Jolly bodies and low neutrophilic granularity, are commonplace in healthy mice, whereas other features are similarly abnormal in humans and mice. Quantitative hematopoietic parameters, such as blood cell counts, are required to distinguish between MDS and related diseases. We provide data that mouse models of MDS can be genetically engineered and faithfully recapitulate human disease.
Collapse
|
16
|
Abstract
Anorexia nervosa (AN) is a psychiatric disorder characterized by self-induced starvation with a lifetime prevalence of 2.2% in women. The most common medical co-morbidity in women with AN is bone loss, with over 85% of women having bone mineral density values more than one standard deviation below an age comparable mean. The low bone mass in AN is due to multiple hormonal adaptations to under nutrition, including hypothalamic amenorrhea and growth hormone resistance. Importantly, this low bone mass is also associated with a seven-fold increased risk of fracture. Therefore, strategies to effectively prevent bone loss and increase bone mass are critical. We will review hormonal adaptations that contribute to bone loss in this population as well as promising new therapies that may increase bone mass and reduce fracture risk in AN.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Kalyanaraman H, Schwappacher R, Joshua J, Zhuang S, Scott BT, Klos M, Casteel DE, Frangos JA, Dillmann W, Boss GR, Pilz RB. Nongenomic thyroid hormone signaling occurs through a plasma membrane-localized receptor. Sci Signal 2014; 7:ra48. [PMID: 24847117 PMCID: PMC6504257 DOI: 10.1126/scisignal.2004911] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormone (TH) is essential for vertebrate development and the homeostasis of most adult tissues, including bone. TH stimulates target gene expression through the nuclear thyroid receptors TRα and TRβ; however, TH also has rapid, transcription-independent (nongenomic) effects. We found a previously uncharacterized plasma membrane-bound receptor that was necessary and sufficient for nongenomic TH signaling in several cell types. We determined that this receptor is generated by translation initiation from an internal methionine of TRα, which produces a transcriptionally incompetent protein that is palmitoylated and associates with caveolin-containing plasma membrane domains. TH signaling through this receptor stimulated a pro-proliferative and pro-survival program by increasing the intracellular concentrations of calcium, nitric oxide (NO), and cyclic guanosine monophosphate (cGMP), which led to the sequential activation of protein kinase G II (PKGII), the tyrosine kinase Src, and extracellular signal-regulated kinase (ERK) and Akt signaling. Hypothyroid mice exhibited a cGMP-deficient state with impaired bone formation and increased apoptosis of osteocytes, which was rescued by a direct stimulator of guanylate cyclase. Our results link nongenomic TH signaling to a previously uncharacterized membrane-bound receptor, and identify NO synthase, guanylate cyclase, and PKGII as TH effectors that activate kinase cascades to regulate cell survival and proliferation.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Raphaela Schwappacher
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Jisha Joshua
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Matthew Klos
- Department of Surgery, University of California, San Diego, San Diego, CA 92093, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - John A Frangos
- La Jolla Bioengineering Institute, La Jolla, CA 92121, USA
| | - Wolfgang Dillmann
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
18
|
Abstract
Anorexia nervosa (AN), a psychiatric disorder predominantly affecting young women, is characterized by self-imposed, chronic nutritional deprivation and distorted body image. AN is associated with a number of medical comorbidities including low bone mass. The low bone mass in AN is due to an uncoupling of bone formation and bone resorption, which is the result of hormonal adaptations aimed at decreasing energy expenditure during periods of low energy intake. Importantly, the low bone mass in AN is associated with a significant risk of fractures and therefore treatments to prevent bone loss are critical. In this review, we discuss the hormonal determinants of low bone mass in AN and treatments that have been investigated in this population.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 457, Boston, MA, 02114, USA,
| | | |
Collapse
|
19
|
Huang YY, Gusdon AM, Qu S. Cross-talk between the thyroid and liver: A new target for nonalcoholic fatty liver disease treatment. World J Gastroenterol 2013; 19:8238-8246. [PMID: 24363514 PMCID: PMC3857446 DOI: 10.3748/wjg.v19.i45.8238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/04/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been recognized as the most common liver metabolic disease, and it is also a burgeoning health problem that affects one-third of adults and is associated with obesity and insulin resistance now. Thyroid hormone (TH) and its receptors play a fundamental role in lipid metabolism and lipid accumulation in the liver. It is found that thyroid receptor and its isoforms exhibit tissue-specific expression with a variety of functions. TRβ1 is predominantly expressed in the brain and adipose tissue and TRβ2 is the major isoform in the liver, kidney and fat. They have different functions and play important roles in lipid metabolism. Recently, there are many studies on the treatment of NAFLD with TH and its analogues. We review here that thyroid hormone and TR are a potential target for pharmacologic treatments. Lipid metabolism and lipid accumulation can be regulated and reversed by TH and its analogues.
Collapse
|
20
|
Fazeli PK, Klibanski A. Neuroendocrine dysregulation and the growth hormone-IGF-1 axis in anorexia nervosa. Expert Rev Endocrinol Metab 2012; 7:223-231. [PMID: 30764013 DOI: 10.1586/eem.12.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Anorexia nervosa is a common psychiatric disorder characterized by extreme, self-induced starvation and is associated with a number of medical complications, including significant loss of bone mass. Disruption of the hypothalamic-pituitary axis has been demonstrated in anorexia nervosa and contributes to both loss of established bone mass in adults and failure to accrue normal bone mass in adolescents. Anorexia nervosa is associated with the development of a state of acquired growth hormone (GH) resistance, characterized by low IGF-1 and elevated GH levels, which may be mediated in part by FGF-21. Administration of supraphysiologic recombinant human GH does not result in an increase in markers of bone formation. However, treatment with recombinant human IGF-1, in combination with an oral contraceptive, increases markers of bone formation as well as bone mineral density, and may be a novel way to treat the bone loss associated with anorexia nervosa.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- a Neuroendocrine Unit, Bulfinch 457B, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Anne Klibanski
- b Neuroendocrine Unit, Bulfinch 457B, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Migliaccio S, Greco EA, Fornari R, Donini LM, Lenzi A. Is obesity in women protective against osteoporosis? Diabetes Metab Syndr Obes 2011; 4:273-82. [PMID: 21792326 PMCID: PMC3139535 DOI: 10.2147/dmso.s11920] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Indexed: 12/11/2022] Open
Abstract
The belief that obesity is protective against osteoporosis has recently come into question. The latest epidemiologic and clinical studies have shown that a high level of fat mass might be a risk factor for osteoporosis and fragility fractures. Further, increasing evidence seems to indicate that different components of the metabolic syndrome, ie, hypertension, increased triglycerides, reduced high-density lipoprotein cholesterol, are also potential risk factors for the development of low bone mineral density and osteoporosis. This review considers both the older and more recent data in the literature in order to evaluate further the relationship between fat tissue and bone tissue.
Collapse
Affiliation(s)
- Silvia Migliaccio
- Dipartimento di Medicina Sperimentale, Sezione di Fisiopatologia, Endocrinologia e Nutrizione, Università Sapienza di Roma
- Dipartimento di Scienze della Salute, Università Foro Italico di Roma, Italia
| | - Emanuela A Greco
- Dipartimento di Medicina Sperimentale, Sezione di Fisiopatologia, Endocrinologia e Nutrizione, Università Sapienza di Roma
| | - Rachele Fornari
- Dipartimento di Medicina Sperimentale, Sezione di Fisiopatologia, Endocrinologia e Nutrizione, Università Sapienza di Roma
| | - Lorenzo M Donini
- Dipartimento di Medicina Sperimentale, Sezione di Fisiopatologia, Endocrinologia e Nutrizione, Università Sapienza di Roma
| | - Andrea Lenzi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiopatologia, Endocrinologia e Nutrizione, Università Sapienza di Roma
| |
Collapse
|
22
|
Aimaiti A, Wufuer M, Wang YH, Saiyiti M, Cui L, Yusufu A. Can bisphenol A diglycidyl ether (BADGE) administration prevent steroid-induced femoral head osteonecrosis in the early stage? Med Hypotheses 2011; 77:282-5. [PMID: 21620573 DOI: 10.1016/j.mehy.2011.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/13/2011] [Accepted: 04/28/2011] [Indexed: 12/01/2022]
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is associated with increase of intraosseous pressure caused by elevating of adipogenesis and fat cell hypertrophy in the bone marrow, which subsequently decreases the blood flow in the femoral head and finally resulting in bone ischemia. The early femoral head-preserving method has mainly focused on the conventional core decompression procedure. However, it only achieves a slight decrease in intra-medullary pressure with limited clinical outcome. The crucial point in prevention is to achieve a thorough decompression of intra-medullary pressure and improvement of microcirculation of the femoral head. Bisphenol-A-diglycidyl ether (BADGE), an antagonism of PPAR-γ(Peroxisome proliferator-activated receptor gamma), has been shown to successfully reverse bone marrow adipogenesis and fat cell hypertrophy, enhances proliferation of osteoblasts, inhibit osteoclastogenesis. Therefore, we hypothesized that BADGE administration may be an appropriate novel method for the prevention of early stage steroid-induced ONFH.
Collapse
Affiliation(s)
- Abudusaimi Aimaiti
- Department of Micro-Reconstructive Surgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Osteoporosis, a global health problem, is now frequently recognized to be secondary to alterations in the pituitary-bone axis. This review examines the current evidence for how dysregulation of the pituitary-bone axis leads to osteoporotic bone loss. Specifically, perimenopausal bone loss in the context of follicle-stimulating hormone action, and hyperthyroid bone loss in the context of thyroid-stimulating hormone action are explored. From the reviewed scientific findings, recommendations for early diagnosis and better clinical management of bone loss are made.
Collapse
Affiliation(s)
- Manasi Agrawal
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Thyroid hormone (3,3',5-triiodo-L-thyronine) plays an important role in thermogenesis and maintenance of lipid homeostasis. The present article reviews the evidence that 3,3',5-triiodo-L-thyronine regulates lipid metabolism via thyroid hormone receptors, focusing particularly on in-vivo findings using genetically engineered mice. RECENT FINDINGS That lipid metabolism is regulated via thyroid hormone receptor isoforms in a tissue-dependent manner was recently uncovered by using knockin mutant mice harboring an identical mutation in the Thra gene (Thra1(PV) mouse) or the Thrb gene (Thrb(PV) mouse). The mutation in the Thra gene dramatically decreases the mass of both white adipose tissue and liver. In contrast, the mutation in the Thrb gene markedly increases the mass of liver with an excess depot of lipids, but no significant abnormality is observed in white adipose tissue. Molecular studies show that the expression of lipogenic genes is decreased in white adipose tissue of Thra1(PV) mice, but not in Thrb(PV) mice. Markedly increased lipogenic enzyme expression, and decreased fatty acid beta-oxidation activity contribute to the adipogenic steatosis and lipid accumulation in the liver of Thrb(PV) mice. In contrast, reduced expression of genes critical for lipogenesis mediates decreased liver mass with lipid scarcity in Thra1(PV) mice. SUMMARY Studies using Thra1(PV) and Thrb(PV) mice indicate that apo-thyroid hormone receptor-beta and apo-thyroid hormone receptor-alpha-1 mediate distinct deleterious effects on lipid metabolism. Thus, both thyroid hormone receptor isoforms contribute to the pathogenesis of lipid abnormalities in hypothyroidism, but in a target tissue-dependent manner. These studies suggest that thyroid hormone receptor isoform-specific ligands could be designed as therapeutic targets for lipid abnormalities.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | | |
Collapse
|
25
|
Di Iorgi N, Mo AO, Grimm K, Wren TAL, Dorey F, Gilsanz V. Bone acquisition in healthy young females is reciprocally related to marrow adiposity. J Clin Endocrinol Metab 2010; 95:2977-82. [PMID: 20392872 PMCID: PMC2902071 DOI: 10.1210/jc.2009-2336] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Considerable evidence indicates that osteoblasts and adipocytes share a common progenitor cell in the bone marrow that is capable of mutually exclusive differentiation into the cell lineages responsible for bone and fat formation. OBJECTIVE The purpose of this study was to examine the relation between bone acquisition and changes in marrow adiposity. DESIGN This was a longitudinal study. OUTCOME MEASURES AND SUBJECTS: Computed tomography measurements of femoral cortical bone area (CBA), cross-sectional area (CSA), and marrow density, and dual-energy x-ray absorptiometry (DXA) measurements of total body fat and lean mass (LM) were obtained in 39 healthy females (15-20 yr of age) at baseline and 18-24 months later. RESULTS Marrow adiposity was inversely related to CBA at baseline and follow-up (r = 0.39 and 0.33; P = 0.015 and 0.039, respectively) but was not associated to CSA (r = 0.19 and 0.17; P = 0.24 and 0.32, respectively). The association between marrow fat and CBA persisted, even after controlling for body mass and DXA values of LM and femoral CSA. Gains in CBA during the course of the study were related to decreases in marrow fat (r = 0.41; P = 0.009), a relation that persisted, even after accounting for changes in bone size. Marrow fat was not associated to anthropometric measures or DXA values of body fat and LM (all r's between -0.15 and 0.19; P > 0.05). CONCLUSIONS Bone acquisition in the appendicular skeleton of healthy young females is inversely related to changes in marrow adiposity. These results provide support for the growing body of evidence indicating an inversely coupled relationship between osteogenesis and adipogenesis in the skeleton.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Radiology, Childrens Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, California 90027, USA
| | | | | | | | | | | |
Collapse
|
26
|
Imam A, Iqbal J, Blair HC, Davies TF, Huang CLH, Zallone A, Zaidi M, Sun L. Role of the pituitary-bone axis in skeletal pathophysiology. Curr Opin Endocrinol Diabetes Obes 2009; 16:423-9. [PMID: 19816170 DOI: 10.1097/med.0b013e3283328aee] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Embedded within textbooks for decades is the hard fact that releasing hormones from the anterior pituitary, namely, follicle-stimulating hormone, thyroid-stimulating hormone and adrenocorticotropic hormone, stimulate master hormone secretion from target endocrine organs. We propose a paradigm shift in endocrine physiology, which is that these hormones act by design on bone directly, also now considered an endocrine organ. RECENT FINDINGS Complementary investigations using mouse genetic and cell biological approaches reveal that follicle-stimulating hormone and thyroid-stimulating hormone act on bone cells directly to regulate bone remodeling and bone mass. Thyroid-stimulating hormone inhibits bone remodeling, whereas follicle-stimulating hormone stimulates it. We also find that the posterior pituitary hormone oxytocin is anabolic to the skeleton. SUMMARY An ambitious extrapolation is that a plurality of pituitary hormones acts in concert as part of a 'pituitary-bone' axis to regulate skeletal integrity in health and disease. When dysregulated master hormone levels during hypogonadism and hyperthyroidism cause altered pituitary hormone secretion through hypothalamic feedback, the latter hormones contribute to the skeletal loss.
Collapse
Affiliation(s)
- Aliza Imam
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zaidi M, Iqbal J, Blair HC, Zallone A, Davies T, Sun L. Paradigm Shift in the Pathophysiology of Postmenopausal and Thyrotoxic Osteoporosis. ACTA ACUST UNITED AC 2009; 76:474-83. [DOI: 10.1002/msj.20136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Zaidi M, Davies TF, Zallone A, Blair HC, Iqbal J, Moonga SS, Mechanick J, Sun L. Thyroid-stimulating hormone, thyroid hormones, and bone loss. Curr Osteoporos Rep 2009; 7:47-52. [PMID: 19631028 DOI: 10.1007/s11914-009-0009-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has become accepted by virtue of rich anecdotal experience and clinical research that thyrotoxicosis is associated with high-turnover osteoporosis. The bone loss, primarily due to accelerated resorption that is not compensated by a coupled increase in bone formation, has been attributed solely to elevated thyroid hormone levels. Evidence using mice lacking the thyroid hormone receptors alpha and beta establishes a role for thyroid hormones in regulating bone remodeling but does not exclude an independent action of thyroid-stimulating hormone (TSH), levels of which are low in hyperthyroid states, even when thyroid hormones are normal, as after thyroxine supplementation and in subclinical hyperthyroidism. We show that TSH directly suppresses bone remodeling and that TSH receptor null mice have profound bone loss, suggesting that reduced TSH signaling contributes to hyperthyroid osteoporosis. TSH and its receptor could become valuable drug targets in treating bone loss.
Collapse
Affiliation(s)
- Mone Zaidi
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Trudel G, Payne M, Mädler B, Ramachandran N, Lecompte M, Wade C, Biolo G, Blanc S, Hughson R, Bear L, Uhthoff HK. Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the Women International Space Simulation for Exploration study. J Appl Physiol (1985) 2009; 107:540-8. [PMID: 19478189 DOI: 10.1152/japplphysiol.91530.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Immobility in bed and decreased mobility cause adaptations to most human body systems. The effect of immobility on fat accumulation in hemopoietic bone marrow has never been measured prospectively. The reversibility of marrow fat accumulation and the effects on hemopoiesis are not known. In the present study, 24 healthy women (age: 25-40 yr) underwent -6 degrees head-down bed rest for 60 days. We used MRI to noninvasively measure the lumbar vertebral fat fraction at various time points. We also measured hemoglobin, erythropoietin, reticulocytes, leukocytes, platelet count, peripheral fat mass, leptin, cortisol, and C-reactive protein during bed rest and for 1 yr after bed rest ended. Compared with baseline, the mean (+/-SE) fat fraction was increased after 60 days of bed rest (+2.5+/-1.1%, P<0.05); the increase persisted 1 yr after the resumption of regular activities (+2.3+/-0.8%, P<0.05). Mean hemoglobin levels were significantly decreased 6 days after bed rest ended (-1.36+/-0.20 g/dl, P<0.05) but had recovered at 1 yr, with significantly lower mean circulating erythropoietin levels (-3.8+/-1.2 mU/ml, P<0.05). Mean numbers of neutrophils and lymphocytes remained significantly elevated at 1 yr (+617+/-218 neutrophils/microl and +498+/-112 lymphocytes/microl, both P<0.05). These results constitute direct evidence that bed rest irreversibly accelerated fat accumulation in hemopoietic bone marrow. The 2.5% increase in fat fraction after 60 days of bed rest was 25-fold larger than expected from historical ambulatory controls. Sixty days of bed rest accelerated by 4 yr the normal bone marrow involution. Bed rest and marrow adiposity were associated with hemopoietic stimulation. One year after subjects returned to normal activities, hemoglobin levels were maintained, with 43% lower circulating erythropoietin levels, and leukocytes remained significantly elevated across lineages. Lack of mobility alters hemopoiesis, possibly through marrow fat accumulation, with potentially wide-ranging clinical consequences.
Collapse
Affiliation(s)
- Guy Trudel
- Bone and Joint Laboratory, University of Ottawa, The Ottawa Hospital Rehabilitation Centre, 505 Smyth Rd., Ottawa, ON, Canada K1H 8M2.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hozumi A, Osaki M, Goto H, Sakamoto K, Inokuchi S, Shindo H. Bone marrow adipocytes support dexamethasone-induced osteoclast differentiation. Biochem Biophys Res Commun 2009; 382:780-4. [PMID: 19324007 DOI: 10.1016/j.bbrc.2009.03.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/19/2009] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to examine the ability of bone marrow adipocytes to support osteoclast differentiation in vitro. The primary bone marrow adipocytes were obtained from bone marrow fluid during prosthesis insertion. NFkappa-B ligand (RANKL), Osteoprotegerin (OPG), and macrophage colony stimulating factor (M-CSF) expressions in bone marrow adipocytes with or without dexamethasone were examined. In a co-culture system with bone marrow adipocytes and osteoclast precursor cells, osteoclast differentiation was assessed by the expression of titrate-resistant acid phosphatase (TRAP) staining. RANKL, OPG, and M-CSF mRNA expressions were confirmed in all individuals. Dexamethasone significantly induced RANKL and OPG expression. The RANKL/OPG ratio was increased by dexamethasone and was significant at 10(-7) M dexamethasone. With 10(-7) M dexamethasone, osteoclast precursor cells differentiated into multinucleated TRAP-positive cells when co-cultured with bone marrow adipocytes. The present study demonstrates for the first time that bone marrow adipocytes can support osteoclast differentiation in vitro.
Collapse
Affiliation(s)
- Akira Hozumi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Yao W, Cheng Z, Pham A, Busse C, Zimmermann EA, Ritchie RO, Lane NE. Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. ACTA ACUST UNITED AC 2009; 58:3485-97. [PMID: 18975341 DOI: 10.1002/art.23954] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Glucocorticoid excess decreases bone mineralization and microarchitecture and leads to reduced bone strength. Both anabolic (parathyroid hormone [PTH]) and antiresorptive agents are used to prevent and treat glucocorticoid-induced bone loss, yet these bone-active agents alter bone turnover by very different mechanisms. This study was undertaken to determine how PTH and risedronate alter bone quality following glucocorticoid excess. METHODS Five-month-old male Swiss-Webster mice were treated with the glucocorticoid prednisolone (5 mg/kg in a 60-day slow-release pellet) or placebo. From day 28 to day 56, 2 groups of glucocorticoid-treated animals received either PTH (5 microg/kg) or risedronate (5 microg/kg) 5 times per week. Bone quality and quantity were measured using x-ray tomography for the degree of bone mineralization, microfocal computed tomography for bone microarchitecture, compression testing for trabecular bone strength, and biochemistry and histomorphometry for bone turnover. In addition, real-time polymerase chain reaction (PCR) and immunohistochemistry were performed to monitor the expression of several key genes regulating Wnt signaling (bone formation) and mineralization. RESULTS Compared with placebo, glucocorticoid treatment decreased trabecular bone volume (bone volume/total volume [BV/TV]) and serum osteocalcin, but increased serum CTX and osteoclast surface, with a peak at day 28. Glucocorticoids plus PTH increased BV/TV, and glucocorticoids plus risedronate restored BV/TV to placebo levels after 28 days. The average degree of bone mineralization was decreased after glucocorticoid treatment (-27%), but was restored to placebo levels after treatment with glucocorticoids plus risedronate or glucocorticoids plus PTH. On day 56, RT-PCR revealed that expression of genes that inhibit bone mineralization (Dmp1 and Phex) was increased by continuous exposure to glucocorticoids and glucocorticoids plus PTH and decreased by glucocorticoids plus risedronate, compared with placebo. Wnt signaling antagonists Dkk-1, Sost, and Wif1 were up-regulated by glucocorticoid treatment but down-regulated after glucocorticoid plus PTH treatment. Immunohistochemistry of bone sections showed that glucocorticoids increased N-terminal Dmp-1 staining while PTH treatment increased both N- and C-terminal Dmp-1 staining around osteocytes. CONCLUSION Our findings indicate that both PTH and risedronate improve bone mass, degree of bone mineralization, and bone strength in glucocorticoid-treated mice, and that PTH increases bone formation while risedronate reverses the deterioration of bone mineralization.
Collapse
Affiliation(s)
- Wei Yao
- University of California Davis Medical Center, Sacramento
| | | | | | | | | | | | | |
Collapse
|
32
|
Sun L, Liu X, Zhu LL, Liu JH, Liu QC, Iqbal J, Mechanick J, Davies T, Zaidi M. TSH and Thyroid Hormones Both Regulate Bone Mass. Clin Rev Bone Miner Metab 2008. [DOI: 10.1007/s12018-009-9024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. ACTA ACUST UNITED AC 2008; 58:1674-86. [PMID: 18512788 DOI: 10.1002/art.23454] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Glucocorticoid (GC) excess induces alterations in bone metabolism that weaken bone structure and increase fracture risk. The aim of this study was to identify genes associated with bone metabolism in GC-treated mice, by performing a microarray analysis. METHODS Long bones from mice exposed to GC excess were collected after 0, 7, 28, and 56 days of treatment, to measure bone microarchitecture and extract RNA for microarray analyses. RESULTS Bone loss in this animal model was confirmed by changes in bone turnover markers as well as bone architecture, as measured by microfocal computed tomography. GC excess induced an early up-regulation of genes involved in osteoclast activation, function, and adipogenesis, which peaked on day 7. The expression of genes associated with osteoclast cytoskeletal reorganization and genes associated with matrix degradation peaked on day 28. On day 28 and day 56, the expression of genes associated with osteoblast activation and maturation was decreased from baseline, while the expression of Wnt antagonists was increased. In addition, the expression of genes expressed in osteocytes associated with bone mineralization was significantly higher at the later time points, day 28 and day 56. Reverse transcription-polymerase chain reaction confirmed the results of microarray analysis in selected genes. CONCLUSION GC excess is associated with early activation of genes associated with osteoclastogenesis and adipogenesis and a later suppression of genes associated with osteogenesis and mineralization. Novel interventions with agents that modulate either Wnt signaling or mineralization may be effective in GC-induced osteoporosis.
Collapse
Affiliation(s)
- Wei Yao
- University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
34
|
Di Iorgi N, Rosol M, Mittelman SD, Gilsanz V. Reciprocal relation between marrow adiposity and the amount of bone in the axial and appendicular skeleton of young adults. J Clin Endocrinol Metab 2008; 93:2281-6. [PMID: 18381577 PMCID: PMC2435643 DOI: 10.1210/jc.2007-2691] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Studies in the elderly suggest a reciprocal relation between increased marrow adiposity and bone loss, supporting basic research data indicating that osteoblasts and adipocytes share a common progenitor cell. However, whether this relation represents a preferential differentiation of stromal cells from osteoblasts to adipocytes or whether a passive accumulation of fat as bone is lost and marrow space increases with aging is unknown. To address this question and avoid the confounding effect of bone loss, we examined teenagers and young adults. METHODS Using computed tomography, we obtained measurements of bone density and cross-sectional area of the lumbar vertebral bodies and cortical bone area, cross-sectional area, marrow canal area, and fat density in the marrow of the femurs in 255 sexually mature subjects (126 females, 129 males; 15-24.9 yr of age). Additionally, values for total body fat were obtained with dual-energy x-ray absorptiometry. RESULTS Regardless of gender, reciprocal relations were found between fat density and measures of vertebral bone density and femoral cortical bone area (r = 0.19-0.39; all P values < or = .03). In contrast, there was no relation between marrow canal area and cortical bone area in the femurs, neither between fat density and the cross-sectional dimensions of the bones. We also found no relation between anthropometric or dual-energy x-ray absorptiometry fat values and measures for marrow fat density. CONCLUSIONS Our results indicate an inverse relation between bone marrow adiposity and the amount of bone in the axial and appendicular skeleton and support the notion of a common progenitor cell capable of mutually exclusive differentiation into the cell lineages responsible for bone and fat formation.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Radiology, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
35
|
McCabe LR. Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem 2008; 102:1343-57. [PMID: 17975793 DOI: 10.1002/jcb.21573] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type I (T1) diabetes, also called insulin dependent diabetes mellitus (IDDM), is characterized by little or no insulin production and hyperglycemia. One of the less well known complications of T1-diabetes is bone loss which occurs in humans and animal models. This complication is receiving increased attention because T1-diabetics are living longer due to better therapeutics, and are faced with their existing health concerns being compounded by complications associated with aging, such as osteoporosis. Both male and female, endochondrial and intra-membranous, and axial and appendicular bones are susceptible to T1-diabetic bone loss. Exact mechanisms accounting for T1-diabetic bone loss are not known. Existing data indicate that the bone defect in T1-diabetes is anabolic rather than catabolic, suggesting that anabolic therapeutics may be more effective in preventing bone loss. Potential contributors to T1-diabetic suppression of bone formation are discussed in this review and include: increased marrow adiposity, hyperlipidemia, reduced insulin signaling, hyperglycemia, inflammation, altered adipokine and endocrine factors, increased cell death, and altered metabolism. Differences between T1-diabetic- and age-associated bone loss underlie the importance of condition specific, individualized treatments for osteoporosis. Optimizing therapies that prevent bone loss or restore bone density will allow T1-diabetic patients to live longer with strong healthy bones.
Collapse
Affiliation(s)
- Laura R McCabe
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, 2201 Biomedical Physical Science Building, East Lansing, Michigan 48824, USA.
| |
Collapse
|
36
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
37
|
Abstract
Thyroid hormones act as pleiotropic factors in many tissues during development, by regulating genes involved in differentiation. The adipose tissue, a target of thyroid hormones, is the main place for energy storage and acts as a regulator of energy balance, sending signals to keep metabolic control. Adipogenesis is a complex process that involves proliferation of preadipocytes and its differentiation into mature adipocytes. This process is regulated by several transcription factors (CCAAT/enhancer-binding proteins [C/EBPs], peroxisome proliferator-activated receptors [PPARs]) that act coordinately, activating adipocyte-specific genes that will provide the adipocytic phenotype. Thyroid hormones regulate many of those genes, markers of differentiation of adipocytes, those involved in lipogenesis, lipolysis, and thermogenesis in the brown adipose tissue (BAT). Triiodothyronine (T3) actions are achieved either directly through specific thyroid response elements (TREs), by regulating other key genes as PPARs, or through specific isoforms of the nuclear T3 receptors. The availability of T3 is regulated through the deiodinases D3, D2, and D1. D3 is activated by serum and mitogens during proliferation of preadipocytes, while D2 is linked to the differentiation program of adipocytes, through the C/EBPs that govern its functionality, providing the T3 required for thermogenesis and lipogenesis. The relationship between white adipose tissue (WAT) and BAT and the possible reactivation of WAT by activation of uncoupling protein-1 (UCP1) is discussed.
Collapse
Affiliation(s)
- Maria-Jesus Obregon
- Instituto de Investigaciones Biomedicas, Centro mixto from Consejo Superior de Investigaciones Cientificas (CSIC), Universidad Autonoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
38
|
LI FB, DU XI, Chen L. Role of fibroblast growth factor receptor 1 in the bone development and skeletal diseases. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1000-1948(08)60022-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Abstract
The relationship between bone and fat formation within the bone marrow microenvironment is complex and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship between the commitment of bone marrow-derived mesenchymal stem cells or stromal cells to the adipocyte and osteoblast lineage pathways. In this review, we focus on the recent literature exploring the mechanisms underlying these differentiation events and discuss their implications relevant to osteoporosis and regenerative medicine.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, 70808, USA.
| | | | | | | | | |
Collapse
|