1
|
Abd Rahman F, Azwa FN. Comparative Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs): Difference in effect of aspirin on osteoblast potential of PDLSCs and DPSCs. Tissue Cell 2025; 94:102776. [PMID: 40022908 DOI: 10.1016/j.tice.2025.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
Periodontal Ligament Stem Cells (PDLSCs) and Dental Pulp Stem Cells (DPSCs) are mesenchymal stem cells with the ability to self-renew and differentiate into three lineages. One significant advantage of dental stem cells, such as PDLSCs and DPSCs, is their ease of harvest compared to other types of mesenchymal stem cells (MSCs). While MSCs are highly valued in bone tissue engineering, MSCs sourced from dental tissues, such as PDLSCs and DPSCs, offer promising options for periodontal regeneration because they are more easily accessible and can be collected through minimally invasive methods. Currently, PDLSCs and DPSCs exhibit a strong ability to undergo osteogenic differentiation when stimulated by factors such as growth factors, chemicals, and paracrine signaling. It has been shown that aspirin (ASA) can enhance the osteoblastic potential of PDLSCs and DPSCs, although the exact mechanism remains unclear. This article examines the origin and features of mesenchymal stem cells, the bone regeneration potential of DPSCs and PDLSCs, the factors that enhance their osteogenic differentiation, and a comparison of PDLSCs and DPSCs regarding their proliferation and differentiation abilities. Additionally, we will examine the effects of aspirin on PDLSCs and DPSCs. In conclusion, PDLSCs show a greater effect on osteoblast differentiation.
Collapse
Affiliation(s)
- Fazliny Abd Rahman
- School of Dentistry (SoD), Management & Science University (MSU), University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor.
| | - Fatin Nur Azwa
- Faculty of Dentistry, Oral Cancer Research Centre (ORCC), University of Malaya (UM), Wilayah Persekutuan, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Wang R, Wang T, Chen Z, Jiang J, Du Y, Yuan H, Pan Y, Wang Y. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1025-1041. [PMID: 39825206 DOI: 10.1007/s11427-024-2745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 01/20/2025]
Abstract
Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing. BBR-HB-CM contained bioactive materials that promoted the polarization of macrophages from M1 to M2, impeded the formation of ANs and NETs, and modulated M2 macrophage efferocytosis in vivo and in vitro. Mechanistically, BBR-HB-CM promoted bone formation by inhibiting macrophage-myofibroblast transition and reprogrammed macrophage polarization through p85/AKT/mTOR pathway-dependent autophagy. The 3-methyladenine abolished the therapeutic effects of BBR-HB-CM. Further studies revealed that BBR-HB-CM accelerated TES healing in rats with type 2 diabetes mellitus. Overall, our results demonstrated that BBR-HB-CM had high potential to promote rapid TES healing.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
- Department of Stomatology, Chongzhou People's Hospital, Chengdu, 611230, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyu Chen
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Wang Z, Wang K, Yu Y, Fu J, Zhang S, Li M, Yang J, Zhang X, Liu X, Lv F, Ma L, Cai H, Tian W, Liao L. Identification of human cranio-maxillofacial skeletal stem cells for mandibular development. SCIENCE ADVANCES 2025; 11:eado7852. [PMID: 39742474 PMCID: PMC11691644 DOI: 10.1126/sciadv.ado7852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Compared with long bone that arises from the mesoderm, the major portion of the maxillofacial bones and the front bone of the skull are derived from cranial neural crest cells and undergo intramembranous ossification. Human skeletal stem cells have been identified in embryonic and fetal long bones. Here, we describe a single-cell atlas of the human embryonic mandible and identify a population of cranio-maxillofacial skeletal stem cells (CMSSCs). These CMSSCs are marked by interferon-induced transmembrane protein 5 (IFITM5) and are specifically located around the periosteum of the jawbone and frontal bone. Additionally, these CMSSCs exhibit strong self-renewal and osteogenic differentiation capacities but lower chondrogenic differentiation potency, mediating intramembranous bone formation without cartilage formation. IFITM5+ cells are also observed in the adult jawbone and exhibit functions similar to those of embryonic CMSSCs. Thus, this study identifies CMSSCs that orchestrate the intramembranous ossification of cranio-maxillofacial bones, providing a deeper understanding of cranio-maxillofacial skeletal development and promising seed cells for bone repair.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Kun Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yejia Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jing Fu
- Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Siyuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jian Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xuanhao Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xiaodong Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Fengqiong Lv
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Department of Operating Room Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Department of Operating Room Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
4
|
Uptegrove A, Chen C, Sahagun-Bisson M, Kulkarni AK, Louie KW, Ueharu H, Mishina Y, Omi-Sugihara M. Influence of bone morphogenetic protein (BMP) signaling and masticatory load on morphological alterations of the mouse mandible during postnatal development. Arch Oral Biol 2025; 169:106096. [PMID: 39341045 PMCID: PMC11609011 DOI: 10.1016/j.archoralbio.2024.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Bone homeostasis relies on several contributing factors, encompassing growth factors and mechanical stimuli. While bone morphogenetic protein (BMP) signaling is acknowledged for its essential role in skeletal development, its specific impact on mandibular morphogenesis remains unexplored. Here, we investigated the involvement of BMP signaling and mechanical loading through mastication in postnatal mandibular morphogenesis. DESIGN We employed conditional deletion of Bmpr1a in osteoblasts and chondrocytes via Osterix-Cre. Cre activity was induced at birth for the 3-week group and at three weeks for the 9-week and 12-week groups, respectively. The conditional knockout (cKO) and control mice were given either a regular diet (hard diet, HD) or a powdered diet (soft diet, SD) from 3 weeks until sample collection, followed by micro-CT and histological analysis. RESULTS The cKO mice exhibited shorter anterior lengths and a posteriorly inclined ramus across all age groups compared to the control mice. The cKO mice displayed an enlarged hypertrophic cartilage area along with fewer osteoclast numbers in the subchondral bone of the condyle compared to the control group at three weeks, followed by a reduction in the cartilage area in the posterior region at twelve weeks. Superimposed imaging and histomorphometrical analysis of the condyle revealed that BMP signaling primarily affects the posterior part of the condyle, while mastication affects the anterior part. CONCLUSIONS Using 3D landmark-based geometric morphometrics and histological assessments of the mandible, we demonstrated that BMP signaling and mechanical loading reciprocally contribute to the morphological alterations of the mandible and condyle during postnatal development.
Collapse
Affiliation(s)
- Amber Uptegrove
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Coral Chen
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Madison Sahagun-Bisson
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA.
| | - Maiko Omi-Sugihara
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA; Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Wang Y, Turkstani H, Alfaifi A, Akintoye SO. Diagnostic and Therapeutic Approaches to Jaw Osteoradionecrosis. Diagnostics (Basel) 2024; 14:2676. [PMID: 39682583 DOI: 10.3390/diagnostics14232676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Jaw osteoradionecrosis (ORN) is a major complication of head and neck cancer radiotherapy. Treatment complications account for most of the poor outcomes for head and neck cancers and the associated racial health disparities in cancer survivorship. The global incidence of jaw ORN is improving due to pre-radiotherapy patient preparations and improved head and neck cancer radiotherapy protocols. The diagnosis and management of jaw ORN are based on the patient's history and clinical presentation combined with radiological and histopathological tests. Evidence-based jaw ORN therapies focus on preventive, palliative, and surgical principles. However, new and innovative therapeutic approaches based on the cellular and molecular pathophysiological processes of jaw ORN and the jawbone's susceptibility to radiation bone damage are limited. The rationale for this narrative review is to highlight the current diagnostic approaches to jaw ORN and the pathophysiological basis for new therapeutic options for ORN.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Heba Turkstani
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Afrah Alfaifi
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sunday O Akintoye
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
7
|
Romanowicz GE, Zhang L, Bolger MW, Lynch M, Kohn DH. Beyond bone volume: Understanding tissue-level quality in healing of maxillary vs. femoral defects. Acta Biomater 2024; 187:409-421. [PMID: 39214162 PMCID: PMC11890190 DOI: 10.1016/j.actbio.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Currently, principles of tissue engineering and implantology are uniformly applied to all bone sites, disregarding inherent differences in collagen, mineral composition, and healing rates between craniofacial and long bones. These differences could potentially influence bone quality during the healing process. Evaluating bone quality during healing is crucial for understanding local mechanical properties in regeneration and implant osseointegration. However, site-specific changes in bone quality during healing remain poorly understood. In this study, we assessed newly formed bone quality in sub-critical defects in the maxilla and femur, while impairing collagen cross-linking using β-aminopropionitrile (BAPN). Our findings revealed that femoral healing bone exhibited a 73 % increase in bone volume but showed significantly greater viscoelastic and collagen changes compared to surrounding bone, leading to increased deformation during long-term loading and poorer bone quality in early healing. In contrast, the healing maxilla maintained equivalent hardness and viscoelastic constants compared to surrounding bone, with minimal new bone formation and consistent bone quality. However, BAPN-impaired collagen cross-linking induced viscoelastic changes in the healing maxilla, with no further changes observed in the femur. These results challenge the conventional belief that increased bone volume correlates with enhanced tissue-level bone quality, providing crucial insights for tissue engineering and site-specific implant strategies. The observed differences in bone quality between sites underscore the need for a nuanced approach in assessing the success of regeneration and implant designs and emphasize the importance of exploring site-specific tissue engineering interventions. STATEMENT OF SIGNIFICANCE: Accurate measurement of bone quality is crucial for tissue engineering and implant therapies. Bone quality varies between craniofacial and long bones, yet it's often overlooked in the healing process. Our study is the first to comprehensively analyze bone quality during healing in both the maxilla and femur. Surprisingly, despite significant volume increase, femur healing bone had poorer quality compared to the surrounding bone. Conversely, maxilla healing bone maintained consistent quality despite minimal bone formation. Impaired collagen diminished maxillary healing bone quality, but had no further effect on femur bone quality. These findings challenge the notion that more bone volume equals better quality, offering insights for improving tissue engineering and implant strategies for different bone sites.
Collapse
Affiliation(s)
- Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Lizhong Zhang
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA.
| |
Collapse
|
8
|
Xu Y, Sun B, Wang H, Cai Y, Chu D, Cao R, Wang Z. Autophagy regulates age-related delayed jawbone regeneration and decreased osteoblast osteogenesis by degrading FABP3. FASEB J 2024; 38:e23824. [PMID: 39012304 DOI: 10.1096/fj.202400549rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
The regenerative ability of limb bones after injury decreases during aging, but whether a similar phenomenon occurs in jawbones and whether autophagy plays a role in this process remain unclear. Through retrospective analysis of clinical data and studies on a mouse model of jawbone defects, we confirmed the presence of delayed or impaired bone regeneration in the jawbones of old individuals and mice. Subsequently, osteoblasts (OBs) derived from mouse jawbones were isolated, showing reduced osteogenesis in senescent osteoblasts (S-OBs). We observed a reduction in autophagy within both aged jawbones and S-OBs. Additionally, pharmacological inhibition of autophagy in normal OBs (N-OBs) led to cell aging and decreased osteogenesis, while autophagic activation reversed the aging phenotype of S-OBs. The activator rapamycin (RAPA) increased the autophagy level and bone regeneration in aged jawbones. Finally, we found that fatty acid-binding protein 3 (FABP3) was degraded by autolysosomes through its interaction with sequestosome 1 (P62/SQSTM1). Autophagy inhibition within senescent jawbones and S-OBs led to the excessive accumulation of FABP3, and FABP3 knockdown partially rescued the decreased osteogenesis in S-OBs and alleviated age-related compromised jawbone regeneration. In summary, we confirmed that autophagy inhibition plays an important role in delaying bone regeneration in aging jawbones. Autophagic activation or FABP3 knockdown can partially rescue the osteogenesis of S-OBs and the regeneration of aging jawbones, providing insight into jawbone aging.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Bin Sun
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Haicheng Wang
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuyi Cai
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Danna Chu
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rongkai Cao
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zuolin Wang
- Department of Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
9
|
Guo F, Li J, Chen Z, Wang T, Wang R, Wang T, Bian Y, Du Y, Yuan H, Pan Y, Jin J, Jiang H, Han F, Jiang J, Wu F, Wang Y. An Injectable Black Phosphorus Hydrogel for Rapid Tooth Extraction Socket Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25799-25812. [PMID: 38727024 DOI: 10.1021/acsami.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.
Collapse
Affiliation(s)
- Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianfeng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ziyu Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
10
|
Qin Z, Han Y, Du Y, Zhang Y, Bian Y, Wang R, Wang H, Guo F, Yuan H, Pan Y, Jin J, Zhou Q, Wang Y, Han F, Xu Y, Jiang J. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1010-1026. [PMID: 38489007 DOI: 10.1007/s11427-023-2454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 03/17/2024]
Abstract
Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yixuan Zhang
- Gusu school, Nanjing medical university, Suzhou, 215002, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiandong Jiang
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
11
|
Feng Y, Wang H, Xu S, Huang J, Pei Q, Wang Z. The detection of Gper1 as an important gene promoting jawbone regeneration in the context of estrogen deficiency. Bone 2024; 180:116990. [PMID: 38141748 DOI: 10.1016/j.bone.2023.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Numerous studies have demonstrated that estrogen deficiency inhibit the proliferation and differentiation of pre-osteoblasts in skeleton by affecting osteogenic signaling, lead to decreased bone mass and impaired regeneration. To explore the mechanisms maintaining bone regeneration under estrogen deficiency, we randomly selected 1102 clinical cases, in which female patients aged between 18 and 75 have underwent tooth extraction in Stomatological Hospital of Tongji University, there is little difference in the healing effect of extraction defects, suggesting that to some extent, the regeneration of jawbone is insensitive to the decreased estrogen level. To illuminate the mechanisms promoting jawbone regeneration under estrogen deficiency, a tooth extraction defect model was established in the maxilla of female rats who underwent ovariectomy (OVX) or sham surgery, and jawbone marrow stromal cells (BMSCs) were isolated for single-cell sequencing. Further quantitative PCR, RNA interference, alizarin red staining, immunohistochemistry and western blotting experiments demonstrated that in the context of ovariectomy, maxillary defects promoted G protein-coupled estrogen receptor 1 (Gper1) expression, stimulate downstream cAMP/PKA/pCREB signaling, and facilitate cell proliferation, and thus provided sufficient progenitors for osteogenesis and enhanced the regeneration capacity of the jawbone. Correspondingly, the heterozygous deletion of the Gper1 gene attenuated the phosphorylation of CREB, led to decreased cell proliferation, and impaired the restoration of maxillary defects. This study demonstrates the importance of Gper1 in maintaining jawbone regeneration, especially in the context of estrogen deficiency.
Collapse
Affiliation(s)
- Yuan Feng
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Haicheng Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Shuyu Xu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Jie Huang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Qingguo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Zuolin Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China.
| |
Collapse
|
12
|
Akintoye SO, Adisa AO, Okwuosa CU, Mupparapu M. Craniofacial disorders and dysplasias: Molecular, clinical, and management perspectives. Bone Rep 2024; 20:101747. [PMID: 38566929 PMCID: PMC10985038 DOI: 10.1016/j.bonr.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
There is a wide spectrum of craniofacial bone disorders and dysplasias because embryological development of the craniofacial region is complex. Classification of craniofacial bone disorders and dysplasias is also complex because they exhibit complex clinical, pathological, and molecular heterogeneity. Most craniofacial disorders and dysplasias are rare but they present an array of phenotypes that functionally impact the orofacial complex. Management of craniofacial disorders is a multidisciplinary approach that involves the collaborative efforts of multiple professionals. This review provides an overview of the complexity of craniofacial disorders and dysplasias from molecular, clinical, and management perspectives.
Collapse
Affiliation(s)
- Sunday O. Akintoye
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Akinyele O. Adisa
- University of Ibadan and University College Hospital Ibadan, Ibadan, Nigeria
| | - Chukwubuzor U. Okwuosa
- Department of Oral Pathology & Oral Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Mel Mupparapu
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
13
|
Huang X, Lou Y, Duan Y, Liu H, Tian J, Shen Y, Wei X. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances. Bioact Mater 2024; 33:129-156. [PMID: 38024227 PMCID: PMC10665588 DOI: 10.1016/j.bioactmat.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Maxillofacial bone defects caused by congenital malformations, trauma, tumors, and inflammation can severely affect functions and aesthetics of maxillofacial region. Despite certain successful clinical applications of biomaterial scaffolds, ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape, complex structure, and unique biological functions. Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity, costs, operational convenience. etc. In this review, we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy, which provide basis and directions for future scaffold design. Latest advances of these scaffolds are then discussed, as well as future perspectives and challenges. Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Xiangya Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaxin Lou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
14
|
Zhao Q, Zhang X, Li Y, He Z, Qin K, Buhl EM, Mert Ü, Horst K, Hildebrand F, Balmayor ER, Greven J. Porcine Mandibular Bone Marrow-Derived Mesenchymal Stem Cell (BMSC)-Derived Extracellular Vesicles Can Promote the Osteogenic Differentiation Capacity of Porcine Tibial-Derived BMSCs. Pharmaceutics 2024; 16:279. [PMID: 38399333 PMCID: PMC10893405 DOI: 10.3390/pharmaceutics16020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Existing research suggests that bone marrow-derived mesenchymal stem cells (BMSCs) may promote endogenous bone repair. This may be through the secretion of factors that stimulate repair processes or directly through differentiation into osteoblast-progenitor cells. However, the osteogenic potential of BMSCs varies among different tissue sources (e.g., mandibular versus long BMSCs). The main aim of this study was to investigate the difference in osteogenic differentiation capacity between mandibular BMSCs (mBMSCs) and tibial BMSCs (tBMSCs). MATERIALS AND METHODS Bioinformatics analysis of the GSE81430 dataset taken from the Gene Expression Omnibus (GEO) database was performed using GEO2R. BMSCs were isolated from mandibular and tibial bone marrow tissue samples. Healthy pigs (n = 3) (registered at the State Office for Nature, Environment, and Consumer Protection, North Rhine-Westphalia (LANUV) 81-02.04.2020.A215) were used for this purpose. Cell morphology and osteogenic differentiation were evaluated in mBMSCs and tBMSCs. The expression levels of toll-like receptor 4 (TLR4) and nuclear transcription factor κB (NF-κB) were analyzed using quantitative polymerase chain reaction (qPCR) and Western blot (WB), respectively. In addition, mBMSC-derived extracellular vesicles (mBMSC-EVs) were gained and used as osteogenic stimuli for tBMSCs. Cell morphology and osteogenic differentiation capacity were assessed after mBMSC-EV stimulation. RESULTS Bioinformatic analysis indicated that the difference in the activation of the TLR4/NF-κB pathway was more pronounced compared to all other examined genes. Specifically, this demonstrated significant downregulation, whereas only 5-7 upregulated genes displayed significant variances. The mBMSC group showed stronger osteogenic differentiation capacity compared to the tBMSC group, confirmed via ALP, ARS, and von Kossa staining. Furthermore, qPCR and WB analysis revealed a significant decrease in the expression of the TLR4/NF-κB pathway in the mBMSC group compared to the tBMSC group (TLR4 fold changes: mBMSCs vs. tBMSCs p < 0.05; NF-κB fold changes: mBMSCs vs. tBMSCs p < 0.05). The osteogenic differentiation capacity was enhanced, and qPCR and WB analysis revealed a significant decrease in the expression of TLR4 and NF-κB in the tBMSC group with mBMSC-EVs added compared to tBMSCs alone (TLR4 fold changes: p < 0.05; NF-κB fold changes: p < 0.05). CONCLUSION Our results indicate that mBMSC-EVs can promote the osteogenic differentiation of tBMSCs in vitro. The results also provide insights into the osteogenic mechanism of mBMSCs via TLR4/NF-κB signaling pathway activation. This discovery promises a fresh perspective on the treatment of bone fractures or malunions, potentially offering a novel therapeutic method.
Collapse
Affiliation(s)
- Qun Zhao
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Xing Zhang
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - You Li
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Zhizhen He
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Kang Qin
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology and Medical Clinic II, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Ümit Mert
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Klemens Horst
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Elizabeth R. Balmayor
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johannes Greven
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
15
|
Ma E, Smith S, Simon J, Prabhu V, Pittman A. Progressive Skull Osteolysis in the Setting of Endotine Implantation: A Case Report. Ann Otol Rhinol Laryngol 2024; 133:239-243. [PMID: 37534717 DOI: 10.1177/00034894231190969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To report a case of a 71-year-old woman who presented 8 years following 2 endoscopic brow lift procedures for evaluation of bony irregularities of her frontoparietal skull. To highlight a novel complication of Endotine fixation following an endoscopic brow lift procedure. METHODS A chart review, bicoronal cranioplasty and a review of literature. RESULTS The patient was satisfied with her post-surgical outcome and no complications were observed at the 1-month follow-up visit. A review of the literature revealed no previous reports of focal skull osteolysis relating to Endotine implants. CONCLUSION We believe that our patient's focal calvarial osteolysis is a direct complication of Endotine fixation. Future research into the long-term effects of endoscopic brow lift procedures using Endotine implants is necessary to help ensure patient safety and guide future practices.
Collapse
Affiliation(s)
- Emily Ma
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Sullivan Smith
- Department of Otolaryngology-Head and Neck Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Joshua Simon
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Vikram Prabhu
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Amy Pittman
- Department of Otolaryngology-Head and Neck Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
16
|
Xu H, Nie X, Deng W, Zhou H, Huang D, Wang Z. Bone marrow mesenchymal stem cells-derived exosomes ameliorate LPS-induced acute lung injury by miR-223-regulated alveolar macrophage M2 polarization. J Biochem Mol Toxicol 2024; 38:e23568. [PMID: 37899695 DOI: 10.1002/jbt.23568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Numerous studies have shown that the M2 polarization of alveolar macrophages (AM) plays a protective role in acute lung injury (ALI). Mesenchymal stem cells (MSCs) secreted exosomes have been reported to be involved in inflammatory diseases by the effects of polarized M1/M2 macrophage populations. However, whether bone marrow mesenchymal stem cells (BMMSCs) derived exosomes could protect from ALI and its mechanisms are still unclear. Here, we explored the role of exosomes from BMMSC in rat AM polarization and the lipopolysaccharide- (LPS-) induced ALI rat model. Furthermore, the levels of exosomal miR-223 in BMMSCs were measured by RT-qPCR. Additionally, miR-223 mimics and its inhibitors were used to verify the vital role of miR-223 of BMMSCs-derived exosomes in the polarization of M2 macrophages. The results showed that BMMSCs-derived exosomes were taken up by the AM. Exosomes derived from BMMSCs promoted M2 polarization of AM in vitro. BMMSCs exosomes effectively mitigated pathological injuries, lung edema, and the inflammation of rats from LPS-induced ALI, accompanied by an increase of M2 polarization of AM in lung tissue. Interestingly, we also found that miR-223 was enriched in BMMSCs-derived exosomes, and overexpression of miR-223 in BMMSCs-derived exosomes promoted M2 polarization of AM while depressing miR-223 showed opposite effects in AM. The present study demonstrated that BMMSCs-derived exosomes triggered alveolar M2 polarization to improve inflammation by transferring miR-223, which may provide new therapeutic strategies in ALI.
Collapse
Affiliation(s)
- Hui Xu
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Xiangbi Nie
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Wu Deng
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Han Zhou
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Dan Huang
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| | - Zenggeng Wang
- Department of Emergency, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, China
| |
Collapse
|
17
|
Xu Y, Zhuo J, Wang Q, Xu X, He M, Zhang L, Liu Y, Wu X, Luo K, Chen Y. Site-specific periosteal cells with distinct osteogenic and angiogenic characteristics. Clin Oral Investig 2023; 27:7437-7450. [PMID: 37848582 DOI: 10.1007/s00784-023-05333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVES This study aimed to investigate the site-specific characteristics of rat mandible periosteal cells (MPCs) and tibia periosteal cells (TPCs) to assess the potential application of periosteal cells (PCs) in bone tissue engineering (BTE). MATERIALS AND METHODS MPCs and TPCs were isolated and characterized. The potential of proliferation, migration, osteogenesis and adipogenesis of MPCs and TPCs were evaluated by CCK-8, scratch assay, Transwell assay, alkaline phosphatase staining and activity, Alizarin Red S staining, RT‒qPCR, and Western blot (WB) assays, respectively. Then, these cells were cocultured with human umbilical vein endothelial cells (HUVECs) to investigate their angiogenic capacity, which was assessed by scratch assay, Transwell assay, Matrigel tube formation assay, RT‒qPCR, and WB assays. RESULTS MPCs exhibited higher osteogenic potential, higher alkaline phosphatase activity, and more mineralized nodule formation, while TPCs showed a greater capability for proliferation, migration, and adipogenesis. MPCs showed higher expression of angiogenic factors, and the conditioned medium of MPCs accelerated the migration of HUVECs, while MPC- conditioned medium induced the formation of more tubular structure in HUVECs in vitro. These data suggest that compared to TPCs, MPCs exert more consequential proangiogenic effects on HUVECs. CONCLUSIONS PCs possess skeletal site-specific differences in biological characteristics. MPCs exhibit more eminent osteogenic and angiogenic potentials, which highlights the potential application of MPCs for BTE. CLINICAL RELEVANCE Autologous bone grafting as the main modality for maxillofacial bone defect repair has many limitations. Constituting an important cell type in bone repair and regeneration, MPCs show greater potential for application in BTE, which provides a promising treatment option for maxillofacial bone defect repair.
Collapse
Affiliation(s)
- Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Jin Zhuo
- Xuzhou Stomatological Hospital, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Qisong Wang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 354000, People's Republic of China
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Mengjiao He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Lu Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Yijuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Xiaohong Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
| | - Yuling Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
18
|
Liang H, Xiong C, Luo Y, Zhang J, Huang Y, Zhao R, Zhou N, Zhao Z, Luo X. Association between serum polyunsaturated fatty acids and bone mineral density in US adults: NHANES 2011-2014. Front Endocrinol (Lausanne) 2023; 14:1266329. [PMID: 38047106 PMCID: PMC10690584 DOI: 10.3389/fendo.2023.1266329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
Objective The purpose of this study was to investigate the association between serum polyunsaturated fatty acids (PUFAs) and bone mineral density (BMD). Methods We performed a cross-sectional study based on data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. The weighted multiple linear regression model was utilized to determine the association between serum PUFAs and BMD. Further smoothed curve fitting and threshold effect analysis were conducted. Finally, we performed a subgroup analysis. Results In total, 1979 participants aged 20-59 years were enrolled. After adjusting for all covariates, we found that serum docosapentaenoic acid (DPA) was positively associated with head BMD (β = 0.0015, 95% Cl: 0.0004, 0.0026, P = 0.008296) and lumbar spine BMD (β = 0.0005, 95% Cl: 0.0000, 0.0010, P = 0.036093), and serum eicosadienoic acid (EDA) was negatively associated with thoracic spine BMD (β = -0.0008, 95% Cl: -0.0016, -0.0000, P = 0.045355). Smoothed curve fitting revealed a nonlinear positive association between serum DPA and lumbar spine BMD. Threshold effect analysis indicated that the threshold of serum DPA was 81.4 µmol/L. Subgroup analysis revealed a positive correlation between serum DPA and head BMD in the subgroup aged 50-59 years (β = 0.0025, 95% Cl: 0.0002, 0.0049, P = 0.035249) and females (β = 0.0026, 95% Cl: 0.0008, 0.0044, P = 0.005005). There was a positive relationship between serum DPA and lumbar spine BMD in females (β = 0.0008, 95% Cl: 0.0001, 0.0015, P = 0.017900) and a negative association between serum EDA and thoracic spine BMD in the subgroup aged 30-39 years (β = -0.0016, 95% Cl: -0.0031, -0.0001, P = 0.041331), males (β = -0.0012, 95% Cl: -0.0023, -0.0001, P = 0.039364) and other races (β = -0.0021, 95% Cl: -0.0037, -0.0006, P = 0.008059). Conclusion This study demonstrated a linear positive relationship between serum DPA and head BMD, a nonlinear positive association between serum DPA and lumbar spine BMD, and a linear negative correlation between serum EDA and thoracic spine BMD in US adults.
Collapse
Affiliation(s)
- Hao Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Chuang Xiong
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuangang Luo
- Department of Orthopedics, Qianjiang Central Hospital of Chongqing, Qianjiang, Chongqing, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yanran Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Runhan Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Nian Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Zenghui Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Xiaoji Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Steffen C, Soares AP, Heintzelmann T, Fischer H, Voss JO, Nahles S, Wüster J, Koerdt S, Heiland M, Rendenbach C. Impact of the adjacent bone on pseudarthrosis in mandibular reconstruction with fibula free flaps. Head Face Med 2023; 19:43. [PMID: 37784107 PMCID: PMC10546678 DOI: 10.1186/s13005-023-00389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Mechanical and morphological factors have both been described to influence the rate of pseudarthrosis in mandibular reconstruction. By minimizing mechanical confounders, the present study aims to evaluate the impact of bone origin at the intersegmental gap on osseous union. METHODS Patients were screened retrospectively for undergoing multi-segment fibula free flap reconstruction of the mandible including the anterior part of the mandible and osteosynthesis using patient-specific 3D-printed titanium reconstruction plates. Percentage changes in bone volume and width at the bone interface between the fibula/fibula and fibula/mandible at the anterior intersegmental gaps within the same patient were determined using cone-beam computed tomography (CBCT). Additionally, representative samples of the intersegmental zones were assessed histologically and using micro-computed tomography (µCT). RESULTS The bone interface (p = 0.223) did not significantly impact the change in bone volume at the intersegmental gap. Radiotherapy (p < 0.001), time between CBCT scans (p = 0.006) and wound healing disorders (p = 0.005) were independent risk factors for osseous non-union. Preliminary analysis of the microstructure of the intersegmental bone did not indicate morphological differences between fibula-fibula and fibula-mandible intersegmental bones. CONCLUSIONS The bone interface at the intersegmental gap in mandibular reconstruction did not influence long-term bone healing significantly. Mechanical and clinical properties seem to be more relevant for surgical success.
Collapse
Affiliation(s)
- Claudius Steffen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Ana Prates Soares
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thelma Heintzelmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Heilwig Fischer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Center for Musculoskeletal Surgery, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Jan Oliver Voss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Susanne Nahles
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jonas Wüster
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Steffen Koerdt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Max Heiland
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Carsten Rendenbach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
20
|
Vaswani BK, Mundada BP, Bhola N, Paul P, Reche A, Ahuja KP. Stem-Cell Therapy: Filling Gaps in Oro-Maxillofacial Region. Cureus 2023; 15:e47171. [PMID: 38022051 PMCID: PMC10652057 DOI: 10.7759/cureus.47171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
How do stem cells function? Why should we, as dentists, care about stem cells? How might dental procedures be substituted by stem cells? Are stem cells capable of regenerating a tooth or temporomandibular joint (TMJ)? Although the ability to regenerate a destroyed tissue has been known for a while, research into regenerative medicine and dentistry has made significant strides in molecular biology. A paradigm shift in the therapeutic toolbox for dental and oral diseases is likely to result from a growing understanding of biological concepts in the regeneration of oral/dental tissues along with stem cell research, leading to an intense search for "biological solutions to biological problems." Among other tissues, orofacial tissues effectively separate stem cells from human tissues. Because they can self-renew and produce different cell types, stem cells offer novel techniques for regenerating damaged tissues and curing illnesses. A number of significant milestone successes have shown their practical applicability, traditional biomaterial-based treatments in regenerative dentistry as therapeutic alternatives that offer regeneration of damaged oral tissues rather than merely "filling the gaps." In order to use these innovative accomplishments for patient well-being, the ultimate goal of this ground-breaking technology, well-designed clinical studies must be implemented as a crucial next step. The review's objective is to briefly synthesize the literature on stem cells in terms of their traits, subtypes, and uses for dental stem cells. It has been highlighted that stem cell therapy has the ability to treat craniofacial abnormalities and regenerate teeth in the oral and maxillofacial regions.
Collapse
Affiliation(s)
- Bhumika K Vaswani
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhushan P Mundada
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nitin Bhola
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Paul
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kajal P Ahuja
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
21
|
E L, Lu R, Zheng Y, Zhang L, Ma X, Lv Y, Gao M, Zhang S, Wang L, Liu H, Zhang R. Effect of Insulin on Bone Formation Ability of Rat Alveolar Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev 2023; 32:652-666. [PMID: 37282516 DOI: 10.1089/scd.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The alveolar bone marrow mesenchymal stem cells (ABM-MSCs) play an important role in oral bone healing and regeneration. Insulin is considered to improve impaired oral bones due to local factors, systemic factors and pathological conditions. However, the effect of insulin on bone formation ability of ABM-MSCs still needs to be elucidated. The aim of this study was to determine the responsiveness of rat ABM-MSCs to insulin and to explore the underlying mechanism. We found that insulin promoted ABM-MSCs proliferation in a concentration-dependent manner, in which 10-6 M insulin exerted the most significant effect. 10-6 M insulin significantly promoted the type I collagen (COL-1) synthesis, alkaline phosphatase (ALP) activity, osteocalcin (OCN) expression, and mineralized matrix formation in ABM-MSCs, significantly enhanced the gene and protein expressions of intracellular COL-1, ALP, and OCN. Acute insulin stimulation significantly promoted insulin receptor (IR) phosphorylation, IR substrate-1 (IRS-1) protein expression, and mammalian target of rapamycin (mTOR) phosphorylation, but chronic insulin stimulation decreased these values, while inhibitor NT219 could attenuate these responses. When seeded on β-tricalcium phosphate (β-TCP), ABM-MSCs adhered and grew well, during the 28-day culture period, ABM-MSCs+β-TCP +10-6 M insulin group showed significantly higher extracellular total COL-1 amino-terminus prolongation peptide content, ALP activity, OCN secretion, and Ca and P concentration. When implanted subcutaneously in severe combined immunodeficient mice for 1 month, the ABM-MSCs+β-TCP +10-6 M insulin group obtained the most bone formation and blood vessels. These results showed that insulin promoted the proliferation and osteogenic differentiation of ABM-MSCs in vitro, and enhance osteogenesis and angiogenesis of ABM-MSCs in vivo. Inhibition studies demonstrated that the insulin-induced osteogenic differentiation of ABM-MSCs was dependent of insulin/mTOR signaling. It suggests that insulin has a direct anabolic effect on ABM-MSCs.
Collapse
Affiliation(s)
- Lingling E
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rongjian Lu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Zheng
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Zhang
- Traditional Chinese Medicine Physiotherapy Department, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Xiaocao Ma
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Lv
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingzhu Gao
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli Zhang
- The Second Department of Naval Recuperation, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Limei Wang
- Reception Office, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| | - Hongchen Liu
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
- The Second Department of Naval Recuperation, First District of Recuperation, Yantai Special Service Rehabilitation Center of the Chinese People Armed Police Force, Yantai, China
| |
Collapse
|
22
|
Guo Y, Zhao H, Wang F, Xu H, Liu X, Hu T, Wu D. Telomere length as a marker of changes in body composition and fractures-an analysis of data from the NHANES 2001-2002. Front Immunol 2023; 14:1181544. [PMID: 37744360 PMCID: PMC10514483 DOI: 10.3389/fimmu.2023.1181544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose There has been an association between changes in body composition, fracture incidence, and age in previous studies. Telomere length (TL) has been proposed as a biomarker of aging. However, the relationship between body composition, fractures, and TL has rarely been studied. Therefore, this study aimed to investigate the correlation between TL and body composition and fractures.Patients and methods: 20950 participants from the 2001-2002 National Health and Nutrition Examination Survey (NHANES) were included in the final analysis. In NHANES, body compositions were measured with DXA, and TL was determined with quantitative PCR. Correlation analysis of TL and body composition was conducted using multivariate weighted linear regression and logistic regression models. Results The results showed that TL positively correlated with bone mineral density (BMD) and bone mineral content (BMC) in most body parts. However, BMD and BMC were negatively connected with TL in the upper limbs and skull. Fat content was negatively associated with TL, while muscle content was positively linked to TL. In addition, TL's trend analysis results were consistent with the regression model when transformed from a continuous to a classified variable. An increase in TL was associated with a higher incidence of wrist fractures, while a decrease in spine fractures. The above correlation also has a certain degree of sex specificity. Conclusion Our study indicate that TL is associated with body composition as well as fractures, but further research is needed to confirm these contrasting associations in the skull, upper limbs, and wrists.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Mupparapu M, Akintoye SO. Application of Panoramic Radiography in the Detection of Osteopenia and Osteoporosis-Current State of the Art. Curr Osteoporos Rep 2023; 21:354-359. [PMID: 37382808 DOI: 10.1007/s11914-023-00807-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE OF REVIEW Osteoporosis ranks high among morbidities in the elderly as it is a natural process to lose bone, making them susceptible to fractures from minor falls. The cost of managing these patients is staggering. The fractures can be prevented with better care of the elderly, and by treating the major predisposing factor, osteoporosis. Clinicians and scientists, in general, constantly look for early diagnostic and prognostic indicators for osteopenia and osteoporosis to proactively prevent fractures. Dental panoramic radiography (DPR) is a rotational pantomography used for identifying dental pathology in patients. Early signs of osteopenia and osteoporosis can be identified in DPR. The usefulness of notable jaw changes in DPR to predict osteopenia and osteoporosis is still evolving as more studies continue to delve into this concept. The purpose of this review is to present advances made in the practical application of DPR for predicting early onset of osteopenia and osteoporosis. RECENT FINDINGS Dental panoramic radiography, a form of tomography commonly used by dental practitioners, has been the standard of care for decades for detecting dento-alveolar pathology. Several technological advancements have taken place with respect to the use of DPR. These include conversion from plain film to digital radiography, advancements in the manufacture of flat panel detectors, and accurate imaging of the layers of mandible and maxilla that has become possible with appropriate patient positioning within the focal trough of the machine. Improvements in the software infrastructure make it easier to view, enhance, and save the radiographic images. The radiographic appearance of the trabecular bone within the mandible and indices measured from the dental panoramic radiographs focusing on the inferior cortex of the mandible are considered useful tools for identifying asymptomatic individuals with osteoporosis or at risk for developing osteoporosis. These indices apparently correlate with risks of fragility fractures of osteoporosis in other parts of the body. Dental panoramic radiography (DPR) is a commonly used radiographic procedure in dentistry for evaluation of teeth and associated maxillofacial structures. The evaluation of the inferior border of the mandible for reduction or loss of cortical thickness and evaluation of the trabecular bone within the mandible are helpful markers for early signs of osteopenia to identify patients at risk for osteoporosis. This review focused on research advancements on practical application of DPR in early identification of osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Mel Mupparapu
- School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Philadelphia, PA, USA.
| | - Sunday O Akintoye
- School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Philadelphia, PA, USA
| |
Collapse
|
24
|
Tetradis S, Allen MR, Ruggiero SL. Pathophysiology of Medication-Related Osteonecrosis of the Jaw-A Minireview. JBMR Plus 2023; 7:e10785. [PMID: 37614299 PMCID: PMC10443081 DOI: 10.1002/jbm4.10785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 08/25/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse effect of antiresorptive medications administered for control of osseous malignancy, osteoporosis, or other bone metabolic diseases. Despite being reported in the literature two decades ago, MRONJ etiology, pathophysiology, and progression remain largely unknown, and current nonoperative or operative treatment strategies are mostly empirical. Several hypotheses that attempt to explain the mechanisms of MRONJ pathogenesis have been proposed. However, none of these hypotheses alone is able to capture the complex mechanistic underpinnings of the disease. In this minireview, we aim to highlight key findings from clinical and translational studies and propose a unifying model for the pathogenesis and progression of MRONJ. We also identify aspects of the disease process that require further investigation and suggest areas for future research efforts toward calibrating methodologic approaches and validating experimental findings. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sotirios Tetradis
- Division of Diagnostic and Surgical SciencesUCLA School of DentistryLos AngelesCAUSA
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Salvatore L. Ruggiero
- New York Center for Orthognathic and Maxillofacial SurgeryLake SuccessNYUSA
- Department Oral and Maxillofacial SurgeryStony Brook School of Dental MedicineStony BrookNYUSA
- Division of Oral and Maxillofacial SurgeryHofstra‐Northwell School of MedicineHempsteadNYUSA
| |
Collapse
|
25
|
Wang Z, Huang M, Zhang Y, Jiang X, Xu L. Comparison of Biological Properties and Clinical Application of Mesenchymal Stem Cells from the Mesoderm and Ectoderm. Stem Cells Int 2023; 2023:4547875. [PMID: 37333060 PMCID: PMC10276766 DOI: 10.1155/2023/4547875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Since the discovery of mesenchymal stem cells (MSCs) in the 1970s, they have been widely used in the treatment of a variety of diseases because of their wide sources, strong differentiation potential, rapid expansion in vitro, low immunogenicity, and so on. At present, most of the related research is on mesoderm-derived MSCs (M-MSCs) such as bone marrow MSCs and adipose-derived MSCs. As a type of MSC, ectoderm-derived MSCs (E-MSCs) have a stronger potential for self-renewal, multidirectional differentiation, and immunomodulation and have more advantages than M-MSCs in some specific conditions. This paper analyzes the relevant research development of E-MSCs compared with that of M-MSCs; summarizes the extraction, discrimination and culture, biological characteristics, and clinical application of E-MSCs; and discusses the application prospects of E-MSCs. This summary provides a theoretical basis for the better application of MSCs from both ectoderm and mesoderm in the future.
Collapse
Affiliation(s)
- Zhenning Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Meng Huang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Zhang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lulu Xu
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
26
|
Ikeda N, Ishii M, Miyata H, Nishi Y, Suehiro F, Komabashiri N, Sakurai T, Nishimura M. Role of reactive oxygen species (ROS) in the regulation of adipogenic differentiation of human maxillary/mandibular bone marrow-derived mesenchymal stem cells. Mol Biol Rep 2023:10.1007/s11033-023-08528-9. [PMID: 37217615 DOI: 10.1007/s11033-023-08528-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Maxillary/mandibular bone marrow-derived mesenchymal stem cells (MBMSCs) exhibit a unique property of lower adipogenic potential than other bone marrow-derived MSCs. However, the molecular mechanisms regulating the adipogenesis of MBMSCs remain unclear. This study aimed to explore the roles of mitochondrial function and reactive oxygen species (ROS) in regulating the adipogenesis of MBMSCs. METHODS AND RESULTS MBMSCs exhibited significantly lower lipid droplet formation than iliac BMSCs (IBMSCs). Moreover, the expression levels of CCAAT/enhancer-binding protein β (C/EBPβ), C/EBPδ, and early B cell factor 1 (Ebf-1), which are early adipogenic transcription factors, and those of peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which are late adipogenic transcription factors, were downregulated in MBMSCs compared to those in IBMSCs. Adipogenic induction increased the mitochondrial membrane potential and mitochondrial biogenesis in MBMSCs and IBMSCs, with no significant difference between the two cell types; however, intracellular ROS production was significantly enhanced only in IBMSCs. Furthermore, NAD(P)H oxidase 4 (NOX4) expression was significantly lower in MBMSCs than in IBMSCs. Increased ROS production in MBMSCs by NOX4 overexpression or treatment with menadione promoted the expression of early adipogenic transcription factors but did not induce that of late adipogenic transcription factors or lipid droplet accumulation. CONCLUSIONS These results suggest that ROS may be partially involved in the process of MBMSC adipogenic differentiation from undifferentiated cells to immature adipocytes. This study provides important insights into the tissue-specific properties of MBMSCs.
Collapse
Affiliation(s)
- Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yasuhiro Nishi
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Fumio Suehiro
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Naohiro Komabashiri
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomoaki Sakurai
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
27
|
Zheng Y, Deng J, Wang G, Zhang X, Wang L, Ma X, Dai Y, E L, Liu X, Zhang R, Zhang Y, Liu H. P53 negatively regulates the osteogenic differentiation in jaw bone marrow MSCs derived from diabetic osteoporosis. Heliyon 2023; 9:e15188. [PMID: 37096002 PMCID: PMC10121411 DOI: 10.1016/j.heliyon.2023.e15188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Patients with diabetic osteoporosis (DOP) often suffer from poor osseointegration of artificial implants, which is a challenge that affects implant outcomes. The osteogenic differentiation ability of human jaw bone marrow mesenchymal stem cells (JBMMSCs) is the key to implant osseointegration. Studies have shown that the microenvironment of hyperglycemia affects the osteogenic differentiation of mesenchymal stem cells (MSC), but the mechanism is still unclear. Therefore, the aim of this study was to isolate and culture JBMMSCs from surgically derived bone fragments from DOP patients and control patients to investigate the differences in their osteogenic differentiation ability and to elucidate its mechanisms. The results showed that the osteogenic ability of hJBMMSCs was significantly decreased in the DOP environment. Mechanism study showed that the expression of senescence marker gene P53 was significantly increased in DOP hJBMMSCs compared to control hJBMMSCs according to RNA-sequencing result. Further, DOP hJBMMSCs were found to display significant senescence using β-galactosidase staining, mitochondrial membrane potential and ROS assay, qRT-PCR and WB analysis. Overexpression of P53 in hJBMMSCs, knockdown of P53 in DOP hJBMMSCs, and knockdown followed by overexpression of P53 significantly affected the osteogenic differentiation ability of hJBMMSCs. These results suggest that MSC senescence is an important reason for decreasing osteogenic capacity in DOP patients. P53 is a key target in regulating hJBMMSCs aging, and knocking down P53 can effectively restore the osteogenic differentiation ability of DOP hJBMMSCs and promote osteosynthesis in DOP dental implants. It provided a new idea to elucidate the pathogenesis and treatment of diabetic bone metabolic diseases.
Collapse
Affiliation(s)
- Ying Zheng
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Junhao Deng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Gang Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaru Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
| | - Lin Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaocao Ma
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yawen Dai
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lingling E
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiangwei Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Rong Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
- Corresponding author.
| | - Hongchen Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Corresponding author. Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
28
|
Fujii Y, Hatori A, Chikazu D, Ogasawara T. Application of Dental Pulp Stem Cells for Bone and Neural Tissue Regeneration in Oral and Maxillofacial Region. Stem Cells Int 2023; 2023:2026572. [PMID: 37035445 PMCID: PMC10076122 DOI: 10.1155/2023/2026572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 10/21/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023] Open
Abstract
In the oral and maxillofacial region, the treatment of severe bone defects, caused by fractures, cancers, congenital abnormalities, etc., remains a great challenge. In addition, neurological disorders are frequently accompanied by these bone defects or the treatments for them. Therefore, novel bone regenerative techniques and methods to repair nerve injury are eagerly sought. Among them, strategies using dental pulp stem cells (DPSCs) are promising options. Human DPSCs can be collected easily from extracted teeth and are now considered a type of mesenchymal stem cell with higher clonogenic and proliferative potential. DPSCs have been getting attention as a cell source for bone and nerve regeneration. In this article, we reviewed the latest studies on osteogenic or neural differentiation of DPSCs as well as bone or neural regeneration methods using DPSCs and discussed the potential of DPSCs for bone and nerve tissue regeneration.
Collapse
|
29
|
Jeyaraman M, Verma T, Jeyaraman N, Patro BP, Nallakumarasamy A, Khanna M. Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells? World J Methodol 2023; 13:10-17. [PMID: 37035028 PMCID: PMC10080497 DOI: 10.5662/wjm.v13.i2.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation. Bone marrow (BM) is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings. MSCs can stimulate and promote osseous regeneration. Due to the difference in the development of long bones and craniofacial bones, the mandibular-derived MSCs (M-MSCs) have distinct differentiation characteristics as compared to that of long bones. Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73, -105, and -106, stage-specific embryonic antigen 4 and Octamer-4, and negative for hematopoietic markers such as CD-14, -34, and -45. As the M-MSCs are derived from neural crest cells, they have embryogenic cells which promote bone repair and high osteogenic potential. In vitro and in vivo animal-based studies demonstrate a higher rate of proliferation and high osteogenic potential for M-MSCs as compared to long-bones MSCs, but in vivo studies in human subjects are lacking. The BM-MSCs have their advantages and limitations. M-MSCs may be utilized as an alternative source of MSCs which can be utilized for tissue engineering and promoting the regeneration of bone. M-MSCs may have potential advantages in the repair of craniofacial or orofacial defects. Considering the utility of M-MSCs in the field of orthopaedics, we have discussed various unresolved questions, which need to be explored for their better utility in clinical practice.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| | - Tushar Verma
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Rathimed Speciality Hospital, Chennai 600040, Tamil Nadu, India
| | - Bishnu Prasad Patro
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Arulkumar Nallakumarasamy
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Manish Khanna
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| |
Collapse
|
30
|
Tavelli L, Barootchi S, Rasperini G, Giannobile WV. Clinical and patient-reported outcomes of tissue engineering strategies for periodontal and peri-implant reconstruction. Periodontol 2000 2023; 91:217-269. [PMID: 36166659 PMCID: PMC10040478 DOI: 10.1111/prd.12446] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
Scientific advancements in biomaterials, cellular therapies, and growth factors have brought new therapeutic options for periodontal and peri-implant reconstructive procedures. These tissue engineering strategies involve the enrichment of scaffolds with living cells or signaling molecules and aim at mimicking the cascades of wound healing events and the clinical outcomes of conventional autogenous grafts, without the need for donor tissue. Several tissue engineering strategies have been explored over the years for a variety of clinical scenarios, including periodontal regeneration, treatment of gingival recessions/mucogingival conditions, alveolar ridge preservation, bone augmentation procedures, sinus floor elevation, and peri-implant bone regeneration therapies. The goal of this article was to review the tissue engineering strategies that have been performed for periodontal and peri-implant reconstruction and implant site development, and to evaluate their safety, invasiveness, efficacy, and patient-reported outcomes. A detailed systematic search was conducted to identify eligible randomized controlled trials reporting the outcomes of tissue engineering strategies utilized for the aforementioned indications. A total of 128 trials were ultimately included in this review for a detailed qualitative analysis. Commonly performed tissue engineering strategies involved scaffolds enriched with mesenchymal or somatic cells (cell-based tissue engineering strategies), or more often scaffolds loaded with signaling molecules/growth factors (signaling molecule-based tissue engineering strategies). These approaches were found to be safe when utilized for periodontal and peri-implant reconstruction therapies and implant site development. Tissue engineering strategies demonstrated either similar or superior clinical outcomes than conventional approaches for the treatment of infrabony and furcation defects, alveolar ridge preservation, and sinus floor augmentation. Tissue engineering strategies can promote higher root coverage, keratinized tissue width, and gingival thickness gain than scaffolds alone can, and they can often obtain similar mean root coverage compared with autogenous grafts. There is some evidence suggesting that tissue engineering strategies can have a positive effect on patient morbidity, their preference, esthetics, and quality of life when utilized for the treatment of mucogingival deformities. Similarly, tissue engineering strategies can reduce the invasiveness and complications of autogenous graft-based staged bone augmentation. More studies incorporating patient-reported outcomes are needed to understand the cost-benefits of tissue engineering strategies compared with traditional treatments.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
| | - Shayan Barootchi
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- IRCCS Foundation Polyclinic Ca’ Granda, University of Milan, Milan, Italy
| | | |
Collapse
|
31
|
Miyata H, Ishii M, Suehiro F, Komabashiri N, Ikeda N, Sakurai T, Nishimura M. Elucidation of adipogenic differentiation regulatory mechanism in human maxillary/mandibular bone marrow-derived stem cells. Arch Oral Biol 2023; 146:105608. [PMID: 36549198 DOI: 10.1016/j.archoralbio.2022.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aims to investigate the underlying molecular mechanisms that regulate the adipogenic differentiation of maxillary/mandibular bone marrow-derived mesenchymal stem cells (MBMSCs). DESIGN MBMSCs and iliac bone marrow-derived MSCs (IBMSCs) were compared for osteogenic, chondrogenic, and adipogenic differentiation. Cell surface antigen expression was examined using flow cytometry, and stem cell marker expression was assessed using real-time polymerase chain reaction (PCR). Various adipogenic regulatory factors' expression was evaluated using real-time PCR and western blotting. RESULTS No significant differences in cell surface antigen profiles or stem cell marker expression in MBMSCs and IBMSCs were observed. MBMSCs and IBMSCs displayed similar osteogenic and chondrogenic potentials, whereas MBMSCs showed significantly lower adipogenic potentials than those shown by IBMSCs. Expression of CCAAT/enhancer binding protein β (C/EBPβ), C/EBPδ, early B-cell factor 1 (Ebf-1), and Krüppel-like factor 5 (KLF5), which are early adipogenic differentiation factors, was suppressed in MBMSCs compared to that in IBMSCs. Peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which play important roles in the terminal differentiation of adipocytes, was lower in MBMSCs than that in IBMSCs. Furthermore, the level of zinc finger protein 423 (Zfp423), which is involved in the commitment of undifferentiated MSCs to the adipocyte lineage, was significantly lower in MBMSCs than that in IBMSCs. CONCLUSIONS MBMSCs are negatively regulated in the commitment of undifferentiated MSCs to the adipocyte lineage (preadipocytes) as well as in the terminal differentiation of preadipocytes into mature adipocytes. These results may elucidate the site-specific characteristics of MBMSCs.
Collapse
Affiliation(s)
- Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan.
| | - Fumio Suehiro
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Naohiro Komabashiri
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Tomoaki Sakurai
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| |
Collapse
|
32
|
Liu YJ, Miao HB, Lin S, Chen Z. Current Progress in Treating Systemic Lupus Erythematosus Using Exosomes/MicroRNAs. Cell Transplant 2023; 32:9636897221148775. [PMID: 36661068 PMCID: PMC9903023 DOI: 10.1177/09636897221148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease associated with impaired organ functions that can seriously affect the daily life of patients. Recent SLE therapies frequently elicit adverse reactions and side effects in patients, and clinical heterogeneity is considerable. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immunomodulatory properties. Their ability to treat autoimmune diseases largely depends on secreted extracellular vesicles, especially exosomes. The effects of exosomes and microRNAs (miRNAs) on SLE have recently attracted interest. This review summarizes the applications of MSCs derived from bone marrow, adipocyte tissue, umbilical cord, synovial membrane, and gingival tissue, as well as exosomes to treating SLE and the key roles of miRNAs. The efficacy of MSCs infusion in SLE patients with impaired autologous MSCs are reviewed, and the potential of exosomes and their contents as drug delivery vectors for treating SLE and other autoimmune diseases in the future are briefly described.
Collapse
Affiliation(s)
- Yi-jing Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hai-bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Zhen Chen, Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan Road, Quanzhou 362000, Fujian, P.R. China.
| |
Collapse
|
33
|
Yan W, Lin X, Ying Y, Li J, Fan Z. Specific RNA m6A modification sites in bone marrow mesenchymal stem cells from the jawbone marrow of type 2 diabetes patients with dental implant failure. Int J Oral Sci 2023; 15:6. [DOI: 8.doi: 10.1038/s41368-022-00202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025] Open
Abstract
AbstractThe failure rate of dental implantation in patients with well-controlled type 2 diabetes mellitus (T2DM) is higher than that in non-diabetic patients. This due, in part, to the impaired function of bone marrow mesenchymal stem cells (BMSCs) from the jawbone marrow of T2DM patients (DM-BMSCs), limiting implant osseointegration. RNA N6-methyladenine (m6A) is important for BMSC function and diabetes regulation. However, it remains unclear how to best regulate m6A modifications in DM-BMSCs to enhance function. Based on the “m6A site methylation stoichiometry” of m6A single nucleotide arrays, we identified 834 differential m6A-methylated genes in DM-BMSCs compared with normal-BMSCs (N-BMSCs), including 43 and 790 m6A hypermethylated and hypomethylated genes, respectively, and 1 gene containing hyper- and hypomethylated m6A sites. Differential m6A hypermethylated sites were primarily distributed in the coding sequence, while hypomethylated sites were mainly in the 3′-untranslated region. The largest and smallest proportions of m6A-methylated genes were on chromosome 1 and 21, respectively. MazF-PCR and real-time RT-PCR results for the validation of erythrocyte membrane protein band 4.1 like 3, activity-dependent neuroprotector homeobox (ADNP), growth differentiation factor 11 (GDF11), and regulator of G protein signalling 2 agree with m6A single nucleotide array results; ADNP and GDF11 mRNA expression decreased in DM-BMSCs. Furthermore, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested that most of these genes were enriched in metabolic processes. This study reveals the differential m6A sites of DM-BMSCs compared with N-BMSCs and identifies candidate target genes to enhance BMSC function and improve implantation success in T2DM patients.
Collapse
|
34
|
Yan W, Lin X, Ying Y, Li J, Fan Z. Specific RNA m6A modification sites in bone marrow mesenchymal stem cells from the jawbone marrow of type 2 diabetes patients with dental implant failure. Int J Oral Sci 2023; 15:6. [PMID: 36631441 PMCID: PMC9834262 DOI: 10.1038/s41368-022-00202-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The failure rate of dental implantation in patients with well-controlled type 2 diabetes mellitus (T2DM) is higher than that in non-diabetic patients. This due, in part, to the impaired function of bone marrow mesenchymal stem cells (BMSCs) from the jawbone marrow of T2DM patients (DM-BMSCs), limiting implant osseointegration. RNA N6-methyladenine (m6A) is important for BMSC function and diabetes regulation. However, it remains unclear how to best regulate m6A modifications in DM-BMSCs to enhance function. Based on the "m6A site methylation stoichiometry" of m6A single nucleotide arrays, we identified 834 differential m6A-methylated genes in DM-BMSCs compared with normal-BMSCs (N-BMSCs), including 43 and 790 m6A hypermethylated and hypomethylated genes, respectively, and 1 gene containing hyper- and hypomethylated m6A sites. Differential m6A hypermethylated sites were primarily distributed in the coding sequence, while hypomethylated sites were mainly in the 3'-untranslated region. The largest and smallest proportions of m6A-methylated genes were on chromosome 1 and 21, respectively. MazF-PCR and real-time RT-PCR results for the validation of erythrocyte membrane protein band 4.1 like 3, activity-dependent neuroprotector homeobox (ADNP), growth differentiation factor 11 (GDF11), and regulator of G protein signalling 2 agree with m6A single nucleotide array results; ADNP and GDF11 mRNA expression decreased in DM-BMSCs. Furthermore, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested that most of these genes were enriched in metabolic processes. This study reveals the differential m6A sites of DM-BMSCs compared with N-BMSCs and identifies candidate target genes to enhance BMSC function and improve implantation success in T2DM patients.
Collapse
Affiliation(s)
- Wanhao Yan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiqian Ying
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
35
|
Charbe NB, Tambuwala M, Palakurthi SS, Warokar A, Hromić‐Jahjefendić A, Bakshi H, Zacconi F, Mishra V, Khadse S, Aljabali AA, El‐Tanani M, Serrano‐Aroca Ã, Palakurthi S. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med 2023; 8:e10333. [PMID: 36684092 PMCID: PMC9842068 DOI: 10.1002/btm2.10333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | | - Amol Warokar
- Department of PharmacyDadasaheb Balpande College of PharmacyNagpurIndia
| | - Altijana Hromić‐Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
| | - Saurabh Khadse
- Department of Pharmaceutical ChemistryR.C. Patel Institute of Pharmaceutical Education and ResearchDhuleIndia
| | - Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical SciencesYarmouk UniversityIrbidJordan
| | - Mohamed El‐Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ãngel Serrano‐Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto MagnoCatholic University of Valencia San Vicente MártirValenciaSpain
| | - Srinath Palakurthi
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| |
Collapse
|
36
|
Cicek M, Unsal V, Emre A, Doganer A. Investigation of the Effects of Apigenin, a Possible Therapeutic Agent, on Cytotoxic and SWH Pathway in Colorectal Cancer (HT29) Cells. Adv Pharm Bull 2023; 13:188-195. [PMID: 36721804 PMCID: PMC9871274 DOI: 10.34172/apb.2023.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: Colorectal cancer (CRC) is one of the most common and fatal malignancies in humans, still leading to serious morbidity and mortality. We here aimed to investigate the effects of flavonoid apigenin, which is considered to have anti-tumoral activity on CRC with high epidemiological prevalence, on cell proliferation and cell survivals, and the positive and negative dose-dependent effects of genetic or mutational alterations in SWH pathway components on HT29 CRC cell lines. Methods: Human colon cancer cell lines HT-29 were commercially available. In each flask, 5 groups were formed, each of which consists of 5,000 cells for different dose groups and the cells were plated. After a 24 and 48 h incubation period, cytotoxicity values were measured by MTT assay and gene expression was assessed by real-time polymerase chain reaction (PCR) analysis method. Results: Application of 12.5 and 25 nM of apigenin significantly increased cell death in HT29 cell lines. LATS1, STK3 and TP53 gene expression decreased in the same dose groups compared to control and other groups. Conclusion: It has been concluded that TP53 gene is strongly correlated with LATS1 and STK3 genes among the SWH pathway factors in the progression of CRC and could be used as an important marker for early detection of malignant transmission. In addition, it may be effective in CRC cases especially when 25 nM of apigenin applies for therapeutic purpose.
Collapse
Affiliation(s)
- Mustafa Cicek
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaraş, Turkey
| | - Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, 47200, Mardin, Turkey.,Corresponding Author: Velid Unsal, Tel: (0482) 2134002,
| | - Arif Emre
- Department of Surgery, Kahramanmaras Sutcu Imam University Faculty of Medicine, 46100, Kahramanmaras, Turkey
| | - Adem Doganer
- Department of Biostatistics and Medical Informatics, Kahramanmaras Sutcu Imam University Faculty of Medicine, 46100, Kahramanmaras, Turkey
| |
Collapse
|
37
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
38
|
Lyu P, Song Y, Bi R, Li Z, Wei Y, Huang Q, Cui C, Song D, Zhou X, Fan Y. Protective Actions in Apical Periodontitis: The Regenerative Bioactivities Led by Mesenchymal Stem Cells. Biomolecules 2022; 12:1737. [PMID: 36551165 PMCID: PMC9776067 DOI: 10.3390/biom12121737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resulting from bacterial infection, apical periodontitis (AP) is a common inflammatory disease of the periapical region of the tooth. The regeneration of the destroyed periapical alveolar bone and the surrounding periodontium tissues has long been a difficult task in clinical practice. These lesions are closely related to pathogen invasion and an overreactive immune response. It is worth noting that the protective healing process occurs simultaneously, in which mesenchymal stem cells (MSCs) have a crucial function in mediating the immune system and promoting regeneration. Here, we review the recent studies related to AP, with a focus on the regulatory network of MSCs. We also discuss the potential therapeutic approaches of MSCs in inflammatory diseases to provide a basis for promoting tissue regeneration and modulating inflammation in AP. A deeper understanding of the protective action of MSCs and the regulatory networks will help to delineate the underlying mechanisms of AP and pave the way for stem-cell-based regenerative medicine in the future.
Collapse
Affiliation(s)
- Ping Lyu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiming Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zucen Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yali Wei
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Huang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Dongzhe Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Liu J, Watanabe K, Dabdoub SM, Lee BS, Kim DG. Site-specific characteristics of bone and progenitor cells in control and ovariectomized rats. Bone 2022; 163:116501. [PMID: 35872108 DOI: 10.1016/j.bone.2022.116501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
One-third of postmenopausal women experience at least one osteoporotic bone fracture in their lifetime that occurs spontaneously or from low-impact events. However, osteoporosis-associated jaw bone fractures are extremely rare. It was also observed that jaw bone marrow stem cells (BMSCs) have a higher capacity to form mineralized tissues than limb BMSCs. At present, the underlying causes and mechanisms of variations between jaw bone and limb bone during postmenopause are largely unknown. Thus, the objective of the current study was to examine the site-specific effects of estrogen deficiency using comprehensive analysis of bone quantity and quality, and its association with characterization of cellular components of bone. Nine rats (female, 6 months old) for each bilateral sham and ovariectomy (OVX) surgery were obtained and maintained for 2 months after surgery. A hemi-mandible and a femur from each rat were characterized for parameters of volume, mineral density, cortical and trabecular morphology, and static and dynamic mechanical analysis. Another set of 5 rats (female, 9 months old) was obtained for assays of BMSCs. Following cytometry to identify BMSCs, bioassays for proliferation, and osteogenic, adipogenic, chondrogenic differentiation, and cell mitochondrial stress tests were performed. In addition, mRNA expression of BMSCs was analyzed. OVX decreased bone quantity and quality (mineral content, morphology, and energy dissipation) of femur while those of mandible were not influenced. Cellular assays demonstrated that mandible BMSCs showed greater differentiation than femur BMSCs. Gene ontology pathway analysis indicated that the mandibular BMSCs showed most significant differential expression of genes in the regulatory pathways of osteoblast differentiation, SMAD signaling, cartilage development, and glucose transmembrane transporter activity. These findings suggested that active mandibular BMSCs maintain bone formation and mineralization by balancing the rapid bone resorption caused by estrogen deficiency. These characteristics likely help reduce the risk of osteoporotic fracture in postmenopausal jawbone.
Collapse
Affiliation(s)
- Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Shareef M Dabdoub
- Division of Biostatistics and Computational Biology, Department of Periodontics, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, IA 52242, USA.
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Kuroshima S, Al‐Omari FA, Sasaki M, Sawase T. Medication‐related osteonecrosis of the jaw: A literature review and update. Genesis 2022; 60:e23500. [DOI: 10.1002/dvg.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Farah A. Al‐Omari
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| |
Collapse
|
41
|
Dadgar N, Altemus J, Li Y, Lightner AL. Effect of Crohn's disease mesenteric mesenchymal stem cells and their extracellular vesicles on T-cell immunosuppressive capacity. J Cell Mol Med 2022; 26:4924-4939. [PMID: 36047483 PMCID: PMC9549497 DOI: 10.1111/jcmm.17483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal intestinal tract and has characteristic hypertrophic adipose changes observed in the mesentery. To better understand the role of the mesentery in the pathophysiology of Crohn's disease (CD), we evaluated the immunomodulatory potential of mesenchymal stem cells (MSCs) and their secreted extracellular vesicles (EVs) derived from Crohn's patients. MSCs and EVs were isolated from the mesentery and subcutaneous tissues of CD patients and healthy individuals subcutaneous tissues, and were analysed for differentiation, cytokine expression, self‐renewal and proliferation. The varying capacity of these tissue‐derived MSCs and EVs to attenuate T‐cell activation was measured in in vitro and an in vivo murine model. RNA sequencing of inflamed Crohn's disease mesentery tissue revealed an enrichment of T‐cell activation compared to non‐inflamed subcutaneous tissue. MSCs and MSC‐derived EVs isolated from Crohn's mesentery lose their ability to attenuate DSS‐induced colitis compared to subcutaneous tissue‐derived cell or EV therapy. We found that treatment with subcutaneous isolated MSCs and their EV product compared to Crohn's mesentery MSCs or EVs, the inhibition of T‐cell proliferation and IFN‐γ, IL‐17a production increased, suggesting a non‐inflamed microenvironment allows for T‐cell inhibition by MSCs/EVs. Our results demonstrate that Crohn's patient‐derived diseased mesentery tissue MSCs lose their immunosuppressive capacity in the treatment of colitis by distinct regulation of pathogenic T‐cell responses and/or T‐cell infiltration into the colon.
Collapse
Affiliation(s)
- Neda Dadgar
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Jessica Altemus
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Yan Li
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA
| | - Amy L Lightner
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
42
|
Fretwurst T, Tritschler I, Rothweiler R, Nahles S, Altmann B, Schilling O, Nelson K. Proteomic profiling of human bone from different anatomical sites - A pilot study. Proteomics Clin Appl 2022; 16:e2100049. [PMID: 35462455 DOI: 10.1002/prca.202100049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE The study aim is a comparative proteome-based analysis of different autologous bone entities (alveolar bone [AB], iliac cortical [IC] bone, and iliac spongiosa [IS]) used for alveolar onlay grafting. EXPERIMENTAL DESIGN Site-matched bone samples of AB, IC, and IS were harvested during alveolar onlay grafting. Proteins were extracted using a detergent-based (sodium dodecyl sulfate) strategy and trypsinized. Proteome analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used for peptide-to-spectrum matching, peak detection, and quantitation. Linear models for microarray analysis (LIMMA) were used to detect differentially abundant peptides and proteins. RESULTS A total of 1730 different proteins were identified across the 15 samples at a false discovery rate of 1%. Partial least-squares discriminant analysis approved segregation of AB, IC, and IS protein profiles. LIMMA statistics highlighted 66 proteins that were more abundant in AB then in IC (vs. 92 proteins were enriched in IC over AB). Gene Ontology enrichment analysis revealed a matrisomal versus an immune-related proteome fingerprint in AB versus IC. CONCLUSION AND CLINICAL RELEVANCE This pilot study demonstrates an ECM protein-related proteome fingerprint in AB and an immune-related proteome fingerprint in IS and IC.
Collapse
Affiliation(s)
- Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - René Rothweiler
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,G.E.R.N Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Pourhadi M, Zali H, Ghasemi R, Vafaei-Nezhad S. Promising Role of Oral Cavity Mesenchymal Stem Cell-Derived Extracellular Vesicles in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:6125-6140. [PMID: 35867205 DOI: 10.1007/s12035-022-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been regarded as the beneficial and available tools to treat various hereditary, multifactorial, acute, and chronic diseases. Mesenchymal stem cells can be extracted from numerous sources for clinical purposes while oral cavity-derived mesenchymal stem cells seem to be more effective in neuroregeneration than other sources due to their similar embryonic origins to neuronal tissues. In various studies and different neurodegenerative diseases (NDs), oral cavity mesenchymal stem cells have been applied to prove their promising capacities in disease improvement. Moreover, oral cavity mesenchymal stem cells' secretion is regarded as a novel and practical approach to neuroregeneration; hence, extracellular vesicles (EVs), especially exosomes, may provide promising results to improve CNS defects. This review article focuses on how oral cavity-derived stem cells and their extracellular vesicles can improve neurodegenerative conditions and tries to show which molecules are involved in the recovery process.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Vafaei-Nezhad
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
44
|
Dekker H, Schulten EA, Lichters I, van Ruijven L, van Essen HW, Blom GJ, Bloemena E, ten Bruggenkate CM, Kullaa AM, Bravenboer N. Osteocyte Apoptosis, Bone Marrow Adiposity, and Fibrosis in the Irradiated Human Mandible. Adv Radiat Oncol 2022; 7:100951. [PMID: 35662809 PMCID: PMC9156996 DOI: 10.1016/j.adro.2022.100951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess the effect of radiation therapy on osteocyte apoptosis, osteocyte death, and bone marrow adipocytes in the human mandible and its contribution to the pathophysiology of radiation damage to the mandibular bone. Methods and Materials Mandibular cancellous bone biopsies were taken from irradiated patients and nonirradiated controls. Immunohistochemical detection of cleaved caspase-3 was performed to visualize apoptotic osteocytes. The number of apoptotic osteocytes per bone area and per total amount of osteocytes, osteocytes per bone area, and empty lacunae per bone area were counted manually. The percentage fibrotic tissue and adipose tissue per bone marrow area, the percentage bone marrow of total area, and the mean adipocyte diameter (μm) was determined digitally from adjacent Goldner stained sections. Results Biopsies of 15 irradiated patients (12 men and 3 women) and 7 nonirradiated controls (5 men and 2 women) were assessed. In the study group a significant increase was seen in the number of empty lacunae, the percentage of adipose tissue of bone marrow area, and the adipocyte diameter. There was no significant difference in bone marrow fibrosis nor apoptotic osteocytes between the irradiated group and the controls. Conclusions Irradiation alone does not seem to induce excessive bone marrow fibrosis. The damage to bone mesenchymal stem cells leads to increased marrow adipogenesis and decreased osteoblastogenic potential. Early osteocyte death resulting in avital persisting bone matrix with severely impaired regenerative potential may contribute to the vulnerability of irradiated bone to infection and necrosis.
Collapse
Affiliation(s)
- Hannah Dekker
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Engelbert A.J.M. Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Inez Lichters
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leo van Ruijven
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Huib W. van Essen
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerrit-Jan Blom
- Department of Radiotherapy, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris M. ten Bruggenkate
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Alrijne Hospital, Leiderdorp, The Netherlands
| | - Arja M. Kullaa
- Institute of Dentistry, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
- Educational Dental Clinic, Kuopio University Hospital, Kuopio, Finland
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Nassif A, Lignon G, Asselin A, Zadikian C, Petit S, Sun H, Klein C, Ferré F, Morasso M, Berdal A, Fournier B, Isaac J. Transcriptional Regulation of Jaw Osteoblasts: Development to Pathology. J Dent Res 2022; 101:859-869. [PMID: 35148649 PMCID: PMC9343864 DOI: 10.1177/00220345221074356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Craniofacial and jaw bones have unique physiological specificities when compared to axial and appendicular bones. However, the molecular profile of the jaw osteoblast (OB) remains incomplete. The present study aimed to decipher the bone site-specific profiles of transcription factors (TFs) expressed in OBs in vivo. Using RNA sequencing analysis, we mapped the transcriptome of confirmed OBs from 2 different skeletal sites: mandible (Md) and tibia (Tb). The OB transcriptome contains 709 TF genes: 608 are similarly expressed in Md-OB and Tb-OB, referred to as "OB-core"; 54 TF genes are upregulated in Md-OB, referred to as "Md-set"; and 18 TF genes are upregulated in Tb-OB, referred to as "Tb-set." Notably, the expression of 29 additional TF genes depends on their RNA transcript variants. TF genes with no previously known role in OBs and bone were identified. Bioinformatics analysis combined with review of genetic disease databases and a comprehensive literature search showed a significant contribution of anatomical origin to the OB signatures. Md-set and Tb-set are enriched with site-specific TF genes associated with development and morphogenesis (neural crest vs. mesoderm), and this developmental imprint persists during growth and homeostasis. Jaw and tibia site-specific OB signatures are associated with craniofacial and appendicular skeletal disorders as well as neurocristopathies, dental disorders, and digit malformations. The present study demonstrates the feasibility of a new method to isolate pure OB populations and map their gene expression signature in the context of OB physiological environment, avoiding in vitro culture and its associated biases. Our results provide insights into the site-specific developmental pathways governing OBs and identify new major OB regulators of bone physiology. We also established the importance of the OB transcriptome as a prognostic tool for human rare bone diseases to explore the hidden pathophysiology of craniofacial malformations, among the most prevalent congenital defects in humans.
Collapse
Affiliation(s)
- A. Nassif
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
- AP-HP, Reference Center for
Dental Rare Diseases, Rothschild Hospital (ORARES), Paris, France
- AP-HP, Pitié Salpêtrière, Service
d’Orthopédie Dento-faciale, Paris, France
| | - G. Lignon
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| | - A. Asselin
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| | - C.C. Zadikian
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| | - S. Petit
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| | - H.W. Sun
- Biodata Mining and Discovery
Section, Office of Science and Technology, Intramural Research Program,
National Institute of Arthritis and Musculoskeletal and Skin Diseases,
National Institutes of Health, Bethesda, MD, USA
| | - C. Klein
- Centre de Recherche des
Cordeliers, Sorbonne Université, Inserm, Université de Paris, Histology,
Cell Imaging and Flow Cytometry Platform (CHIC), Paris, France
| | - F.C. Ferré
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
- AP-HP, Charles Foix-Pitié
Salpêtrière Hospital, Dental Department, Ivry, France
| | - M.I. Morasso
- Laboratory of Skin Biology,
National Institute of Arthritis and Musculoskeletal and Skin Diseases,
National Institutes of Health, Bethesda, MD, USA
| | - A. Berdal
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
- AP-HP, Reference Center for
Dental Rare Diseases, Rothschild Hospital (ORARES), Paris, France
| | - B.P.J. Fournier
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
- AP-HP, Reference Center for
Dental Rare Diseases, Rothschild Hospital (ORARES), Paris, France
| | - J. Isaac
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| |
Collapse
|
46
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Rothweiler R, Gross C, Bortel E, Früh S, Gerber J, Boller E, Wüster J, Stricker A, Fretwurst T, Iglhaut G, Nahles S, Schmelzeisen R, Hesse B, Nelson K. Comparison of the 3D-Microstructure Between Alveolar and Iliac Bone for Enhanced Bioinspired Bone Graft Substitutes. Front Bioeng Biotechnol 2022; 10:862395. [PMID: 35782504 PMCID: PMC9248932 DOI: 10.3389/fbioe.2022.862395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In oral- and maxillofacial bone augmentation surgery, non-vascularized grafts from the iliac crest demonstrate better clinical performance than alveolar bone grafts. The underlying mechanisms are not fully understood but are essential for the enhancement of bone regeneration scaffolds. Synchrotron Radiation µ-CT at a pixel size of 2.3 μm was used to characterize the gross morphology and the vascular and osteocyte lacuna porosity of patient-matched iliac crest/alveolar bone samples. The results suggest a difference in the spatial distribution of the vascular pore system. Fluid simulations reveal the permeability tensor to be more homogeneous in the iliac crest, indicating a more unidirectional fluid flow in alveolar bone. The average distance between bone mineral and the closest vessel pore boundary was found to be higher in alveolar bone. At the same time, osteocyte lacunae density is higher in alveolar bone, potentially compensating for the longer average distance between the bone mineral and vessel pores. The present study comprehensively quantified and compared the 3D microarchitecture of intraindividual human alveolar and iliac bone. The identified difference in pore network architecture may allow a bone graft from the iliac crest to exhibit higher regeneration potential due to an increased capacity to connect with the surrounding pore network of the residual bone. The results may contribute to understanding the difference in clinical performance when used as bone grafts and are essential for optimization of future scaffold materials.
Collapse
Affiliation(s)
- Rene Rothweiler
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christian Gross
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | | | - Elodie Boller
- European Synchrotron Radiation Facility, Grenoble, France
| | - Jonas Wüster
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andres Stricker
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gerhard Iglhaut
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rainer Schmelzeisen
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernhard Hesse
- Xploraytion GmbH, Berlin, Germany
- European Synchrotron Radiation Facility, Grenoble, France
- *Correspondence: Bernhard Hesse, ; Katja Nelson,
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- *Correspondence: Bernhard Hesse, ; Katja Nelson,
| |
Collapse
|
48
|
Zhang T, Jiang W, Liao F, Zhu P, Guo L, Zhao Z, Liu Y, Huang X, Zhou N. Identification of the key exosomal lncRNAs/mRNAs in the serum during distraction osteogenesis. J Orthop Surg Res 2022; 17:291. [PMID: 35643547 PMCID: PMC9148531 DOI: 10.1186/s13018-022-03163-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Distraction osteogenesis (DO), a kind of bone regenerative process, is not only extremely effective, but the osteogenesis rate is far beyond ordinary bone fracture (BF) healing. Exosomes (Exo) are thought to play a part in bone regeneration and healing as key players in cell-to-cell contact. The object of this work was to determine whether exosomes derived from DO and BF serum could stimulate the Osteogenic Differentiation in these two processes, and if so, which genes could be involved. Methods The osteogenesis in DO-gap or BF-gap was evaluated using radiographic analysis and histological analysis. On the 14th postoperative day, DO-Exos and BF-Exos were isolated and cocultured with the jaw of bone marrow mesenchymal stem cells (JBMMSCs). Proliferation, migration and osteogenic differentiation of JBMMSCs were ascertained, after which exosomes RNA-seq was performed to identify the relevant gene. Results Radiographic and histological analyses manifested that osteogenesis was remarkably accelerated in DO-gap in comparison with BF-gap. Both of the two types of Exos were taken up by JBMMSCs, and their migration and osteogenic differentiation were also seen to improve. However, the proliferation showed no significant difference. Finally, exosome RNA-seq revealed that the lncRNA MSTRG.532277.1 and the mRNA F-box and leucine-rich repeat protein 14(FBXL14) may play a key role in DO. Conclusions Our findings suggest that exosomes from serum exert a critical effect on the rapid osteogenesis in DO. This promoting effect might have relevance with the co-expression of MSTRG.532277.1 and FBXL14. On the whole, these findings provide new insights into bone regeneration, thereby outlining possible therapeutic targets for clinical intervention.
Collapse
|
49
|
Micro-computed tomography assessment of bone structure in aging mice. Sci Rep 2022; 12:8117. [PMID: 35581227 PMCID: PMC9114112 DOI: 10.1038/s41598-022-11965-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
High-resolution computed tomography (CT) is widely used to assess bone structure under physiological and pathological conditions. Although the analytic protocols and parameters for micro-CT (μCT) analyses in mice are standardized for long bones, vertebrae, and the palms in aging mice, they have not yet been established for craniofacial bones. In this study, we conducted a morphometric assessment of craniofacial bones, in comparison with long bones, in aging mice. Although age-related changes were observed in the microarchitecture of the femur, tibia, vertebra, and basisphenoid bone, and were more pronounced in females than in males, the microarchitecture of both the interparietal bone and body of the mandible, which develop by intramembranous ossification, was less affected by age and sex. By contrast, the condyle of the mandible was more affected by aging in males compared to females. Taken together, our results indicate that mouse craniofacial bones are uniquely affected by age and sex.
Collapse
|
50
|
Fan Y, Cui C, Rosen CJ, Sato T, Xu R, Li P, Wei X, Bi R, Yuan Q, Zhou C. Klotho in Osx +-mesenchymal progenitors exerts pro-osteogenic and anti-inflammatory effects during mandibular alveolar bone formation and repair. Signal Transduct Target Ther 2022; 7:155. [PMID: 35538062 PMCID: PMC9090922 DOI: 10.1038/s41392-022-00957-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023] Open
Abstract
Maxillofacial bone defects are commonly seen in clinical practice. A clearer understanding of the regulatory network directing maxillofacial bone formation will promote the development of novel therapeutic approaches for bone regeneration. The fibroblast growth factor (FGF) signalling pathway is critical for the development of maxillofacial bone. Klotho, a type I transmembrane protein, is an important components of FGF receptor complexes. Recent studies have reported the presence of Klotho expression in bone. However, the role of Klotho in cranioskeletal development and repair remains unknown. Here, we use a genetic strategy to report that deletion of Klotho in Osx-positive mesenchymal progenitors leads to a significant reduction in osteogenesis under physiological and pathological conditions. Klotho-deficient mensenchymal progenitors also suppress osteoclastogenesis in vitro and in vivo. Under conditions of inflammation and trauma-induced bone loss, we find that Klotho exerts an inhibitory function on inflammation-induced TNFR signaling by attenuating Rankl expression. More importantly, we show for the first time that Klotho is present in human alveolar bone, with a distinct expression pattern under both normal and pathological conditions. In summary, our results identify the mechanism whereby Klotho expressed in Osx+-mensenchymal progenitors controls osteoblast differentiation and osteoclastogenesis during mandibular alveolar bone formation and repair. Klotho-mediated signaling is an important component of alveolar bone remodeling and regeneration. It may also be a target for future therapeutics.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Chen Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, Guangdong, China
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA
| | - Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, Guangdong, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|