1
|
Talebi Jouybari M, Fani N, Jahangir S, Bagheri F, Golru R, Taghiyar L. Validation of Tissue-Engineered Constructs: Preclinical and Clinical Studies. CARTILAGE: FROM BIOLOGY TO BIOFABRICATION 2023:491-527. [DOI: 10.1007/978-981-99-2452-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. MATERIALS 2021; 14:ma14226763. [PMID: 34832165 PMCID: PMC8619049 DOI: 10.3390/ma14226763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics, especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, nondestructive, high-performance machine, enabling visualization and structure analysis at submicronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features and reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g., shape, porosity, wall thickness) and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assessing the scaffolds’ features and monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.
Collapse
|
3
|
Iuchi T, Kusuhara H, Ueda Y, Morotomi T, Isogai N. Influence of Periosteum Location on the Bone and Cartilage in Tissue-Engineered Phalanx. J Hand Surg Am 2020; 45:62.e1-62.e10. [PMID: 30902355 DOI: 10.1016/j.jhsa.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 12/11/2018] [Accepted: 02/04/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE This study investigated the influence of periosteal tissue of different origins on the calcification at the diaphysis and chondrocyte maturation at the epiphysis in an engineered phalanx. We hypothesized that the periosteum from long bones would better provide donor cells for bone formation and signals for maturation of the joint cartilage. METHODS Periosteum was harvested from 4 locations (cranium, mandible, radius, and ilium) of calf bones. A human phalangeal bone-shaped, biodegradable, 3-dimensional scaffold hydroxyapatite-poly L-lactic-ɛ-caprolactone (HA-P[LA/CL]) was prepared using a human phalangeal bone-shaped template. A bioengineered human phalanx was fabricated by combining periosteal grafts with biodegradable copolymers. The joint cartilage region (chondrocyte/polyglycolic acid [PGA] composite) was subsequently sutured to the phalangeal bone region (periosteum/HA-P[LA/CL] composite) with absorbable sutures to make a human phalangeal bone model. These were then implanted in nude mice for maturation of the constructs. Macroscopic, radiographic, histological, and immune-histochemical evaluations were carried out to determine the relative influence of the periosteal graft source on bone and cartilage formation at 10 and 20 weeks after implantation. RESULTS Calcification localized under the periosteum was noted in the cranium, radius, and ilium groups after 10 weeks, which markedly expanded at the modelled diaphysis after 20 weeks. The width in the minor axis direction tended to increase with time after grafting in the cranium group, whereas the longitudinal length increased in the radius and ilium groups. The joint cartilage thickness changed with time depending on the type of periosteum, and periosteum collected from the radius and ilium was associated with the greatest cartilage thickness in the joint cartilage maturation process. CONCLUSIONS These results suggest that periosteum collected from radius of calves demonstrated superior bone formation and chondrocyte maturation in the engineered phalanx compared with other sources of periosteum. CLINICAL RELEVANCE The osteogenic capacity depends on the periosteal source regardless of intramembranous or endochondral ossification. The appropriate periosteal choice is essential in the phalangeal bone and cartilage tissue engineering. The results are important for broadening tissue engineering possibilities for clinical application.
Collapse
Affiliation(s)
- Tomomi Iuchi
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan.
| | - Hirohisa Kusuhara
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yoshio Ueda
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Tadaaki Morotomi
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Noritaka Isogai
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| |
Collapse
|
4
|
Magnetic 3D scaffold: A theranostic tool for tissue regeneration and non-invasive imaging in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:179-188. [PMID: 30858083 DOI: 10.1016/j.nano.2019.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
We report an osteoconducting magnetic 3D scaffold using Fe2+ doped nano-hydroxyapatite-Alginate-Gelatin (AGHFe1) for Magnetic Resonance Imaging based non-invasive monitoring of bone tissue regeneration. In rat cranial defect model, the scaffold facilitated non-invasive monitoring of cell migration, inflammatory response and matrix deposition by unique changes in transverse relaxation time (T2). Cell infiltration resulted in a considerable increase in T2 from ~37 to ~62 ms, which gradually returned to that of native bone (~23 ms) by 90 days. We used this method to compare in vivo performance of scaffold with bone-morphogenic protein-2 (AGHFe2) or faster degrading (AGHFe3). MRI and histological analysis over 90 days showed non-uniform bone formation in AGHFe1 with ∆T2 (T2Native bone - T2 Regenerated bone) ~13 ms, whereas, AGHFe2 and AGHFe3 showed ∆T2 ~ 09 and 05 ms respectively, suggesting better bone formation in AGHFe3. Thus, we show that MR-contrast enabled scaffold can help better assessment of bone-regeneration non-invasively.
Collapse
|
5
|
Waqas M, Vierra C, Kaplan DL, Othman S. Feasibility of low field MRI and proteomics for the analysis of Tissue Engineered bone. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Encarnação IC, Sordi MB, Aragones Á, Müller CMO, Moreira AC, Fernandes CP, Ramos JV, Cordeiro MMR, Fredel MC, Magini RS. Release of simvastatin from scaffolds of poly(lactic‐co‐glycolic) acid and biphasic ceramic designed for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2019; 107:2152-2164. [DOI: 10.1002/jbm.b.34311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Isis C. Encarnação
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Mariane B. Sordi
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Águedo Aragones
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
- Ceramic & Composite Materials Research Laboratories (CERMAT), Department of Mechanical EngineeringFederal University of Santa Catarina Florianópolis Brazil
| | | | - Anderson C. Moreira
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Celso P. Fernandes
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Jeferson V. Ramos
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Mabel M. R. Cordeiro
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Márcio C. Fredel
- Ceramic & Composite Materials Research Laboratories (CERMAT), Department of Mechanical EngineeringFederal University of Santa Catarina Florianópolis Brazil
| | - Ricardo S. Magini
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| |
Collapse
|
7
|
Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Sci Rep 2018; 8:2802. [PMID: 29434327 PMCID: PMC5809410 DOI: 10.1038/s41598-018-21274-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
For three-dimensional bio-printed cell-laden hydrogel tissue constructs, the well-designed internal porous geometry is tailored to obtain the desired structural and cellular properties. However, significant differences often exist between the designed and as-printed scaffolds because of the inherent characteristics of hydrogels and cells. In this study, an iterative feedback bio-printing (IFBP) approach based on optical coherence tomography (OCT) for the fabrication of cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability was proposed. A custom-made swept-source OCT (SS-OCT) system was applied to characterize the printed scaffolds quantitatively. Based on the obtained empirical linear formula from the first experimental feedback loop, we defined the most appropriate design constraints and optimized the printing process to improve the geometrical fidelity. The effectiveness of IFBP was verified from the second run using gelatin/alginate hydrogel scaffolds laden with C3A cells. The mismatch of the morphological parameters greatly decreased from 40% to within 7%, which significantly optimized the cell viability, proliferation, and morphology, as well as the representative expression of hepatocyte markers, including CYP3A4 and albumin, of the printed cell-laden hydrogel scaffolds. The demonstrated protocol paves the way for the mass fabrication of cell-laden hydrogel scaffolds, engineered tissues, and scaled-up applications of the 3D bio-printing technique.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Ming-En Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Li Luo
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongyong Zhou
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Peijian Si
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
8
|
Landis WJ, Chubinskaya S, Tokui T, Wada Y, Isogai N, Jacquet R. Tissue engineering a human phalanx. J Tissue Eng Regen Med 2016; 11:2373-2387. [PMID: 26999523 DOI: 10.1002/term.2137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
Abstract
A principal purpose of tissue engineering is the augmentation, repair or replacement of diseased or injured human tissue. This study was undertaken to determine whether human biopsies as a cell source could be utilized for successful engineering of human phalanges consisting of both bone and cartilage. This paper reports the use of cadaveric human chondrocytes and periosteum as a model for the development of phalanx constructs. Two factors, osteogenic protein-1 [OP-1/bone morphogenetic protein-7 (BMP7)], alone or combined with insulin-like growth factor (IGF-1), were examined for their potential enhancement of chondrocytes and their secreted extracellular matrices. Design of the study included culture of chondrocytes and periosteum on biodegradable polyglycolic acid (PGA) and poly-l-lactic acid (PLLA)-poly-ε-caprolactone (PCL) scaffolds and subsequent implantation in athymic nu/nu (nude) mice for 5, 20, 40 and 60 weeks. Engineered constructs retrieved from mice were characterized with regard to genotype and phenotype as a function of developmental (implantation) time. Assessments included gross observation, X-ray radiography or microcomputed tomography, histology and gene expression. The resulting data showed that human cell-scaffold constructs could be successfully developed over 60 weeks, despite variability in donor age. Cartilage formation of the distal phalanx models enhanced with both OP-1 and IGF-1 yielded more cells and extracellular matrix (collagen and proteoglycans) than control chondrocytes without added factors. Summary data demonstrated that human distal phalanx models utilizing cadaveric chondrocytes and periosteum were successfully fabricated and OP-1 and OP-1/IGF-1 accelerated construct development and mineralization. The results suggest that similar engineering and transplantation of human autologous tissues in patients are clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- W J Landis
- Goodyear Polymer Center, Department of Polymer Science, University of Akron, Akron, OH, USA
| | - S Chubinskaya
- Departments of Biochemistry, Orthopaedic Surgery and Medicine, Rush University Medical Center, Chicago, IL, USA
| | - T Tokui
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-Sayama, Japan
| | - Y Wada
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-Sayama, Japan
| | - N Isogai
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-Sayama, Japan
| | - R Jacquet
- Goodyear Polymer Center, Department of Polymer Science, University of Akron, Akron, OH, USA
| |
Collapse
|
9
|
Eisenstein NM, Cox SC, Williams RL, Stapley SA, Grover LM. Bedside, Benchtop, and Bioengineering: Physicochemical Imaging Techniques in Biomineralization. Adv Healthc Mater 2016; 5:507-28. [PMID: 26789418 DOI: 10.1002/adhm.201500617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/10/2015] [Indexed: 01/10/2023]
Abstract
The need to quantify physicochemical properties of mineralization spans many fields. Clinicians, mineralization researchers, and bone tissue bioengineers need to be able to measure the distribution, quantity, and the mechanical and chemical properties of mineralization within a wide variety of substrates from injured muscle to electrospun polymer scaffolds and everything in between. The techniques available to measure these properties are highly diverse in terms of their complexity and utility. Therefore it is of the utmost importance that those who intend to use them have a clear understanding of the advantages and disadvantages of each technique and its appropriateness to their specific application. This review provides all of this information for each technique and uses heterotopic ossification and engineered bone substitutes as examples to illustrate how these techniques have been applied. In addition, we provide novel data using advanced techniques to analyze human samples of combat related heterotopic ossification.
Collapse
Affiliation(s)
- Neil M. Eisenstein
- Chemical Engineering; University of Birmingham; Edgbaston B15 2TT UK
- Royal Centre for Defence Medicine; ICT Centre; Vincent Drive; Edgbaston B15 2SQ UK
| | - Sophie C. Cox
- Chemical Engineering; University of Birmingham; Edgbaston B15 2TT UK
| | | | - Sarah A. Stapley
- Royal Centre for Defence Medicine; ICT Centre; Vincent Drive; Edgbaston B15 2SQ UK
| | - Liam M. Grover
- Chemical Engineering; University of Birmingham; Edgbaston B15 2TT UK
| |
Collapse
|
10
|
Wang L, Xu M, Zhang L, Zhou Q, Luo L. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:894-910. [PMID: 27231597 PMCID: PMC4866464 DOI: 10.1364/boe.7.000894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 05/13/2023]
Abstract
Reconstructing and quantitatively assessing the internal architecture of opaque three-dimensional (3D) bioprinted hydrogel scaffolds is difficult but vital to the improvement of 3D bioprinting techniques and to the fabrication of functional engineered tissues. In this study, swept-source optical coherence tomography was applied to acquire high-resolution images of hydrogel scaffolds. Novel 3D gelatin/alginate hydrogel scaffolds with six different representative architectures were fabricated using our 3D bioprinting system. Both the scaffold material networks and the interconnected flow channel networks were reconstructed through volume rendering and binarisation processing to provide a 3D volumetric view. An image analysis algorithm was developed based on the automatic selection of the spatially-isolated region-of-interest. Via this algorithm, the spatially-resolved morphological parameters including pore size, pore shape, strut size, surface area, porosity, and interconnectivity were quantified precisely. Fabrication defects and differences between the designed and as-produced scaffolds were clearly identified in both 2D and 3D; the locations and dimensions of each of the fabrication defects were also defined. It concludes that this method will be a key tool for non-destructive and quantitative characterization, design optimisation and fabrication refinement of 3D bioprinted hydrogel scaffolds. Furthermore, this method enables investigation into the quantitative relationship between scaffold structure and biological outcome.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Mingen Xu
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China; Hangzhou Regenovo Corporation, Hangzhou 310018, China;
| | - LieLie Zhang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - QingQing Zhou
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Li Luo
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
11
|
Frese J, Morgenroth A, Mertens ME, Koch S, Rongen L, Vogg ATJ, Zlatopolskiy BD, Neumaier B, Gesche VN, Lammers T, Schmitz-Rode T, Mela P, Jockenhoevel S, Mottaghy FM, Kiessling F. Nondestructive monitoring of tissue-engineered constructs. ACTA ACUST UNITED AC 2015; 59:165-75. [PMID: 24021591 DOI: 10.1515/bmt-2013-0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/13/2013] [Indexed: 11/15/2022]
Abstract
Abstract Tissue engineering as a multidisciplinary field enables the development of living substitutes to replace, maintain, or restore diseased tissue and organs. Since the term was introduced in medicine in 1987, tissue engineering strategies have experienced significant progress. However, up to now, only a few substitutes were able to overcome the gap from bench to bedside and have been successfully approved for clinical use. Substantial donor variability makes it difficult to predict the quality of tissue-engineered constructs. It is essential to collect sufficient data to ensure that poor or immature constructs are not implanted into patients. The fulfillment of certain quality requirements, such as mechanical and structural properties, is crucial for a successful implantation. There is a clear need for new nondestructive and real-time online monitoring and evaluation methods for tissue-engineered constructs, which are applicable on the biomaterial, tissue, cellular, and subcellular levels. This paper reviews current established nondestructive techniques for implant monitoring including biochemical methods and noninvasive imaging.
Collapse
|
12
|
3D Bioprinting and 3D Imaging for Stem Cell Engineering. BIOPRINTING IN REGENERATIVE MEDICINE 2015. [DOI: 10.1007/978-3-319-21386-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
Othman SF, Wartella K, Sharghi VK, Xu H. The e-incubator: a magnetic resonance imaging-compatible mini incubator. Tissue Eng Part C Methods 2014; 21:347-55. [PMID: 25190214 DOI: 10.1089/ten.tec.2014.0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tissue engineering community has been vocal regarding the need for noninvasive instruments to assess the development of tissue-engineered constructs. Medical imaging has helped fulfill this role. However, specimens allocated to a test tube for imaging cannot be tested for a prolonged period or returned to the incubator. Therefore, samples are essentially wasted due to potential contamination and transfer in a less than optimal growth environment. In turn, we present a standalone, miniature, magnetic resonance imaging-compatible incubator, termed the e-incubator. This incubator uses a microcontroller unit to automatically sense and regulate physiological conditions for tissue culture, thus allowing for concurrent tissue culture and evaluation. The e-incubator also offers an innovative scheme to study underlying mechanisms related to the structural and functional evolution of tissues. Importantly, it offers a key step toward enabling real-time testing of engineered tissues before human transplantation. For validation purposes, we cultured tissue-engineered bone constructs for 4 weeks to test the e-incubator. Importantly, this technology allows for visualizing the evolution of temporal and spatial morphogenesis. In turn, the e-incubator can filter deficient constructs, thereby increasing the success rate of implantation of tissue-engineered constructs, especially as construct design grows in levels of complexity to match the geometry and function of patients' unique needs.
Collapse
Affiliation(s)
- Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska
| | | | | | | |
Collapse
|
14
|
Olubamiji AD, Izadifar Z, Chen DX. Synchrotron Imaging Techniques for Bone and Cartilage Tissue Engineering: Potential, Current Trends, and Future Directions. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:503-22. [DOI: 10.1089/ten.teb.2013.0493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Zohreh Izadifar
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Daniel Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials 2013; 34:6615-30. [PMID: 23768903 PMCID: PMC3799904 DOI: 10.1016/j.biomaterials.2013.05.033] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/18/2013] [Indexed: 12/11/2022]
Abstract
Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| |
Collapse
|
16
|
Cowles EA, Kovar JL, Curtis ET, Xu H, Othman SF. Near-infrared optical imaging for monitoring the regeneration of osteogenic tissue-engineered constructs. Biores Open Access 2013; 2:186-91. [PMID: 23741629 PMCID: PMC3666218 DOI: 10.1089/biores.2013.0005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Millions of cases of bone injury or loss due to trauma, osteoporosis, and cancer occur in the United States each year. Because bone is limited in its ability to regenerate, alternative therapy approaches are needed. Bone tissue engineering has the potential to correct musculoskeletal disorders through the development of cell-based substitutes for osteogenic tissue replacement. Multiple medical imaging techniques such as magnetic resonance microscopy (MRM) were investigated recently; these techniques are able to provide useful information on the anatomical and structural changes of developing bone. However, there is a need for noninvasive approaches to evaluate biochemical constituents and consequent compositional development associated with growing osteogenic constructs. In this study, near-infrared (NIR) optical imaging with a bone-specific NIR-targeted probe, IRDye® 800CW BoneTag™ (800CW BT), was applied in this study to longitudinally visualize regions of mineralization of tissue-engineered bone constructs in vivo. A fluorescent cell-based assay was performed to confirm the preferential binding of 800CW BT to the mineralized matrix of differentiated osteogenically driven human mesenchymal stem cells (hMSCs) in vitro. The hMSCs were seeded onto a biocompatible gelatin scaffold, allowed to develop, and implanted into a mouse model. Engineered constructs were examined in vivo using NIR imaging for bone mineralization, paired with MRM for verification of developing tissue. Results showed that NIR imaging with 800CW BT labeling can effectively assess the calcification of the developing osteogenic constructs, which is consistent with the analysis of excised tissue using NIR microscopy and histology. In conclusion, this study evaluated bone-like function of regenerating bone through tracking calcium deposition via NIR optical imaging with a fluorophore-labeled probe in a noninvasive manner.
Collapse
Affiliation(s)
- Elizabeth A Cowles
- Department of Biological Systems Engineering, University of Nebraska , Lincoln, Nebraska
| | | | | | | | | |
Collapse
|
17
|
Cai X, Zhang YS, Xia Y, Wang LV. Photoacoustic Microscopy in Tissue Engineering. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2013; 16:67-77. [PMID: 23766667 PMCID: PMC3678877 DOI: 10.1016/j.mattod.2013.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photoacoustic tomography (PAT) is an attractive modality for noninvasive, volumetric imaging of scattering media such as biological tissues. By choosing the ultrasonic detection frequency, PAT enables scalable spatial resolution with desired imaging depth up to ~7 cm while maintaining a high depth-to-resolution ratio of ~200 and consistent optical absorption contrasts. Photoacoustic microscopy (PAM), the microscopic embodiment of PAT, aims to image at millimeter depth and micrometer-scale resolution. PAM is well-suited for characterizing three-dimensional scaffold-based samples, including scaffolds themselves, cells, and blood vessels, both qualitatively and quantitatively. Here we review our previous work on applications of PAM in tissue engineering and then discuss its future developments.
Collapse
Affiliation(s)
- Xin Cai
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
| | - Yu Shrike Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Lihong V. Wang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
18
|
Novel mineral contrast agent for magnetic resonance studies of bone implants grown on a chick chorioallantoic membrane. Magn Reson Imaging 2011; 29:1244-54. [PMID: 21920685 DOI: 10.1016/j.mri.2011.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/24/2011] [Accepted: 07/27/2011] [Indexed: 11/20/2022]
Abstract
Magnetic resonance imaging (MRI) studies of tissue engineered constructs prior to implantation clearly demonstrate the utility of the MRI technique for studying the bone formation process. To test the utility of our MRI protocols for explant studies, we present a novel test platform in which osteoblast-seeded scaffolds were implanted on the chorioallantoic membrane of a chick embryo. Scaffolds from the following experimental groups were examined by high-resolution MRI: (a) cell-seeded implanted scaffolds (CIM), (b) unseeded implanted scaffolds (UCIM), (c) cell-seeded scaffolds in static culture (CIV) and (d) unseeded scaffolds in static culture (UCIV). The reduction in water proton transverse relaxation times and the concomitant increase in water proton magnetization transfer ratios for CIM and CIV scaffolds, compared to UCIV scaffolds, were consistent with the formation of a bone-like tissue within the polymer scaffold, which was confirmed by immunohistochemistry and fluorescence microscopy. However, the presence of angiogenic vessels and fibrotic adhesions around UCIM scaffolds can confound MRI findings of bone deposition. Consequently, to improve the specificity of the MRI technique for detecting mineralized deposits within explanted tissue engineered bone constructs, we introduce a novel contrast agent that uses alendronate to target a Food and Drug Administration-approved MRI contrast agent (Gd-DOTA) to bone mineral. Our contrast agent termed GdALN was used to uniquely identify mineralized deposits in representative samples from our four experimental groups. After GdALN treatment, both CIM and CIV scaffolds, containing mineralized deposits, showed marked signal enhancement on longitudinal relaxation time-weighted (T1W) images compared to UCIV scaffolds. Relative to UCIV scaffolds, some enhancement was observed in T1W images of GdALN-treated UCIM scaffolds, subjacent to the dark adhesions at the scaffold surface, possibly from dystrophic mineral formed in the fibrotic adhesions. Notably, residual dark areas on T1W images of CIM and UCIM scaffolds were attributable to blood inside infiltrating vessels. In summary, we present the efficacy of GdALN for sensitizing the MRI technique to the deposition of mineralized deposits in explanted polymeric scaffolds.
Collapse
|
19
|
Bohner M, Loosli Y, Baroud G, Lacroix D. Commentary: Deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater 2011; 7:478-84. [PMID: 20709195 DOI: 10.1016/j.actbio.2010.08.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/07/2010] [Accepted: 08/10/2010] [Indexed: 01/12/2023]
Abstract
Hundreds of studies have been devoted to the search for the ideal architecture for bone scaffold. Despite these efforts, results are often contradictory, and rules derived from these studies are accordingly vague. In fact, there is enough evidence to postulate that ideal scaffold architecture does not exist. The aim of this document is to explain this statement and review new approaches to decipher the existing but complex link between scaffold architecture and in vivo response.
Collapse
|
20
|
Zhang Y, Cai X, Choi SW, Kim C, Wang LV, Xia Y. Chronic label-free volumetric photoacoustic microscopy of melanoma cells in three-dimensional porous scaffolds. Biomaterials 2010; 31:8651-8. [PMID: 20727581 DOI: 10.1016/j.biomaterials.2010.07.089] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/23/2010] [Indexed: 11/17/2022]
Abstract
Visualizing cells in three-dimensional (3D) scaffolds has been one of the major challenges in tissue engineering. Most current imaging modalities either suffer from poor penetration depth or require exogenous contrast agents. Here, we demonstrate photoacoustic microscopy (PAM) of the spatial distribution and temporal proliferation of cells inside three-dimensional porous scaffolds with thicknesses over 1 mm. Specifically, we evaluated the effects of seeding and culture methods on the spatial distribution of melanoma cells. Spatial distribution of the cells in the scaffold was well-resolved in PAM images. Moreover, the number of cells in the scaffold was quantitatively measured from the as-obtained volumetric information. The cell proliferation profile obtained from PAM correlated well with what was obtained using the traditional 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, Washington University, One Brookings Drive, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wada Y, Enjo M, Isogai N, Jacquet R, Lowder E, Landis WJ. Development of bone and cartilage in tissue-engineered human middle phalanx models. Tissue Eng Part A 2009; 15:3765-78. [PMID: 19527181 PMCID: PMC2792075 DOI: 10.1089/ten.tea.2009.0078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 06/15/2009] [Indexed: 11/13/2022] Open
Abstract
Human middle phalanges were tissue-engineered with midshaft scaffolds of poly(L-lactide-epsilon-caprolactone) [P(LA-CL)], hydroxyapatite-P(LA-CL), or beta-tricalcium phosphate-P(LA-CL) and end plate scaffolds of bovine chondrocyte-seeded polyglycolic acid. Midshafts were either wrapped with bovine periosteum or left uncovered. Constructs implanted in nude mice for up to 20 weeks were examined for cartilage and bone development as well as gene expression and protein secretion, which are important in extracellular matrix (ECM) formation and mineralization. Harvested 10- and 20-week constructs without periosteum maintained end plate cartilage but no growth plate formation. They also consisted of chondrocytes secreting type II collagen and proteoglycan, and they were composed of midshaft regions devoid of bone. In all periosteum-wrapped constructs at like times, end plate scaffolds held chondrocytes elaborating type II collagen and proteoglycan and cartilage growth plates resembling normal tissue. Chondrocyte gene expression of type II collagen, aggrecan, and bone sialoprotein varied depending on midshaft composition, presence of periosteum, and length of implantation time. Periosteum produced additional cells, ECM, and mineral formation within the different midshaft scaffolds. Periosteum thus induces midshaft development and mediates chondrocyte gene expression and growth plate formation in cartilage regions of phalanges. This work is important for understanding developmental principles of tissue-engineered phalanges and by extension those of normal growth plate cartilage and bone.
Collapse
Affiliation(s)
- Yoshitaka Wada
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka, Japan
| | - Mitsuhiro Enjo
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka, Japan
| | - Noritaka Isogai
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka, Japan
| | - Robin Jacquet
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio
| | - Elizabeth Lowder
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio
| | - William J. Landis
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio
| |
Collapse
|
22
|
Malaval L, Monfoulet L, Fabre T, Pothuaud L, Bareille R, Miraux S, Thiaudiere E, Raffard G, Franconi JM, Lafage-Proust MH, Aubin JE, Vico L, Amédée J. Absence of bone sialoprotein (BSP) impairs cortical defect repair in mouse long bone. Bone 2009; 45:853-61. [PMID: 19524706 DOI: 10.1016/j.bone.2009.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 05/13/2009] [Accepted: 06/02/2009] [Indexed: 01/25/2023]
Abstract
Matrix proteins of the SIBLING family interact with bone cells and with bone mineral and are thus in a key position to regulate bone development, remodeling and repair. Within this family, bone sialoprotein (BSP) is highly expressed by osteoblasts, hypertrophic chondrocytes and osteoclasts. We recently reported that mice lacking BSP (BSP-/-) have very low trabecular bone turnover. In the present study, we set up an experimental model of bone repair by drilling a 1 mm diameter hole in the cortical bone of femurs in both BSP-/- and +/+ mice. A non-invasive MRI imaging and bone quantification procedure was designed to follow bone regeneration, and these data were extended by microCT imaging and histomorphometry on undecalcified sections for analysis at cellular level. These combined approaches revealed that the repair process as reflected in defect-refilling in the cortical area was significantly delayed in BSP-/- mice compared to +/+ mice. Concomitantly, histomorphometry showed that formation, mineralization and remodeling of repair (primary) bone in the medulla were delayed in BSP-/- mice, with lower osteoid and osteoclast surfaces at day 15. In conclusion, the absence of BSP delays bone repair at least in part by impairing both new bone formation and osteoclast activity.
Collapse
Affiliation(s)
- Luc Malaval
- Université de Lyon, Saint-Etienne, F42023, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Albertini G, Giuliani A, Komlev V, Moroncini F, Pugnaloni A, Pennesi G, Belicchi M, Rubini C, Rustichelli F, Tasso R, Torrente Y. Organization of Extracellular Matrix Fibers Within Polyglycolic Acid–Polylactic Acid Scaffolds Analyzed Using X-Ray Synchrotron-Radiation Phase-Contrast Micro Computed Tomography. Tissue Eng Part C Methods 2009; 15:403-11. [DOI: 10.1089/ten.tec.2008.0270] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Gianni Albertini
- Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, Ancona, Italy
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Ancona unit, Ancona, Italy
| | - Alessandra Giuliani
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Ancona unit, Ancona, Italy
- Dipartimento S.A.I.F.E.T.—Sezione Di Scienze Fisiche, Università Politecnica delle Marche, Ancona, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Vladimir Komlev
- Dipartimento S.A.I.F.E.T.—Sezione Di Scienze Fisiche, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Moroncini
- Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, Ancona, Italy
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Ancona unit, Ancona, Italy
| | - Armanda Pugnaloni
- Dipartimento di Patologia Molecolare e Terapie Innovative, Istologia, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppina Pennesi
- Laboratorio di Cellule Staminali, Centro di Biotecnologie Avanzate, Genova, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico, Centro Dino Ferrari, University of Milan, Italy
| | - Corrado Rubini
- Dipartimento di Neuroscienze–Istituto di Anatomia Patologica, Università Politecnica delle Marche, Ancona, Italy
| | - Franco Rustichelli
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Ancona unit, Ancona, Italy
- Dipartimento S.A.I.F.E.T.—Sezione Di Scienze Fisiche, Università Politecnica delle Marche, Ancona, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Roberta Tasso
- Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, Genova, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico, Centro Dino Ferrari, University of Milan, Italy
| |
Collapse
|
24
|
Woodfield TBF, Guggenheim M, von Rechenberg B, Riesle J, van Blitterswijk CA, Wedler V. Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif 2009; 42:485-97. [PMID: 19486014 DOI: 10.1111/j.1365-2184.2009.00608.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints. MATERIALS AND METHODS Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated. RESULTS Rapid prototyping of 3DF architectures with 100% interconnecting pores promoted homogeneous distribution of viable cells, glycosaminoglycan (GAG) and collagen type II; significantly greater GAG content and differentiation capacity (GAG/DNA) in vitro compared to CM architectures; and higher mechanical equilibrium modulus and dynamic stiffness (at 0.1 Hz). Six weeks after implantation, femoral and tibial constructs had integrated with rabbit bone and knee flexion/extension and partial load bearing were regained. Histology demonstrated articulating surfaces between femoral and tibial constructs for CM and 3DF architectures; however, repair tissue appeared fibrocartilage-like and did not resemble implanted cartilage. CONCLUSIONS Anatomically shaped, tissue-engineered constructs with designed mechanical properties and internal pore architectures may offer alternatives for reconstruction or restoration of congruent articulating surfaces in small joints.
Collapse
Affiliation(s)
- T B F Woodfield
- Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Xu H, Othman SF, Magin RL. Monitoring tissue engineering using magnetic resonance imaging. J Biosci Bioeng 2009; 106:515-27. [PMID: 19134545 DOI: 10.1263/jbb.106.515] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/12/2008] [Indexed: 11/17/2022]
Abstract
Assessment of tissue regeneration is essential to optimize the stages of tissue engineering (cell proliferation, tissue development and implantation). Optical and X-ray imaging have been used in tissue engineering to provide useful information, but each has limitations: for example, poor depth penetration and radiation damage. Magnetic resonance imaging (MRI) largely overcomes these restrictions, exhibits high resolution (approximately 100 microm) and can be applied both in vitro and in vivo. Recently, MRI has been used in tissue engineering to generate spatial maps of tissue relaxation times (T(1), T(2)), water diffusion coefficients, and the stiffness (shear moduli) of developing engineered tissues. In addition, through the use of paramagnetic and superparamagnetic contrast agents, MRI can quantify cell death, assess inflammation, and visualize cell trafficking and gene expression. After tissue implantation MRI can be used to observe the integration of a tissue implant with the surrounding tissues, and to check for early signs of immune rejection. In this review, we describe and evaluate the growing role of MRI in the assessment of tissue engineered constructs. First, we briefly describe the underlying principles of MRI and the expected changes in relaxation times (T(1), T(2)) and the water diffusion coefficient that are the basis for MR contrast in developing tissues. Next, we describe how MRI can be applied to evaluate the tissue engineering of mesenchymal tissues (bone, cartilage, and fat). Finally, we outline how MRI can be used to monitor tissue structure, composition, and function to improve the entire tissue engineering process.
Collapse
Affiliation(s)
- Huihui Xu
- Department of Applied Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803, USA
| | | | | |
Collapse
|
26
|
Zheng K, Rupnick MA, Liu B, Brezinski ME. Three Dimensional OCT in the Engineering of Tissue Constructs: A Potentially Powerful Tool for Assessing Optimal Scaffold Structure. ACTA ACUST UNITED AC 2009; 2:8-13. [PMID: 19997536 DOI: 10.2174/1875043500902010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optical Coherence Tomography (OCT) provides detailed, real-time information on the structure and composition of constructs used in tissue engineering. The focus of this work is the OCT three-dimensional assessment of scaffolding architecture and distribution of cells on it. PLGA scaffolds were imaged in two and three-dimensions, both seeded and unseeded with cells. Then two types of scaffolds were reconstructed in three dimensions. Both scaffolding types were examined at three different seeding densities. The importance of three-dimensional assessments was evident, particularly with respect to porosity and identification of asymmetrical cell distribution.
Collapse
Affiliation(s)
- K Zheng
- Department of Orthopedic Surgery, Brigham & Women's Hospital, Boston, MA
| | | | | | | |
Collapse
|
27
|
Abstract
A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T(2)) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T(2) values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T(2) values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 +/- 0.02 for control strips to a maximum value of 0.31 +/- 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils.
Collapse
|
28
|
Chesnick IE, Avallone F, Leapman RD, Landis WJ, Eidelman N, Potter K. Evaluation of bioreactor-cultivated bone by magnetic resonance microscopy and FTIR microspectroscopy. Bone 2007; 40:904-12. [PMID: 17174620 PMCID: PMC1876686 DOI: 10.1016/j.bone.2006.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/23/2006] [Accepted: 10/25/2006] [Indexed: 11/30/2022]
Abstract
We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of 9 weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 microm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro.
Collapse
Affiliation(s)
- Ingrid E. Chesnick
- Magnetic Resonance Microscopy Facility, Department of Biophysics, Armed Forces Institute of Pathology Annex, Rockville, MD
| | - Frank Avallone
- Department of Genitourinary Pathology, Armed Forces Institute of Pathology, Washington, DC
| | - Richard D. Leapman
- Division of Bioengineering and Physical Science, Office of the Director, National Institutes of Health, Bethesda, MD
| | - William J. Landis
- Dept. of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, OH
| | - Naomi Eidelman
- Paffenbarger Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD
| | - Kimberlee Potter
- Magnetic Resonance Microscopy Facility, Department of Biophysics, Armed Forces Institute of Pathology Annex, Rockville, MD
| |
Collapse
|
29
|
Nandagawali ST, Yerramshetty JS, Akkus O. Raman imaging for quantification of the volume fraction of biodegradable polymers in histological preparations. J Biomed Mater Res A 2007; 82:611-7. [PMID: 17315235 DOI: 10.1002/jbm.a.31182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Postretrieval analysis of biodegradable polymeric constructs for degradation rates requires correct identification of the degradable polymer, de novo tissue and the confounding presence of a secondary polymer used for embedding. Similarities between the structures of many tissue engineering polymers may make them difficult to distinguish from the polymer used to embed explants prior to histological sectioning. In this study, we assessed the feasibility of a chemical imaging method, Raman microscopy, to discriminate between more than one polymer species. From the perspective of spectroscopy, this is not a straightforward process because of the emergence of multiple peaks, ubiquity of embedding medium, and presence of observations sourcing from points sampled at the interface of two phases. A multivariate K-means data clustering method was used to discriminate between different polymeric components. The method was able to classify 95% of the observations to the correct category. The remaining data displayed multiple memberships because of (1) the laser spot coinciding with the interfaces of more than one phase or (2) infiltration of histological embedding polymer. Combined with multivariate analysis methods, this technique may prove useful in the future for tissue engineering and biomaterials analysis of degradation rates of, and tissue ingrowth into, polymer scaffolds.
Collapse
Affiliation(s)
- S T Nandagawali
- Department of Bioengineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio, USA
| | | | | |
Collapse
|