1
|
Ngeow WC, Tan CC, Goh YC, Deliberador TM, Cheah CW. A Narrative Review on Means to Promote Oxygenation and Angiogenesis in Oral Wound Healing. Bioengineering (Basel) 2022; 9:636. [PMID: 36354548 PMCID: PMC9688034 DOI: 10.3390/bioengineering9110636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 08/22/2023] Open
Abstract
Oral mucosa serves as the primary barrier against pathogen invasions, mechanical stresses, and physical trauma. Although it is generally composed of keratinocytes and held in place by desmosomes, it shows variation in tissue elasticity and surface keratinization at different sites of the oral cavity. Wound healing undergoes four stages of tissue change sequences, namely haemostasis, inflammation, proliferation, and remodelling. The wound healing of oral hard tissue and soft tissue is largely dependent on the inflammatory response and vascular response, which are the targets of many research. Because of a less-robust inflammatory response, favourable saliva properties, a unique oral environment, and the presence of mesenchymal stem cells, oral wounds are reported to demonstrate rapid healing, less scar formation, and fewer inflammatory reactions. However, delayed oral wound healing is a major concern in certain populations with autoimmune disorders or underlying medical issues, or those subjected to surgically inflicted injuries. Various means of approach have been adopted to improve wound tissue proliferation without causing excessive scarring. This narrative review reappraises the current literature on the use of light, sound, mechanical, biological, and chemical means to enhance oxygen delivery to wounds. The current literature includes the use of hyperbaric oxygen and topical oxygen therapy, ultrasounds, lasers, platelet-rich plasma (PRP)/platelet-rich fibrin (PRF), and various chemical agents such as hyaluronic acid, astaxanthin, and Centella asiatica to promote angiogenesis in oral wound healing during the proliferation process. The arrival of a proprietary oral gel that is reported to improve oxygenation is highlighted.
Collapse
Affiliation(s)
- Wei Cheong Ngeow
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chuey Chuan Tan
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yet Ching Goh
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Chia Wei Cheah
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Gupta D, Savva J, Li X, Chandler JH, Shelton RM, Scheven BA, Mulvana H, Valdastri P, Lucas M, Walmsley AD. Traditional Multiwell Plates and Petri Dishes Limit the Evaluation of the Effects of Ultrasound on Cells In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1745-1761. [PMID: 35760602 DOI: 10.1016/j.ultrasmedbio.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound accelerates healing in fractured bone; however, the mechanisms responsible are poorly understood. Experimental setups and ultrasound exposures vary or are not adequately characterized across studies, resulting in inter-study variation and difficulty in concluding biological effects. This study investigated experimental variability introduced through the cell culture platform used. Continuous wave ultrasound (45 kHz; 10, 25 or 75 mW/cm2, 5 min/d) was applied, using a Duoson device, to Saos-2 cells seeded in multiwell plates or Petri dishes. Pressure field and vibration quantification and finite-element modelling suggested formation of complex interference patterns, resulting in localized displacement and velocity gradients, more pronounced in multiwell plates. Cell experiments revealed lower metabolic activities in both culture platforms at higher ultrasound intensities and absence of mineralization in certain regions of multiwell plates but not in Petri dishes. Thus, the same transducer produced variable results in different cell culture platforms. Analysis on Petri dishes further revealed that higher intensities reduced vinculin expression and distorted cell morphology, while causing mitochondrial and endoplasmic reticulum damage and accumulation of cells in sub-G1 phase, leading to cell death. More defined experimental setups and reproducible ultrasound exposure systems are required to study the real effect of ultrasound on cells for development of effective ultrasound-based therapies not just limited to bone repair and regeneration.
Collapse
Affiliation(s)
- Dhanak Gupta
- School of Dentistry, University of Birmingham, Birmingham, UK.
| | - Jill Savva
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Xuan Li
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - James H Chandler
- Science and Technology of Robotics in Medicine (STORM) Laboratory UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | | | - Ben A Scheven
- School of Dentistry, University of Birmingham, Birmingham, UK
| | - Helen Mulvana
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Pietro Valdastri
- Science and Technology of Robotics in Medicine (STORM) Laboratory UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Margaret Lucas
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
3
|
Marya A, Venugopal A. The Use of Technology in the Management of Orthodontic Treatment-Related Pain. Pain Res Manag 2021; 2021:5512031. [PMID: 33763158 PMCID: PMC7964123 DOI: 10.1155/2021/5512031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
Orthodontic pain is one of the negatives associated with fixed orthodontic treatment that cannot be avoided. This pain usually comes around the wire placement period and gradually decreases once the endogenous analgesic mechanisms start functioning. Over the years, several treatment modalities have been utilized for relief from orthodontic pain, and these include mechanical, behavior modification, and pharmacological methods. However, in the last decade, there are several newer methods employing the use of technology that have come up and are being used for alleviating pain. From computerized indirect bonding to virtual treatment planning, technology has slowly become a vital part of an orthodontist's repertoire. The digital age is here, and orthodontics must embrace the use of technology to help improve the quality of life of patients.
Collapse
Affiliation(s)
- Anand Marya
- Department of Orthodontics, University of Puthisastra, Phnom Penh, Cambodia
| | - Adith Venugopal
- Department of Orthodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
4
|
Perrucini PDDO, Oliveira RFD, Medeiros FBPD, Bertin LD, Pires-Oliveira DADA, Frederico RCP. Ultrasonic therapy modulates the expression of genes related to neovascularization and inflammation in fibroblasts. FISIOTERAPIA EM MOVIMENTO 2021. [DOI: 10.1590/fm.2021.34112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: In the rehabilitation of musculoskeletal injuries, ultrasound is widely used in clinical practice. Objective: To evaluate the effects of pulsed ultrasonic therapy on the viability and modulation of genes involved in inflammation (IL-6) and neovascularization (VEGF) processes of L929 fibroblast cells. Methods: For irradiation with ultrasound the cells were subdivided into groups: G1 (without irradiation), G2 (0.3 W/cm2-20%) and G3 (0.6 W/cm2-20%), with periods of treatment at 24, 48 and 72 hours. The cell viability assay was analyzed by the MTT method and gene modulation was analyzed by RT-qPCR method. Results: After the comparative analysis between groups, only G2 and G3 (48-hour) presented statistically significant differences in relation to the control. In relation to the gene expression, the selection of the groups analyzed was delimited according to the comparative analysis of the values obtained by the MTT test. After the achievement of RT-qPCR, it could be observed that in G2 the amount of VEGF gene transcripts increased by 1.125-fold compared to endogenous controls, and increased 1.388-fold in G3. The IL-6 gene, on the other hand, had its transcripts reduced in both G2 (5.64x10-9) and G3 (1.91x10-6). Conclusion: Pulsed ultrasound in L929 fibroblasts showed a significant biostimulatory effect in the 48-hour period, with increased cell viability, and the same effect in the modulation of gene expression related the neovascularization and inflammation, mediating the acceleration of the tissue repair cascade.
Collapse
|
5
|
Jiang X, Ng WT, Chen J. A Miniaturized Low-Intensity Ultrasound Device for Wearable Medical Therapeutic Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1372-1382. [PMID: 31613782 DOI: 10.1109/tbcas.2019.2947395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low-intensity ultrasound has drawn increasing attention recently as a non-invasive modality for medical therapeutic applications. Current commercially available low-intensity ultrasound devices are bulky and expensive. In this paper, a battery-powered miniaturized device is proposed to generate low-intensity therapeutic ultrasound. The proposed device consists of a custom Application-Specific Integrated Circuit (ASIC), an off-chip digital control block, and a piezoelectric transducer. The ASIC, which integrates a DC-DC boost converter and a transducer driver, is implemented in TSMC's 0.18 μm BCD Gen2 process. Measurement results show that a maximum output voltage of 14 V is achieved by the proposed fully-integrated DC-DC boost converter with a battery supply voltage of 3.7 V. The peak power conversion efficiency is 29% and the output power at the peak power conversion efficiency is 105 mW. The on-chip transducer driver employs a half-bridge circuit with two n-type devices at the output stage. A high-voltage level shifter with low power consumption and short propagation delay is proposed in this paper for the high-performance operation of the half-bridge transducer driver. The piezoelectric transducer is a customized transducer with a resonance frequency of 1.5 MHz. At this frequency, the proposed low-intensity ultrasound device is able to generate continuous-wave ultrasound with a therapeutic power intensity of 32 [Formula: see text]. The proposed low-intensity ultrasound device is low-cost, compact, and light-weight, which enables affordable, and wearable applications.
Collapse
|
6
|
Zayny A, Almokhtar M, Wikvall K, Ljunggren Ö, Ubhayasekera K, Bergquist J, Kibar P, Norlin M. Effects of glucocorticoids on vitamin D 3-metabolizing 24-hydroxylase (CYP24A1) in Saos-2 cells and primary human osteoblasts. Mol Cell Endocrinol 2019; 496:110525. [PMID: 31352041 DOI: 10.1016/j.mce.2019.110525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022]
Abstract
Vitamin D is essential for bone function and deficiency in active vitamin D hormone can lead to bone disorders. Long-term treatment with glucocorticoids results in osteoporosis and increased risk of fractures. Much remains unclear regarding the effects of these compounds in bone cells. In the current study, human osteosarcoma Saos-2 cells and primary human osteoblasts were found to express mRNA for the vitamin D receptor as well as activating and deactivating enzymes in vitamin D3 metabolism. These bone cells exhibited CYP24A1-mediated 24-hydroxylation which is essential for deactivation of the active vitamin form. However, bioactivating vitamin D3 hydroxylase activities could not be detected in either of these cells. Several glucocorticoids, including prednisolone, down regulated CYP24A1 mRNA and CYP24A1-mediated 24-hydroxylase activity in both Saos-2 and primary human osteoblasts. Also, prednisolone significantly suppressed a human CYP24A1 promoter-luciferase reporter gene in Saos-2 cells co-transfected with the glucocorticoid receptor. Thus, the results of the present study show suppression by glucocorticoids on CYP24A1 mRNA, CYP24A1-mediated metabolism and CYP24A1 promoter activity in human osteoblast-like cells. As part of this study we examined if glucocorticoids are formed locally in Saos-2 cells. The experiments indicate formation of 11-deoxycortisol, a steroid with glucocorticoid activity, which can bind the glucocorticoid receptor. Our data showing suppression by glucocorticoids on CYP24A1 expression in human osteoblasts suggest a previously unknown mechanism for effects of glucocorticoids in human bone, where these compounds may interfere with regulation of active vitamin D levels.
Collapse
Affiliation(s)
- Ahmad Zayny
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mokhtar Almokhtar
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Östen Ljunggren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kumari Ubhayasekera
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Pinar Kibar
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Gul Amuk N, Kurt G, Guray E. Effects of Photobiomodulation and Ultrasound Applications on Orthodontically Induced Inflammatory Root Resorption; Transcriptional Alterations in OPG, RANKL, Cox-2: An Experimental Study in Rats. Photomed Laser Surg 2018; 36:653-659. [DOI: 10.1089/pho.2018.4508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Nisa Gul Amuk
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Gokmen Kurt
- Department of Orthodontics, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Enis Guray
- Private Orthodontic Practice, Ankara, Turkey
| |
Collapse
|
8
|
Liu J, Zhou X, Wang H, Yang H, Ruan J. In vitro
cell response and in vivo
primary osteointegration of highly porous Ta-Nb alloys as implant materials. J Biomed Mater Res B Appl Biomater 2018; 107:573-581. [DOI: 10.1002/jbm.b.34149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/29/2018] [Accepted: 04/17/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Jue Liu
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 People's Republic of China
| | - Xiongwen Zhou
- Department of Anesthesiology; The Second Xiang Ya Hospital, Central South University; Changsha 410011 People's Republic of China
| | - Huifeng Wang
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 People's Republic of China
| | - Hailin Yang
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 People's Republic of China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 People's Republic of China
| |
Collapse
|
9
|
Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 133:36-48. [PMID: 29126668 DOI: 10.1016/j.pbiomolbio.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
To compare the in vitro effectiveness of Low-Level Laser Therapy (LLLT) and Low Intensity Pulsed Ultrasound (LIPUS) on bony cells and related stem cells. In this study, we aim to systematically review the published scientific literature which explores the use of LLLT and LIPUS to biostimulate the activity or the proliferation of bony cells or stem cells in vitro. We searched the database PubMed for LLLT or LIPUS, with/without bone, osteoblast, osteocyte, stem cells, the human osteosarcoma cell line (MG63), bone-forming cells, and cell culture (or in vitro). These studies were subdivided into categories exploring the effect of LLLT or LIPUS on bony cells, stem cells, and other related cells. 75 articles were found between 1987 and 2016; these included: 50 full paper articles on LLLT and 25 full papers on LIPUS. These articles met the eligibility criteria and were included in our review. A detailed and concise description of the LLLT and the LIPUS protocols and their individual effects on bony cells or stem cells and their results are presented in five tables. Based on the main results and the conclusions of the reviewed articles in the current work, both, LLLT and LIPUS, apply a biostimulatory effect on osteoblasts, osteocytes, and enhance osteoblast proliferation and differentiation on different bony cell lines used in in vitro studies, and therefore, these may be useful tools for bone regeneration therapy. Moreover, in consideration of future cell therapy protocols, both, LLLT and LIPUS (especially LLLT), enhnce a significant increase in the initial number of SCs before differentiation, thus increasing the number of differentiated cells for tissue engineering, regenerative medicine, and healing. Further studies are necessary to determine the LLLT or the LIPUS parameters, which are optimal for biostimsulating bony cells and SCs for bone healing and regenerative medicine.
Collapse
|
10
|
Abdulhameed EA, Enezei HH, Omar M, Komori A, Sugita Y, Hegazy FA, AR S, Maeda H, Alam MK. The Effect of Low Intensity Pulsed Ultrasound Therapy on Osseointegration and Marginal Bone Loss Around Dental Implants. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elaf Akram Abdulhameed
- Sharjah Institute for Medical Research, University of Sharjah
- Oral & Maxillofacial Surgery, School of Dental Sciences, Universiti Sains Malaysia
| | | | - Marzuki Omar
- Oral & Maxillofacial Surgery, School of Dental Sciences, Universiti Sains Malaysia
| | - Atsuo Komori
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Yoshihiko Sugita
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | | | - Samsudin AR
- Sharjah Institute for Medical Research, University of Sharjah
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | | |
Collapse
|
11
|
Effects of Indomethacin and Meloxicam, Nonsteroidal Anti-inflammatory Drugs, on Tibia Fracture Union in Rats. JOURNAL OF ORTHOPEDIC AND SPINE TRAUMA 2016. [DOI: 10.5812/jost.10701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Feres MFN, Kucharski C, Diar-Bakirly S, El-Bialy T. Effect of low-intensity pulsed ultrasound on the activity of osteoclasts: An in vitro study. Arch Oral Biol 2016; 70:73-78. [DOI: 10.1016/j.archoralbio.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/16/2016] [Accepted: 06/07/2016] [Indexed: 01/24/2023]
|
13
|
Prevention of osteoradionecrosis of the jaws by low-intensity ultrasound in the dog model. Int J Oral Maxillofac Surg 2016; 45:1170-6. [PMID: 26917007 DOI: 10.1016/j.ijom.2016.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/26/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022]
Abstract
The prevention of osteoradionecrosis of the jaws (ORNJ) is very important because of the current absence of effective therapies for this disease. The aim of this study was to determine whether low-intensity ultrasound has a preventive effect on ORNJ. Sixty healthy adult dogs were divided randomly into three groups: group A (radiotherapy alone), group B (radiotherapy followed by low-intensity ultrasound treatment), and a control group. The development of ORNJ was assessed and the rate of occurrence of ORNJ was compared between groups A and B. Micro-computed tomography, haematoxylin-eosin staining, and immunofluorescence were used to evaluate the microstructure of the mandible and changes in microvascular density in all groups. All animals in group A and group B (ultrasound applied for 30 days) developed ORNJ. Alveolar bone density was 609.48±53.77HU in group A and 829.65±81.46HU in group B (P=0.008). The trabecular bone volume fraction, bone surface area/bone volume ratio, trabecular thickness, and trabecular number were all lower in group A than in group B (P=0.037, P=0.022, P=0.017, and P=0.034, respectively). Haematoxylin-eosin staining showed that the Haversian canals in the osteons had expanded significantly in group A, with collagen fibres losing their circular orientation; group B tended to show typical osteons. The microvascular density in group A was decreased. In conclusion, the use of low-intensity ultrasound in the dog appears not to prevent the incidence of ORNJ, however it does somewhat improve vascularity and bone quality at the microscopic level, which contribute to ORNJ healing.
Collapse
|
14
|
Padilla F, Puts R, Vico L, Guignandon A, Raum K. Stimulation of Bone Repair with Ultrasound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:385-427. [PMID: 26486349 DOI: 10.1007/978-3-319-22536-4_21] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter reviews the different options available for the use of ultrasound in the enhancement of fracture healing or in the reactivation of a failed healing process: LIPUS, shock waves and ultrasound-mediated delivery of bioactive molecules, such as growth factors or plasmids. The main emphasis is on LIPUS, or Low Intensity Pulsed Ultrasound, the most widespread and studied technique. LIPUS has pronounced bioeffects on tissue regeneration, while employing intensities within a diagnostic range. The biological response to LIPUS is complex as the response of numerous cell types to this stimulus involves several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2 and iNOS/NO pathways, and activation of the ATI mechanoreceptor. Mechanisms at the origin of LIPUS biological effects remain intriguing, and analysis is hampered by the diversity of experimental systems used in-vitro. Data point to clear evidence that bioeffects can be modulated by direct and indirect mechanical effects, like acoustic radiation force, acoustic streaming, propagation of surface waves, heat, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. One of the future engineering challenge is therefore the design of dedicated experimental set-ups allowing control of these different mechanical phenomena, and to relate them to biological responses. Then, the derivation of an 'acoustic dose' and the cross-calibration of the different experimental systems will be possible. Despite this imperfect knowledge of LIPUS biophysics, the clinical evidence, although most often of low quality, speaks in favor of the clinical use of LIPUS, when the economics of nonunion and the absence of toxicity of this ultrasound technology are taken into account.
Collapse
Affiliation(s)
| | - Regina Puts
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Alain Guignandon
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| |
Collapse
|
15
|
Miyasaka M, Nakata H, Hao J, Kim YK, Kasugai S, Kuroda S. Low-Intensity Pulsed Ultrasound Stimulation Enhances Heat-Shock Protein 90 and Mineralized Nodule Formation in Mouse Calvaria-Derived Osteoblasts. Tissue Eng Part A 2015; 21:2829-39. [PMID: 26421522 DOI: 10.1089/ten.tea.2015.0234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) has demonstrated its positive effects on osteogenic differentiation of mesenchymal stem cells and the proliferation and differentiation of osteoblasts, negative effects on osteoclast growth, and promotion of angiogenesis, leading to improvement of the tissue perfusion. Heat-shock proteins (HSPs) are initially identified as molecules encouraged and expressed by heat stress or chemical stress to cells and involved in the balance between differentiation and apoptosis of osteoblasts. However, it remains unclear if the effect of LIPUS on osteoblast differentiation could involve HSP expression and contribution. In this study, mouse calvarial osteoblasts were exposed to LIPUS at a frequency of 3.0 MHz by 30 mW/cm(2) for 15 min or to 42°C heat shock for 20 min at day 3 of cell culture and examined for osteogenesis with pursuing induction of HSP27, HSP70, and HSP90. LIPUS as well as heat shock initially upregulated HSP90 and phosphorylation of Smad1 and Smad5, encouraging cell viability and proliferation at 24 h, enhancing mineralized nodule formation stronger by LIPUS after 10 days. However, HSP27, associated with BMP2-stimulated p38 mitogen-activated protein kinase during osteoblast differentiation, was downregulated by both stimulations at this early time point. Notably, these two stimuli maintained Smad1 phosphorylation with mineralized nodule formation even under BMP2 signal blockage. Therefore, LIPUS might be a novel inducer of osteoblastic differentiation through a noncanonical signal pathway. In conclusion, LIPUS stimulation enhanced cell viability and proliferation as early as 24 h after treatment, and HSP90 was upregulated, leading to dense mineralization in the osteoblast cell culture after 10 days.
Collapse
Affiliation(s)
- Munemitsu Miyasaka
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Jia Hao
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - You-Kyoung Kim
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| |
Collapse
|
16
|
CHEN SAINAN, HUANG YUNMEI, CHEN WENLIE, WU GUANGWEN, LIAO NAISHUN, LI XIHAI, HUANG MEIYA, LIN RUHUI, YU CHAO, LI XIAODONG, LIU XIANXIANG. Protective effects of the Tougu Xiaotong capsule on morphology and osteoprotegerin/nuclear factor-κB ligand expression in rabbits with knee osteoarthritis. Mol Med Rep 2015; 13:419-25. [DOI: 10.3892/mmr.2015.4547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/19/2015] [Indexed: 11/06/2022] Open
|
17
|
Burmester A, Willumeit-Römer R, Feyerabend F. Behavior of bone cells in contact with magnesium implant material. J Biomed Mater Res B Appl Biomater 2015; 105:165-179. [PMID: 26448207 DOI: 10.1002/jbm.b.33542] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/03/2015] [Accepted: 09/17/2015] [Indexed: 01/10/2023]
Abstract
Magnesium-based implants exhibit several advantages, such as biodegradability and possible osteoinductive properties. Whether the degradation may induce cell type-specific changes in metabolism still remains unclear. To examine the osteoinductivity mechanisms, the reaction of bone-derived cells (MG63, U2OS, SaoS2, and primary human osteoblasts (OB)) to magnesium (Mg) was determined. Mg-based extracts were used to mimic more realistic Mg degradation conditions. Moreover, the influence of cells having direct contact with the degrading Mg metal was investigated. In exposure to extracts and in direct contact, the cells decreased pH and osmolality due to metabolic activity. Proliferating cells showed no significant reaction to extracts, whereas differentiating cells were negatively influenced. In contrast to extract exposure, where cell size increased, in direct contact to magnesium, cell size was stable or even decreased. The amount of focal adhesions decreased over time on all materials. Genes involved in bone formation were significantly upregulated, especially for primary human osteoblasts. Some osteoinductive indicators were observed for OB: (i) an increased cell count after extract addition indicated a higher proliferation potential; (ii) increased cell sizes after extract supplementation in combination with augmented adhesion behavior of these cells suggest an early switch to differentiation; and (iii) bone-inducing gene expression patterns were determined for all analyzed conditions. The results from the cell lines were inhomogeneous and showed no specific stimulus of Mg. The comparison of the different cell types showed that primary cells of the investigated tissue should be used as an in vitro model if Mg is analyzed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 165-179, 2017.
Collapse
Affiliation(s)
- Anna Burmester
- Department for Material Design and Characterisation, Helmholtz-Zentrum Geesthacht, Institute of Material Research, 21502, Geesthacht, Germany
| | - Regine Willumeit-Römer
- Department for Material Design and Characterisation, Helmholtz-Zentrum Geesthacht, Institute of Material Research, 21502, Geesthacht, Germany
| | - Frank Feyerabend
- Department for Material Design and Characterisation, Helmholtz-Zentrum Geesthacht, Institute of Material Research, 21502, Geesthacht, Germany
| |
Collapse
|
18
|
Burmester A, Luthringer B, Willumeit R, Feyerabend F. Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations. BIOMATTER 2015; 4:e967616. [PMID: 25482335 PMCID: PMC4578555 DOI: 10.4161/21592527.2014.967616] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Magnesium-based implants exhibit various advantages such as biodegradability and potential for enhanced in vivo bone formation. However, the cellular mechanisms behind this possible osteoconductivity remain unclear. To determine whether high local magnesium concentrations can be osteoconductive and exclude other environmental factors that occur during the degradation of magnesium implants, magnesium salt (MgCl2) was used as a model system. Because cell lines are preferred targets in studies of non-degradable implant materials, we performed a comparative study of 3 osteosarcoma-derived cell lines (MG63, SaoS2 and U2OS) with primary human osteoblasts. The correlation among cell count, viability, cell size and several MgCl2 concentrations was used to examine the influence of magnesium on proliferation in vitro. Moreover, bone metabolism alterations during proliferation were investigated by analyzing the expression of genes involved in osteogenesis. It was observed that for all cell types, the cell count decreases at concentrations above 10 mM MgCl2. However, detailed analysis showed that MgCl2 has a relevant but very diverse influence on proliferation and bone metabolism, depending on the cell type. Only for primary cells was a clear stimulating effect observed. Therefore, reliable results demonstrating the osteoconductivity of magnesium implants can only be achieved with primary osteoblasts.
Collapse
Key Words
- ALP, Alkaline phosphatase
- BSP, Bone sialoprotein
- Cbfa1, Runt-related transcription factor 2
- Col, Collagen
- GAPDH, Glyceraldehyde 3-phosphate dehydrogenase
- HPSE, Heparanase
- MG63
- OB, osteoblasts
- OC, Osteocalcin
- OPG, Osteoprotegerin
- OPN, Osteopontin
- PCR, Polymerase chain reaction
- RANKL, Receptor Activator of NF-κB Ligand
- SaoS2
- U2OS
- gene expression
- magnesium
- osteoblasts
Collapse
Affiliation(s)
- Anna Burmester
- a Helmholtz-Zentrum Geesthacht; Institute of Materials Research; Structural Research on Macromolecules ; Geesthacht , Germany
| | | | | | | |
Collapse
|
19
|
Chiu CY, Tsai TL, Vanderby R, Bradica G, Lou SL, Li WJ. Osteoblastogenesis of Mesenchymal Stem Cells in 3-D Culture Enhanced by Low-Intensity Pulsed Ultrasound through Soluble Receptor Activator of Nuclear Factor Kappa B Ligand. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1842-1852. [PMID: 25922132 DOI: 10.1016/j.ultrasmedbio.2015.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/12/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
This study was performed to investigate osteoblastogenesis of human mesenchymal stem cells (hMSCs) cultured in 3-D scaffolds stimulated with low-intensity pulsed ultrasound and to identify the underlying mechanism mediated by soluble receptor activator of nuclear factor kappa B ligand (sRANKL) secreted by hMSCs. The results indicate that the mRNA levels of core-binding factor subunit alpha subunit 1 (CBFA1), osterix (OSX), alkaline phosphatase (ALP), osteocalcin and osteoprotegerin (OPG) and sRANKL production of hMSCs stimulated by ultrasound were significantly increased compared with the levels without ultrasound stimulation. Attenuating the sRANKL activity of ultrasound-treated hMSCs significantly reduced the mRNA expression of CBFA1, OSX, ALP and OPG. Adding sRANKL in hMSC culture significantly increased the mRNA expression of CBFA1, OSX and OPG. Together, the results suggest that osteoblastogenesis of hMSCs enhanced by ultrasound stimulation is mediated by endogenous sRANKL.
Collapse
Affiliation(s)
- Chun-Yi Chiu
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li City, Tao-Yuan County, Taiwan
| | - Tsung-Lin Tsai
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ray Vanderby
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gino Bradica
- Orthopedic Development, Kensey Nash Corporation, Exton, Pennsylvania, USA
| | - Shyh-Liang Lou
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li City, Tao-Yuan County, Taiwan
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
20
|
Patel US, Ghorayeb SR, Yamashita Y, Atanda F, Walmsley AD, Scheven BA. Ultrasound field characterization and bioeffects in multiwell culture plates. J Ther Ultrasound 2015; 3:8. [PMID: 26146556 PMCID: PMC4490766 DOI: 10.1186/s40349-015-0028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ultrasound with frequencies in the kilohertz range has been demonstrated to promote biological effects and has been suggested as a non-invasive tool for tissue healing and repair. However, many challenges exist to characterize and develop kilohertz ultrasound for therapy. In particular there is a limited evidence-based guidance and standard procedure in the literature concerning the methodology of exposing biological cells to ultrasound in vitro. Methods This study characterized a 45-kHz low-frequency ultrasound at three different preset intensity levels (10, 25, and 75 mW/cm2) and compared this with the thermal and biological effects seen in a 6-well culture setup using murine odontoblast-like cells (MDPC-23). Ultrasound was produced from a commercially available ultrasound-therapy system, and measurements were recorded using a needle hydrophone in a water tank. The transducer was displaced horizontally and vertically from the hydrophone to plot the lateral spread of ultrasound energy. Calculations were performed using Fourier transform and average intensity plotted against distance from the transducer. During ultrasound treatment, cell cultures were directly exposed to ultrasound by submerging the ultrasound transducer into the culture media. Four groups of cell culture samples were treated with ultrasound. Three with ultrasound at an intensity level of 10, 25, and 75 mW/cm2, respectively, and the final group underwent a sham treatment with no ultrasound. Cell proliferation and viability were analyzed from each group 8 days after three ultrasound treatments, each separated by 48 h. Results The ultrasonic output demonstrated considerable lateral spread of the ultrasound field from the exposed well toward the adjacent culture wells in the multiwell culture plate; this correlated well with the dose-dependent increase in the number of cultured cells where significant biological effects were also seen in adjacent untreated wells. Significant thermal variations were not detected in adjacent untreated wells. Conclusions This study highlights the pitfalls of using multiwell plates when investigating the biological effect of kilohertz low-frequency ultrasound on adherent cell cultures.
Collapse
Affiliation(s)
- Upen S Patel
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| | - Sleiman R Ghorayeb
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA ; Immunology and Inflammation-FIMR, North Shore Hospital, Manhasset, NY USA
| | - Yuki Yamashita
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA
| | - Folorunsho Atanda
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA
| | - A Damien Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| | - Ben A Scheven
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| |
Collapse
|
21
|
Zhou Z, Fan W, Lang M, Wang Y. Transdermal bFGF delivery using low-frequency sonophoresis: An innovative potential therapy for osteoradionecrosis of jaws. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2015. [DOI: 10.1016/j.jmhi.2014.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Andrade I, Sousa ABDS, da Silva GG. New therapeutic modalities to modulate orthodontic tooth movement. Dental Press J Orthod 2014; 19:123-33. [PMID: 25628089 PMCID: PMC4347420 DOI: 10.1590/2176-9451.19.6.123-133.sar] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022] Open
Abstract
Modulation of orthodontic tooth movement (OTM) is desirable not only to patients because it shortens treatment time, but also to orthodontists, since treatment duration is associated with increased risk of gingival inflammation, decalcification, dental caries, and root resorption. The increased focus on the biological basis of tooth movement has rendered Orthodontics a more comprehensive specialty that incorporates facets of all fields of medicine. Current knowledge raises the possibility of using new therapeutic modalities for modulation of OTM, such as corticotomy, laser therapy, vibration (low-intensity pulsed ultrasound), local injections of biomodulators and gene therapy; with the latter being applicable in the near future. They are intended to enhance or inhibit recruitment, differentiation and/or activation of bone cells, accelerate or reduce OTM, increase stability of orthodontic results, as well as assist with the prevention of root resorption. This article summarizes recent studies on each one of these therapeutic modalities, provides readers with information about how they affect OTM and points out future clinical perspectives.
Collapse
Affiliation(s)
- Ildeu Andrade
- School of Dentistry, Catholic University of Minas Gerais
| | | | | |
Collapse
|
23
|
Han B, Wang X, Liu J, Liang F, Qu X, Yang Z, Gao X. Influence of calcium hydroxide-loaded microcapsules on osteoprotegerin and receptor activator of nuclear factor kappa B ligand activity. J Endod 2014; 40:1977-82. [PMID: 25266469 DOI: 10.1016/j.joen.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/27/2014] [Accepted: 08/12/2014] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Calcium hydroxide (Ca[OH]2) microcapsules were synthesized to allow controlled release of Ca(OH)2. The aim of this study was to evaluate the influence of Ca(OH)2 microcapsules on osteoprotegerin (OPG) activity, receptor activator of nuclear factor kappa B ligand (RANKL) activity, and the OPG/RANKL ratio compared with pure Ca(OH)2 powder and Vitapex (Neo Dental Chemical Products Co Ltd, Tokyo, Japan). METHODS One formula of Ca(OH)2 microcapsules was evaluated, and pure Ca(OH)2 powder was used as a control. A commonly used Ca(OH)2 medication containing an oily vehicle (Vitapex) was also evaluated, and the in vitro release profile of Vitapex was studied. The human osteosarcoma cell line MG63 was used to evaluate the influence of Ca(OH)2 microcapsules, pure Ca(OH)2 powder, and Vitapex on OPG and RANKL activity. The relative messenger RNA (mRNA) expression of OPG and RANKL was determined by real-time polymerase chain reaction. The protein expression of OPG and RANKL in supernatants was measured using enzyme-linked immunosorbent assay. RESULTS Vitapex prolonged the release of Ca(OH)2 compared with pure Ca(OH)2 powder, and the release rate of Vitapex was faster than that of the microcapsules. The OPG/RANKL ratio in the microcapsules group was up-regulated at both the mRNA and protein levels compared with the negative control group and the pure Ca(OH)2 powder group. The ratio in the Vitapex group was lower than the microcapsule group both at the mRNA and protein levels. CONCLUSIONS Ca(OH)2 microcapsules increased the expression of OPG although they did not increase the expression of RANKL compared with pure Ca(OH)2 powder and Vitapex. This increase in expression led to an increase in the OPG/RANKL ratio and eventual inhibition of osteoclast activity.
Collapse
Affiliation(s)
- Bing Han
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Jiguang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaozhong Qu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
24
|
Padilla F, Puts R, Vico L, Raum K. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. ULTRASONICS 2014; 54:1125-45. [PMID: 24507669 DOI: 10.1016/j.ultras.2014.01.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 05/15/2023]
Abstract
In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture dish walls and the formation of standing waves will greatly affect the local type and amplitude of the stimulus exerted on the cells. A future engineering challenge is therefore the design of dedicated experimental set-ups, in which the different mechanical phenomena induced by ultrasound can be controlled. This is a prerequisite to evaluate the biological effects of the different phenomena with respect to particular parameters, like intensity, frequency, or duty cycle. By relating the variations of these parameters to the induced physical effects and to the biological responses, it will become possible to derive an 'acoustic dose' and propose a quantification and cross-calibration of the different experimental systems. Improvements in bone healing management will probably also come from a combination of ultrasound with a 'biologic' components, e.g. growth factors, scaffolds, gene therapies, or drug delivery vehicles, the effects of which being potentiated by the ultrasound.
Collapse
Affiliation(s)
- Frédéric Padilla
- Inserm, U1032, LabTau, Lyon F-69003, France; Université de Lyon, Lyon F-69003, France.
| | - Regina Puts
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Lyon, St-Etienne F-42023, France
| | - Kay Raum
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
25
|
Zhou J, Wang JQ, Ge BF, Ma XN, Ma HP, Xian CJ, Chen KM. Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics 2013; 35:30-8. [PMID: 23775573 DOI: 10.1002/bem.21794] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 04/04/2013] [Indexed: 11/09/2022]
Abstract
Noninvasive electromagnetic fields (EMFs) have been known to be able to improve bone health; however, their optimal application parameters and action mechanisms remain unclear. This study compared the effects of different forms of EMFs (sinusoidal, triangular, square, and serrated, all set at 50 Hz frequency and 1.8 mT intensity) on proliferation, differentiation and mineralization of rat calvarial osteoblasts. Square EMFs stimulated osteoblast proliferation but sinusoidal EMFs inhibited it. Sinusoidal and triangular EMFs produced significantly greater alkaline phosphatase (ALP) activity, ALP staining areas, calcium deposition, mineralized nodule areas, and mRNA expression of Runx-2, osteoprotegerin and insulin-like growth factor-I than square and serrated EMFs (P < 0.01). Triangular EMFs had a greater effect than sinusoidal EMFs on every indices except for Runx-2 mRNA expression (P < 0.05). These results indicated that while square EMFs promoted proliferation and had no effect on the differentiation of osteoblasts, sinusoidal EMFs inhibited proliferation but enhanced osteogenic differentiation. Triangular EMFs did not affect cell proliferation but induced the strongest osteogenic activity among the four waveforms of EMFs. Thus, the effects of EMFs on proliferation and differentiation of osteoblasts in vitro were dependent on their waveforms.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of People's Liberation Army, Lanzhou, P.R., China
| | | | | | | | | | | | | |
Collapse
|
26
|
Inubushi T, Tanaka E, Rego EB, Ohtani J, Kawazoe A, Tanne K, Miyauchi M, Takata T. Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application. Bone 2013; 53:497-506. [PMID: 23337039 DOI: 10.1016/j.bone.2013.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Root resorption is an adverse outcome of orthodontic tooth movement. However, there have been no available approaches for the protection and repair of root resorption. The aim of this study was to evaluate the effects of low-intensity pulsed ultrasound (LIPUS) on root resorption during experimental tooth movement and the effects of LIPUS in the RANKL/OPG mechanism in osteoblasts and cementoblasts in vitro. Twenty four Wistar strain male rats of 12-week-old were used in this study. The upper first molars were subjected to experimental movement in the mesial direction for 1-3weeks. Through the experimental periods, the right upper first maxillary molar was exposed to LIPUS (LIPUS group) every day for 1, 2 or 3weeks. The nature of root resorption was observed and then quantified by histomorphometric analysis. In the 2weeks period, significantly greater amount of tooth movement was observed in the LIPUS group (p<0.05). In addition, LIPUS group showed less root resorption lacunae and lower number of odontoclasts. In the period of 3weeks, LIPUS group presented significantly shorter length of root resorption lacunae and smaller amount of root resorption area (p<0.01). The number of odontoclasts and osteoclasts was also significantly lower in the LIPUS group (p<0.01 and p<0.05, respectively). However, no significant differences could be found regarding the amount of tooth movement. It is shown that LIPUS exposure significantly reduced the degree of root resorption during tooth movement without interrupting tooth movement. In vitro experiments showed that MC3T3-1 constitutively expressed higher levels of RANKL and RANTES mRNA comparing to OCCM-30. However, OPG mRNA expression was much higher in OCCM-30. LIPUS stimulation significantly increased the mRNA expression of RANKL in MC3T3-E1 at 4 (p<0.01) and 12h (p<0.05), although OPG mRNA expression was not affected by LIPUS. In contrast, the expression of RANKL and OPG mRNAs were both significantly increased by LIPUS in OCCM-30 at 12h (p<0.01). Moreover, LIPUS application suppressed the up-regulation of RANKL mRNA induced by compression force in OCCM-30, but no similar effect could be observed in MC3T3-E1. In conclusion, it is suggested that LIPUS exposure significantly reduces root resorption by the suppression of cementoclastogenesis by altering OPG/RANKL ratio during orthodontic tooth movement without interfering tooth movement. LIPUS may be an effective tool to prevent root resorption during tooth movement and is applicable to clinical use in near future.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu J, Li K, Zheng X, He D, Ye X, Wang M. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants. PLoS One 2013; 8:e57564. [PMID: 23483914 PMCID: PMC3590211 DOI: 10.1371/journal.pone.0057564] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.
Collapse
Affiliation(s)
- Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Dannong He
- National Engineering Research Center for Nanotechnology, Shanghai, People’s Republic of China
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Meiyan Wang
- National Engineering Research Center for Nanotechnology, Shanghai, People’s Republic of China
| |
Collapse
|
28
|
Molecular pathways involved in crosstalk between cancer cells, osteoblasts and osteoclasts in the invasion of bone by oral squamous cell carcinoma. Pathology 2012; 44:221-7. [PMID: 22406484 DOI: 10.1097/pat.0b013e3283513f3b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS This study investigates whether matrix metalloproteinases (MMPs), specifically MMP-2 and MMP-9, interacting with other molecules important in osteoblast differentiation and osteoclastogenesis, could play important roles in the invasion of bone by oral squamous cell carcinoma (OSCC). METHODS Supernatant (conditioned medium, CM) was collected from OSCC cell lines (SCC15 and SCC25), and from cultured osteoblasts (hFOB cell line and a primary culture, OB), and used for indirect co-culture: OSCC cells were treated with CM from osteoblasts and vice versa. Zymogenic activities of MMP-2 and -9, and protein quantities of all molecules studied, were detected by gelatine zymography and Western blotting, respectively. Real-time polymerase chain reaction (PCR) analysed mRNA of these molecules. Targeted molecules were examined by immunohistochemistry in tissue sections of bone-invasive OSCCs. RESULTS Zymogenic activities of both MMPs were increased in OSCC cells following culture with CM from hFOB: Twist1 protein expression was increased while Runx2 did not alter. The RANKL/OPG ratio, zymogen and protein expression of MMP-9 were increased in hFOB cells cultured with CM from OSCC lines, while zymogen expression of MMP-2 was decreased. Real-time PCR showed generally similar changes in expression of these molecules. All targeted molecules were expressed in invading malignant keratinocytes, and all but OPG were expressed in osteoclasts of clinical samples. CONCLUSIONS Crosstalk between different cell types appears to exist in the invasion of bone by OSCC. Understanding and ultimately interfering with the molecules involved may provide therapeutic approaches to inhibit such bone invasion.
Collapse
|
29
|
Artilheiro PP, Barbosa JLP, Fernandes KPS, Oliveira TSD, Bussadori SK, Mesquita-Ferrari RA. Análise comparativa dos efeitos do ultrassom terapêutico e laser de baixa potência sobre a proliferação de células musculares durante a diferenciação celular. FISIOTERAPIA EM MOVIMENTO 2012. [DOI: 10.1590/s0103-51502012000100003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: Existe um grande interesse no estabelecimento de recursos e terapias a serem utilizados na tentativa de proporcionar um processo de reparo muscular de melhor qualidade e menor duração. O ultrassom terapêutico (US) e o laser de baixa potência (LBP) são recursos muito usados na prática clínica, porém são escassas, e por vezes contraditórias, as evidências científicas que determinam com segurança os parâmetros dosimétricos e metodológicos adequados. OBJETIVOS: O objetivo do estudo foi analisar o efeito do US e do LBP sobre a proliferação celular durante a diferenciação de mioblastos C2C12. MATERIAIS E MÉTODOS: Os mioblastos foram cultivados em meio de cultura de Eagle modificado por Dulbecco, contendo 10% de soro fetal bovino (SFB), sendo induzida a diferenciação pela adição de 2% de soro de cavalo durante 96 horas. Posteriormente, as células foram irradiadas com US pulsado a 20%, 3 MHz de frequência (intensidades de 0,2 e 0,5 W/cm², durante cinco minutos) ou submetidas ao tratamento com LBP (potência de saída de 10 mW, densidade de energia de 3 e 5 J/cm², por 20 segundos). A proliferação celular foi avaliada após 24h e 72h utilizando o método de MTT. Foram realizados três experimentos independentes, em cada condição citada e células não irradiadas serviram como controle. RESULTADOS: Os resultados obtidos foram submetidos à análise estatística utilizando a Análise de Variância (ANOVA), teste Dunnet, para verificar diferenças entre o grupo controle (não tratado) e os grupos tratados com US e LBP, adotando significância de p < 0,05. Os resultados evidenciaram que não houve diferença significativa na proliferação celular entre as células musculares submetidas a tratamento com ambos os recursos terapêuticos e as células controle, nos períodos de 24h e 72h após tratamento. Além disso, foi possível verificar que não houve aumento significativo no número de células após o período de 72h quando comparado a 24h, confirmando o processo de diferenciação celular, conforme esperado. CONCLUSÕES: Conclui-se que o US e o LBP, nos parâmetros avaliados, não alteraram a proliferação de mioblastos em processo de diferenciação.
Collapse
|
30
|
Ogawa T, Ishii T, Mishima H, Nishino T, Watanabe A, Ochiai N. Is low-intensity pulsed ultrasound effective for revitalizing a severely necrotic small bone? An experimental rabbit model. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2028-2036. [PMID: 21963034 DOI: 10.1016/j.ultrasmedbio.2011.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 07/04/2011] [Accepted: 08/13/2011] [Indexed: 05/31/2023]
Abstract
Previously, we successfully applied a new method composed of drilling, bone marrow transplantation (BMT), external fixation and low-intensity pulsed ultrasound (LIPUS) for the clinical treatment of Kienböck's disease. The purpose of this study was to investigate whether bone regeneration can be induced by LIPUS and/or multiple drilling and/or BMT within a severely necrotic small-bone rabbit model. Eighteen rabbits were divided into three groups (BMT, drilling and control) and LIPUS stimulation was introduced daily for 8 weeks post-transplantation. Next, 12 additional rabbits were produced for the BMT group and LIPUS stimulation was introduced daily for 4 and 12 weeks (n = 6 for each). Histopathologically, new bone formations were rarely observed in the drilling and control groups. In the BMT group, the mineralizing surface areas of LIPUS(+) showed a significant increase compared with LIPUS(-) for 8 weeks. LIPUS treatment alone did not accelerate the revitalization of necrotic bones. However, LIPUS combined with BMT tended to promote new bone formation.
Collapse
Affiliation(s)
- Takeshi Ogawa
- Department of Orthopaedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Angle SR, Sena K, Sumner DR, Virdi AS. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. ULTRASONICS 2011; 51:281-288. [PMID: 20965537 DOI: 10.1016/j.ultras.2010.09.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/24/2010] [Accepted: 09/21/2010] [Indexed: 05/30/2023]
Abstract
Bone growth and repair are under the control of biochemical and mechanical signals. Low-intensity pulsed ultrasound (LIPUS) stimulation at 30mW/cm(2) is an established, widely used and FDA approved intervention for accelerating bone healing in fractures and non-unions. Although this LIPUS signal accelerates mineralization and bone regeneration, the actual intensity experienced by the cells at the target site might be lower, due to the possible attenuation caused by the overlying soft tissue. The aim of this study was to investigate whether LIPUS intensities below 30mW/cm(2) are able to provoke phenotypic responses in bone cells. Rat bone marrow stromal cells were cultured under defined conditions and the effect of 2, 15, 30mW/cm(2) and sham treatments were studied at early (cell activation), middle (differentiation into osteogenic cells) and late (biological mineralization) stages of osteogenic differentiation. We observed that not only 30mW/cm(2) but also 2 and 15mW/cm(2), modulated ERK1/2 and p38 intracellular signaling pathways as compared to the sham treatment. After 5 days with daily treatments of 2, 15 and 30mW/cm(2), alkaline phosphatase activity, an early indicator of osteoblast differentiation, increased by 79%, 147% and 209%, respectively, compared to sham, indicating that various intensities of LIPUS were able to initiate osteogenic differentiation. While all LIPUS treatments showed higher mineralization, interestingly, the highest increase of 225% was observed in cells treated with 2mW/cm(2). As the intensity increased to 15 and 30mW/cm(2), the increase in the level of mineralization dropped to 120% and 82%. Our data show that LIPUS intensities lower than the current clinical standard have a positive effect on osteogenic differentiation of rat bone marrow stromal cells. Although Exogen™ at 30mW/cm(2) continues to be effective and should be used as a clinical therapy for fracture healing, if confirmed in vivo, the increased mineralization at lower intensities might be the first step towards redefining the most effective LIPUS intensity for clinical use.
Collapse
Affiliation(s)
- S R Angle
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
32
|
Cheung WH, Chow SKH, Sun MH, Qin L, Leung KS. Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:231-238. [PMID: 21257088 DOI: 10.1016/j.ultrasmedbio.2010.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/10/2010] [Accepted: 11/24/2010] [Indexed: 05/30/2023]
Abstract
Osteoporotic fracture is a critical medico-social challenge leading to burdens in health care costs and hospital bed stays. Low-intensity pulsed ultrasound (LIPUS) was reported to accelerate normal fracture; however, its effect on osteoporotic fracture has not been previously addressed. We hypothesize that LIPUS can accelerate osteoporotic fracture healing and up-regulate the expression in the osteogenesis-, remodeling- and angiogenesis-related genes. Ovariectomy-induced osteoporotic fracture rat model was used to investigate the effects of LIPUS. Fractured rats were assigned to LIPUS or control group and healing was assessed by gene expression quantification, radiographic callus morphometry and histomorphometry. In the LIPUS group, Col-1 and bone morphogenetic protein-2 were up-regulated at earlier time points of week 2 to week 4 post-fracture; vascular endothelial growth factor was found to be up-regulated at week 4 to week 8; osteoprotegerin was up-regulated at week 2 post-fracture, followed by the surge of RANKL expression. Callus width and area measurements showed higher callus formation at weeks 2-4 in the LIPUS group and more rapid drop at weeks 6-8. Histomorphometry showed enhanced endochondral ossification in the callus at weeks 2-4, and lower at week 8. We conclude that LIPUS can accelerate osteoporotic fracture healing by enhancing callus formation, angiogenesis and callus remodeling.
Collapse
Affiliation(s)
- Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | |
Collapse
|
33
|
Olkku A, Leskinen JJ, Lammi MJ, Hynynen K, Mahonen A. Ultrasound-induced activation of Wnt signaling in human MG-63 osteoblastic cells. Bone 2010; 47:320-30. [PMID: 20435172 DOI: 10.1016/j.bone.2010.04.604] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/25/2010] [Accepted: 04/23/2010] [Indexed: 11/30/2022]
Abstract
The benefit from an ultrasound (US) exposure for fracture healing has been clearly shown. However, the molecular mechanisms behind this effect are not fully known. Recently, the canonical Wnt signaling pathway has been recognized as one of the essential regulators of osteoblastogenesis and bone mass, and thereby considered crucial for bone health. Mechanical loading and fluid shear stress have been reported to activate the canonical Wnt signaling pathway in bone cells, but previous reports on the effects of therapeutic US on Wnt signaling in general or in bone, in particular, have not been published yet. Therefore, activation of Wnt signaling pathway was assayed in human osteoblastic cells, and indeed, this pathway was found to be activated in MG-63 cells through the phosphoinositol 3-kinase/Akt (PI3K/Akt) and mTOR cascades following a single 10 min US exposure (2 W, 1.035 MHz). In addition to the reporter assay results, the Wnt pathway activation was also observed as nuclear localization of beta-catenin. Wnt activation showed also temperature dependence at elevated temperatures, and the expression of canonical Wnt ligands was induced under the thermal exposures. However, existence of a specific, non-thermal US component was evident as well, perhaps evidence of a potential dual action of therapeutic US on bone. Neither US nor heat exposures affected cell viability in our experiments. In summary, this is the first study to report that Wnt signaling cascade, important for osteoblast function and bone health, is one of the pathways activated by therapeutic US as well as by hyperthermia in human osteoblastic cells. Our results provide evidence for the potential molecular mechanisms behind the beneficial effects of US on fracture healing. Combinations of US, heat, and possible pharmacological treatment could provide useful flexibility for clinical cases in treating various bone disorders.
Collapse
Affiliation(s)
- Anu Olkku
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
34
|
Artilheiro PP, Oliveira EN, Viscardi CS, Martins MD, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Efeitos do ultra-som terapêutico contínuo sobre a proliferação e viabilidade de células musculares C2C12. FISIOTERAPIA E PESQUISA 2010. [DOI: 10.1590/s1809-29502010000200013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O ultra-som terapêutico (US) é um recurso bioestimulante utilizado para propiciar reparo muscular de melhor qualidade e menor duração, mas o potencial terapêutico do US contínuo não está totalmente estabelecido. O objetivo deste trabalho foi avaliar o efeito do US contínuo sobre a proliferação e viabilidade de células musculares precursoras (mioblastos C2C12). Mioblastos C2C12 foram cultivados em meio de cultura contendo 10% de soro fetal bovino e irradiados com US contínuo nas freqüências de 1 e 3 MHz nas intensidades de 0,2 e 0,5 W/cm2, durante 2 e 5 minutos. A viabilidade e proliferação celular foram avaliadas após 24, 48 e 72 h de incubação. Grupos não-irradiados serviram como controle. Foram realizados experimentos independentes em cada condição acima, e os dados obtidos submetidos à análise estatística. Os resultados mostram que não houve diferença estatisticamente significativa na proliferação e viabilidade celular entre os mioblastos tratados com US e as culturas controles após os diferentes períodos de incubação, em todos os parâmetros avaliados. Conclui-se que o US contínuo, nos parâmetros avaliados, não foi capaz de alterar a proliferação e viabilidade dos mioblastos.
Collapse
|
35
|
Borsje MA, Ren Y, de Haan-Visser HW, Kuijer R. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. Angle Orthod 2010; 80:498-503. [PMID: 20050743 PMCID: PMC8985733 DOI: 10.2319/060809-318.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/01/2009] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE To compare two clinically applied treatments to stimulate bone healing-low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF)-for their effects on RANKL and OPG expression in osteoblast-like cells in vitro. MATERIALS AND METHODS LIPUS or PEMF was applied to Saos-2 cells for 10 minutes or 3 hours. RANKL and OPG expressions were analyzed at 0, 4, 8, or 12 hours after treatment with real-time PCR. Secreted protein levels in culture supernatant were analyzed at the same posttreatment time points using specific ELISA assays. RESULTS Neither LIPUS nor PEMF had an effect on RANKL protein expression. OPG protein was significantly increased by LIPUS after 0 and 4 hours (brief short-term effect) and was increased almost 2.5-fold by PEMF after 8 hours. The mRNA levels of OPG and RANKL were hardly affected by LIPUS treatment at any time point. PEMF induced a fivefold increase in RANKL mRNA expression at t = 0. A brief PEMF treatment of 10 minutes resulted in downregulation of RANKL expression after 0 and 4 hours and upregulation at 12 hours. OPG mRNA was downregulated after 8 hours. CONCLUSION The effects of LIPUS or PEMF expression on OPG and RANKL are limited. From our experiments, it seems that LIPUS treatment resulted in a quick protein response, while the response of cells to PEMF (3 hours) was delayed. The increase in OPG protein at 8 hours post PEMF treatment is indicative of reduction of osteolysis.
Collapse
Affiliation(s)
- Manon A Borsje
- Department of Orthodontics, University Medical Centre Groningen, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
|
37
|
Sun J, Li J, Liu X, Wei L, Wang G, Meng F. Proliferation and gene expression of osteoblasts cultured in DMEM containing the ionic products of dicalcium silicate coating. Biomed Pharmacother 2009; 63:650-7. [DOI: 10.1016/j.biopha.2009.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022] Open
|
38
|
Therapeutic potential of low-intensity ultrasound (part 2): biomolecular effects, sonotransfection, and sonopermeabilization. J Med Ultrason (2001) 2008; 35:161-7. [PMID: 27278987 DOI: 10.1007/s10396-008-0195-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 06/06/2008] [Indexed: 01/16/2023]
Abstract
Part one of this review focused on the thermal and mechanical effects of low-intensity ultrasound (US). In this second and final part of the review, we will focus on and discuss various aspects of low-intensity US, with emphasis on the biomolecular effects, US-mediated gene transfection (sonotransfection), and US-mediated permeabilization (sonopermeabilization). Sonotransfection of different cell lines in vitro and target tissues in vivo have been reported. Optimization experiments have been done and different mechanisms investigated. It has also been found that several genes can be up-regulated or down-regulated by sonication. As to the potential therapeutic applications, systemic or local sonotransfection might also be a safe and effective gene therapy method in effecting the cure of local and systemic disorders. Gene regulation of target cells may be utilized in modifying cellular response to a treatment, such as increasing the sensitivity of diseased cells while making normal cells resistant to the side effects of a treatment. Advances in sonodynamic therapy and drug sonopermeabilization also offer an ever-increasing array of therapeutic options for low-intensity US.
Collapse
|
39
|
Scheven BA, Millard JL, Cooper PR, Lea SC, Walmsley AD, Smith AJ. Short-term in vitro effects of low frequency ultrasound on odontoblast-like cells. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1475-82. [PMID: 17531373 DOI: 10.1016/j.ultrasmedbio.2007.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 03/13/2007] [Accepted: 03/21/2007] [Indexed: 05/15/2023]
Abstract
In this study, the effects of low frequency ultrasound (US) were examined on odontoblasts, the primary cell responsible for dentinogenesis and dentine repair. An established odontoblast-like cell line, MDPC-23, was subjected to 30 kHz ultrasound at three different power settings. US induced a marginal level of cell death (3% to 4%) at lower amplitudes rising to 25% cell death at the highest power tested. The latter was reflected in a 30% decrease in cell attachment after 4 to 24 h of culture, while the number of adherent cells was reduced by approximately 10% to 15% in the lower power groups. Cell replication after 24 h, as measured by BrdU incorporation, showed no significant changes in the US-treated groups. Gene expression analyses demonstrated a moderate dose-dependent increase in the expression of GAPDH (glyseraldehyde-3-phosphate dehydrogenase)-normalised collagen type I, osteopontin (OPN), transforming growth factor-beta1 (TGFbeta1) and the heat shock protein (hsp) 70. The greatest change was found in the expression of the small hsp 25/27, which showed a two- to six-fold increase following US treatment. No significant effects were observed for alkaline phosphatase (ALP) and core-binding factor A1 (CBFA1/Runx2) expression levels. This is the first report describing US effects on odontoblasts. Further studies are warranted to elucidate US effects on odontoblast function and to evaluate US as a therapeutic application in dentine repair.
Collapse
Affiliation(s)
- Ben A Scheven
- School of Dentistry, University of Birmingham, St. Chad's Queensway, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Chen SH, Chiu CY, Yeh JM, Wang SH. Effect of Low Intensity Ultrasounds on the Growth of Osteoblasts. ACTA ACUST UNITED AC 2007; 2007:5834-7. [DOI: 10.1109/iembs.2007.4353674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|