1
|
Weber CJ, Weitzel AJ, Liu AY, Gacasan EG, Sah RL, Cooper KL. Cellular and molecular mechanisms that shape the development and evolution of tail vertebral proportion in mice and jerboas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620311. [PMID: 39484405 PMCID: PMC11527341 DOI: 10.1101/2024.10.25.620311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the functional importance of the vertebral skeleton, little is known about how individual vertebrae elongate or achieve disproportionate lengths as in the giraffe neck. Rodent tails are an abundantly diverse and more tractable system to understand mechanisms of vertebral growth and proportion. In many rodents, disproportionately long mid-tail vertebrae form a 'crescendo-decrescendo' of lengths in the tail series. In bipedal jerboas, these vertebrae grow exceptionally long such that the adult tail is 1.5x the length of a mouse tail, relative to body length, with four fewer vertebrae. How do vertebrae with the same regional identity elongate differently from their neighbors to establish and diversify adult proportion? Here, we find that vertebral lengths are largely determined by differences in growth cartilage height and the number of cells progressing through endochondral ossification. Hypertrophic chondrocyte size, a major contributor to differential elongation in mammal limb bones, differs only in the longest jerboa mid-tail vertebrae where they are exceptionally large. To uncover candidate molecular mechanisms of disproportionate vertebral growth, we performed intersectional RNA-Seq of mouse and jerboa tail vertebrae with similar and disproportionate elongation rates. Many regulators of posterior axial identity and endochondral elongation are disproportionately differentially expressed in jerboa vertebrae. Among these, the inhibitory natriuretic peptide receptor C (NPR3) appears in multiple studies of rodent and human skeletal proportion suggesting it refines local growth rates broadly in the skeleton and broadly in mammals. Consistent with this hypothesis, NPR3 loss of function mice have abnormal tail and limb proportions. Therefore, in addition to genetic components of the complex process of vertebral evolution, these studies reveal fundamental mechanisms of skeletal growth and proportion.
Collapse
Affiliation(s)
- Ceri J Weber
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander J Weitzel
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander Y Liu
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Erica G Gacasan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Kimberly L Cooper
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Suzuki E, Fukuda T. Multifaceted Functions of TWSG1: From Embryogenesis to Cancer Development. Int J Mol Sci 2022; 23:12755. [PMID: 36361543 PMCID: PMC9657663 DOI: 10.3390/ijms232112755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/21/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in development. Twisted gastrulation BMP signaling modulator 1 (TWSG1) was initially identified as a regulator of the dorsoventral axis formation in Drosophila. The mechanism of BMP signaling modulation by TWSG1 is complex. TWSG1 inhibits BMP signaling by binding to BMP ligands including BMP4, whereas it enhances signaling by interacting with Chordin, a BMP antagonist. Therefore, TWSG1 can act as both a BMP agonist and antagonist. TWSG1 has various functions ranging from embryogenesis to cancer progression. TWSG1 knockout mice showed neural, craniofacial, and mammary defects. TWSG1 also regulated erythropoiesis and thymocyte development. Furthermore, the relationship between TWSG1 and cancer has been elucidated. Allelic loss of TWSG1 was detected in colorectal cancer. TWSG1 expression was upregulated in papillary thyroid carcinoma and glioblastoma but downregulated in gastric and endometrial cancers. TWSG1 suppressed BMP7-enhanced sphere formation and migration in endometrial cancer cells, indicating its tumor-suppressive role. Further studies are required to clarify the TWSG1 function and its association with BMP signaling in cancer development. Finally, TWSG1 is abundantly expressed in human and mouse ovaries and sustains follicular growth in rodent ovaries. Thus, TWSG1 has various functions ranging from fertility to cancer. Therefore, TWSG1 signaling modulation may be beneficial in treating specific diseases such as cancer.
Collapse
Affiliation(s)
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
3
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Vicki Rosen
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
4
|
Tian H, Bi X, Li CS, Zhao KW, Brochmann EJ, Montgomery SR, Aghdasi B, Chen D, Daubs MD, Wang JC, Murray SS. Secreted phosphoprotein 24 kD (Spp24) and Spp14 affect TGF-β induced bone formation differently. PLoS One 2013; 8:e72645. [PMID: 23991133 PMCID: PMC3753320 DOI: 10.1371/journal.pone.0072645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/12/2013] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic proteins (BMPs) have opposing but complementary functions in directing bone growth, repair, and turnover. Both are found in the bone matrix. Proteins that bind to and affect the activity of these growth factors will determine the relative abundance of the growth factors and, therefore, regulate bone formation. Secreted phosphoprotein 24 kD (Spp24) is a bone matrix protein that has been demonstrated to bind to and affect the activity of BMPs. The arginine-rich carboxy terminus of Spp24 is proteolytically processed to produce three other predictable truncation products (Spp18.1, Spp16.0, and Spp14.5). In this work, we report that kinetic data obtained by surface plasmon resonance demonstrate that Spp24 and the three C-terminal truncation products all bind to TGF-β1 and TGF-β2 with a similar but somewhat less affinity than they bind BMP-2; that, as in the case of BMP-2, the full-length (FL) form of Spp24 binds TGF-β with greater affinity than do the truncation products; that FL-Spp24 inhibits TGF-β2 induced bone formation in vivo, but Spp14.5 does not; and that co-administration of FL-Spp24 or Spp14.5 with TGF-β2 in vivo is associated with a reduction in the amount of cartilage, relative to new bone, present at the site of injection. This finding is consistent with the observation that low-dose TGF-β administration in vivo is associated with greater bone formation than high-dose TGF-β administration, and suggests that one function of Spp24 and its truncation products is to down-regulate local TGF-β activity or availability during bone growth and development. The similarities and differences of the interactions between Spp24 proteins and TGF-β compared to the interaction of the Spp24 proteins and BMPs have significant implications with respect to the regulation of bone metabolism and with respect to engineering therapeutic proteins for skeletal disorders.
Collapse
Affiliation(s)
- Haijun Tian
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kelly CE, Thymiakou E, Dixon JE, Tanaka S, Godwin J, Episkopou V. Rnf165/Ark2C enhances BMP-Smad signaling to mediate motor axon extension. PLoS Biol 2013; 11:e1001538. [PMID: 23610558 PMCID: PMC3627648 DOI: 10.1371/journal.pbio.1001538] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 03/07/2013] [Indexed: 12/21/2022] Open
Abstract
Little is known about extrinsic signals required for the advancement of motor neuron (MN) axons, which extend over long distances in the periphery to form precise connections with target muscles. Here we present that Rnf165 (Arkadia-like; Arkadia2; Ark2C) is expressed specifically in the nervous system and that its loss in mice causes motor innervation defects that originate during development and lead to wasting and death before weaning. The defects range from severe reduction of motor axon extension as observed in the dorsal forelimb to shortening of presynaptic branches of the phrenic nerve, as observed in the diaphragm. Molecular functional analysis showed that in the context of the spinal cord Ark2C enhances transcriptional responses of the Smad1/5/8 effectors, which are activated (phosphorylated) downstream of Bone Morphogenetic Protein (BMP) signals. Consistent with Ark2C-modulated BMP signaling influencing motor axons, motor pools in the spinal cord were found to harbor phosphorylated Smad1/5/8 (pSmad) and treatment of primary MN with BMP inhibitor diminished axon length. In addition, genetic reduction of BMP-Smad signaling in Ark2C (+/-) mice caused the emergence of Ark2C (-/-) -like dorsal forelimb innervation deficits confirming that enhancement of BMP-Smad responses by Ark2C mediates efficient innervation. Together the above data reveal an involvement of BMP-Smad signaling in motor axon advancement.
Collapse
Affiliation(s)
- Claire E. Kelly
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Efstathia Thymiakou
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James E. Dixon
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shinya Tanaka
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan Godwin
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vasso Episkopou
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Lorda-Diez CI, Montero JA, Rodriguez-Leon J, Garcia-Porrero JA, Hurle JM. Expression and functional study of extracellular BMP antagonists during the morphogenesis of the digits and their associated connective tissues. PLoS One 2013; 8:e60423. [PMID: 23573253 PMCID: PMC3616094 DOI: 10.1371/journal.pone.0060423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study is to gain insight into the role of BMP signaling in the diversification of the embryonic limb mesodermal progenitors destined to form cartilage, joints, and tendons. Given the importance of extracellular BMP modulators in in vivo systems, we performed a systematic search of those expressed in the developing autopod during the formation of the digits. Here, we monitored the expression of extracellular BMP modulators including: Noggin, Chordin, Chordin-like 1, Chordin-like 2, Twisted gastrulation, Dan, BMPER, Sost, Sostdc1, Follistatin, Follistatin-like 1, Follistatin-like 5 and Tolloid. These factors show differential expression domains in cartilage, joints and tendons. Furthermore, they are induced in specific temporal patterns during the formation of an ectopic extra digit, preceding the appearance of changes that are identifiable by conventional histology. The analysis of gene regulation, cell proliferation and cell death that are induced by these factors in high density cultures of digit progenitors provides evidence of functional specialization in the control of mesodermal differentiation but not in cell proliferation or apoptosis. We further show that the expression of these factors is differentially controlled by the distinct signaling pathways acting in the developing limb at the stages covered by this study. In addition, our results provide evidence suggesting that TWISTED GASTRULATION cooperates with CHORDINS, BMPER, and NOGGIN in the establishment of tendons or cartilage in a fashion that is dependent on the presence or absence of TOLLOID.
Collapse
Affiliation(s)
- Carlos I. Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | | | - Juan A. Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
7
|
Forsman CL, Ng BC, Heinze RK, Kuo C, Sergi C, Gopalakrishnan R, Yee D, Graf D, Schwertfeger KL, Petryk A. BMP-binding protein twisted gastrulation is required in mammary gland epithelium for normal ductal elongation and myoepithelial compartmentalization. Dev Biol 2013; 373:95-106. [PMID: 23103586 PMCID: PMC3508155 DOI: 10.1016/j.ydbio.2012.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) are involved in embryonic mammary gland (MG) development and can be dysregulated in breast cancer. However, the role BMPs play in the postnatal MG remains virtually unknown. BMPs are potent morphogens that are involved in cell fate determination, proliferation, apoptosis and adult tissue homeostasis. Twisted gastrulation (TWSG1) is a secreted BMP binding protein that modulates BMP ligand availability in the extracellular space. Here we investigate the consequences of TWSG1 deletion on development of the postnatal MG. At puberty, Twsg1 is expressed in the myoepithelium and in a subset of body cells of the terminal end buds. In the mature duct, Twsg1 expression is primarily restricted to the myoepithelial layer. Global deletion of Twsg1 leads to a delay in ductal elongation, reduced secondary branching, enlarged terminal end buds, and occluded lumens. This is associated with an increase in luminal epithelial cell number and a decrease in apoptosis. In the MG, pSMAD1/5/8 level and the expression of BMP target genes are reduced, consistent with a decrease in BMP signaling. GATA-3, which is required for luminal identity, is reduced in Twsg1(-/-) MGs, which may explain why K14 positive cells, which are normally restricted to the myoepithelial layer, are found within the luminal compartment and shed into the lumen. In summary, regulation of BMP signaling by TWSG1 is required for normal ductal elongation, branching of the ductal tree, lumen formation, and myoepithelial compartmentalization in the postnatal MG.
Collapse
Affiliation(s)
- Cynthia L. Forsman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon C. Ng
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel K. Heinze
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Claire Kuo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Consolato Sergi
- Department of Laboratory Medicine & Pathology, University of Alberta, Alberta, Canada T6G 2B7
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Daniel Graf
- Institute of Oral Biology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Kathryn L. Schwertfeger
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Petryk
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Marcellini S, Henriquez JP, Bertin A. Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. Bioessays 2012; 34:953-62. [PMID: 22930599 DOI: 10.1002/bies.201200061] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although many regulators of skeletogenesis have been functionally characterized, one current challenge is to integrate this information into regulatory networks. Here, we discuss how the canonical Wnt and Smad-dependent BMP pathways interact together and play antagonistic or cooperative roles at different steps of osteogenesis, in the context of the developing vertebrate embryo. Early on, BMP signaling specifies multipotent mesenchymal cells into osteochondroprogenitors. In turn, the function of Wnt signaling is to drive these osteochondroprogenitors towards an osteoblastic fate. Subsequently, both pathways promote osteoblast differentiation, albeit with notable mechanistic differences. In osteocytes, the ultimate stage of osteogenic differentiation, the Wnt and BMP pathways exert opposite effects on the control of bone resorption by osteoclasts. We describe how the dynamic molecular wiring of the canonical Wnt and Smad-dependent BMP signaling into the skeletal cell genetic programme is critical for the generation of bone-specific cell types during development.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Faculty of Biological Science, Department of Cell Biology, University of Concepcion, Concepcion, Chile.
| | | | | |
Collapse
|
9
|
Chang X, Lu Y, Shibata Y, Tsukazaki T, Yamaguchi A. Role of Bone Morphogenetic Proteins and Their Antagonists during Fracture Healing. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Passa O, Tsalavos S, Belyaev NN, Petryk A, Potocnik AJ, Graf D. Compartmentalization of bone morphogenetic proteins and their antagonists in lymphoid progenitors and supporting microenvironments and functional implications. Immunology 2011; 134:349-59. [PMID: 21978004 DOI: 10.1111/j.1365-2567.2011.03495.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenetic protein (BMP) signalling regulates lymphopoiesis in bone marrow and thymus via the interaction of haemato-lymphoid progenitors with the stroma microenvironment. Despite increasing functional evidence for the role of BMP signalling in lymphopoiesis, little is known of the spatial distribution of BMP/BMP antagonists in the thymus and of how BMP signals exert specific functions in developing lymphocytes. We analysed expression of BMP/BMP antagonists in the thymus and bone marrow and determined the topology of BMP/BMP antagonist expression using lacZ reporter mice. Bmp4, Bmp7, Gremlin and Twisted gastrulation (Twsg1) are all expressed in the thymus and expression was clearly different for each gene investigated. Expression was seen both in cortical and medullary regions suggesting that BMP signals regulate all stages of T-cell development. Two genes in particular, Bmp7 and Twsg1, were dynamically expressed in developing T and B lymphocytes. Their conditional ablation in all haematopoietic cells surprisingly did not affect the steady state of B-cell and T-cell development. This indicates that both lymphoid cell-derived BMP7 and TWSG1 are dispensable for normal lymphopoiesis and that bone-marrow stroma-derived TWSG1 is responsible for the lymphoid defects observed in Twsg1 null mice. In summary our data demonstrate a complex network of lymphoid and stroma derived BMP signals involved in the orchestration of lymphopoiesis in both bone marrow and thymus.
Collapse
Affiliation(s)
- Ourania Passa
- Institute of Immunology, Biomedical Sciences Research Centre Alexander Fleming, Vari, Greece
| | | | | | | | | | | |
Collapse
|
11
|
Billington CJ, Fiebig JE, Forsman CL, Pham L, Burbach N, Sun M, Jaskoll T, Mansky K, Gopalakrishnan R, O'Connor MB, Mueller TD, Petryk A. Glycosylation of Twisted Gastrulation is Required for BMP Binding and Activity during Craniofacial Development. Front Physiol 2011; 2:59. [PMID: 21941513 PMCID: PMC3170884 DOI: 10.3389/fphys.2011.00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 08/23/2011] [Indexed: 11/25/2022] Open
Abstract
Twisted gastrulation (TWSG1) is a conserved, secreted glycoprotein that modulates signaling of bone morphogenetic proteins (BMPs) in the extracellular space. Deletion of exon 4 of mouse Twsg1 (mTwsg1) is associated with significant craniofacial defects. However, little is understood about the biochemical properties of the corresponding region of the protein. We have uncovered a significant role for exon 4 sequences as encoding the only two glycosylation sites of the mTWSG1 protein. Deletion of the entire exon 4 or mutation of both glycosylation sites within exon 4 abolishes glycosylation of mTWSG1. Importantly, we find that constructs with mutated glycosylation sites have significantly reduced BMP binding activity. We further show that glycosylation and activity of TWSG1 recombinant proteins vary markedly by cellular source. Non-glycosylated mTWSG1 made in E. coli has both reduced affinity for BMPs, as shown by surface plasmon resonance analysis, and reduced BMP inhibitory activity in a mandibular explant culture system compared to glycosylated proteins made in insect cells or murine myeloma cells. This study highlights an essential role for glycosylation in Twisted gastrulation action.
Collapse
|
12
|
Jiang SD, Yan J, Jiang LS, Dai LY. Down-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in osteoblasts from rats with chronic spinal cord injury. Joint Bone Spine 2011; 78:488-92. [PMID: 21273111 DOI: 10.1016/j.jbspin.2010.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To investigate the anabolic response of osteoblasts to chronic spinal cord injury and to identify potential signaling pathways that are associated with the osteogenic response after spinal cord injury by using in-house microarray analyses in osteoblasts. METHODS Ten young male Sprague-Dawley rats were randomized into spinal cord injury (SCI) and SHAM groups. The tibiae were assessed for DXA and bone histomorphometry, and osteoblasts from femora were used for microarray analysis. RESULTS SCI rats showed lower BMD and deteriorated microstructure in the proximal tibiae as compared with SHAM rats. The Wnt, BMP/TGF, estrogen receptor (ER), and IGF-I pathways were down-regulated in osteoblasts from spinal cord-injured rats. CONCLUSION Down-regulation of the Wnt, BMP/TGF, ER, and growth hormone/IGF-I pathways is associated with decreased bone formation after spinal cord injury.
Collapse
Affiliation(s)
- Sheng-Dan Jiang
- Department of Orthopaedic Surgery, Xinhua Hospital, 1665 Kongjiang Road, Shanghai 200092, Jiaotong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
13
|
Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 2010; 429:1-12. [PMID: 20545624 DOI: 10.1042/bj20100305] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The BMPs (bone morphogenetic proteins) and the GDFs (growth and differentiation factors) together form a single family of cystine-knot cytokines, sharing the characteristic fold of the TGFbeta (transforming growth factor-beta) superfamily. Besides the ability to induce bone formation, which gave the BMPs their name, the BMP/GDFs display morphogenetic activities in the development of a wide range of tissues. BMP/GDF homo- and hetero-dimers interact with combinations of type I and type II receptor dimers to produce multiple possible signalling complexes, leading to the activation of one of two competing sets of SMAD transcription factors. BMP/GDFs have highly specific and localized functions. These are regulated in a number of ways, including the developmental restriction of BMP/GDF expression and through the secretion of several specific BMP antagonist proteins that bind with high affinity to the cytokines. Curiously, a number of these antagonists are also members of the TGF-beta superfamily. Finally a number of both the BMP/GDFs and their antagonists interact with the heparan sulphate side chains of cell-surface and extracellular-matrix proteoglycans.
Collapse
|
14
|
Nifuji A, Ideno H, Takanabe R, Noda M. Extracellular Modulators Regulate Bone Morphogenic Proteins in Skeletal Tissue. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Abstract
Bone formation is determined by the number and function of osteoblasts. Cell number is governed by factors that regulate the replication and differentiation of pre-osteoblasts and factors that regulate osteoblastic cell death. Cell function is controlled by signals acting on the mature osteoblast. Platelet-derived and fibroblast growth factors are bone cell mitogens. Bone morphogenetic proteins (BMPs) and Wnt induce the differentiation of mesenchymal cells toward osteoblasts, and insulin-like growth factor (IGF)-I stimulates the function of mature osteoblasts and prevents their death. The activity of BMP, Wnt, and IGF-I is modulated by extracellular antagonists or binding proteins. Changes in growth factor synthesis and activity may play a role in the pathogenesis of selected forms of osteoporosis, and alterations in the expression or binding of the extracellular antagonists can be associated with changes in bone mass. Current approaches to bone anabolic therapies for osteoporosis include the administration of a growth factor, such as IGF-I, or the neutralization of an antagonist. Ideally, the targeting of an anabolic agent should be specific to bone to preclude non-skeletal unwanted side effects. Clinical trials are needed to determine the long-term effectiveness and safety of novel anabolic agents for the management of osteoporosis.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA.
| |
Collapse
|
16
|
Enhanced osteoclastogenesis causes osteopenia in twisted gastrulation-deficient mice through increased BMP signaling. J Bone Miner Res 2009; 24:1917-26. [PMID: 19419314 PMCID: PMC2765934 DOI: 10.1359/jbmr.090507] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The uncoupling of osteoblastic and osteoclastic activity is central to disorders such as osteoporosis, osteolytic malignancies, and periodontitis. Numerous studies have shown explicit functions for bone morphogenetic proteins (BMPs) in skeletogenesis. Their signaling activity has been shown in various contexts to be regulated by extracellular proteins, including Twisted gastrulation (TWSG1). However, experimental paradigms determining the effects of BMP regulators on bone remodeling are limited. In this study, we assessed the role of TWSG1 in postnatal bone homeostasis. Twsg1-deficient (Twsg1(-/-)) mice developed osteopenia that could not be explained by defective osteoblast function, because mineral apposition rate and differentiation markers were not significantly different compared with wildtype (WT) mice. Instead, we discovered a striking enhancement of osteoclastogenesis in Twsg1(-/-) mice, leading to increased bone resorption with resultant osteopenia. Enhanced osteoclastogenesis in Twsg1(-/-) mice was caused by increased cell fusion, differentiation, and function of osteoclasts. Furthermore, RANKL-mediated osteoclastogenesis and phosphorylated Smad1/5/8 levels were enhanced when WT osteoclasts were treated with recombinant BMP2, suggesting direct regulation of osteoclast differentiation by BMPs. Increase in detectable levels of phosphorylated Smad 1/5/8 was noted in osteoclasts from Twsg1(-/-) mice compared with WT mice. Furthermore, the enhanced osteoclastogenesis in Twsg1(-/-) mice was reversed in vitro in a dose-dependent manner with exposure to Noggin, a BMP antagonist, strongly suggesting that the enhanced osteoclastogenesis in Twsg1 mutants is attributable to increased BMP signaling. Thus, we present a novel and previously uncharacterized role for TWSG1 in inhibiting osteoclastogenesis through regulation of BMP activity.
Collapse
|
17
|
Twisted gastrulation limits apoptosis in the distal region of the mandibular arch in mice. Dev Biol 2009; 328:13-23. [PMID: 19389368 DOI: 10.1016/j.ydbio.2008.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/03/2008] [Accepted: 12/31/2008] [Indexed: 11/23/2022]
Abstract
The mandibular arch (BA1) is critical for craniofacial development. The distal region of BA1, which gives rise to most of the mandible, is dependent upon an optimal level of bone morphogenetic protein (BMP) signaling. BMP activity is modulated in the extracellular space by BMP-binding proteins such as Twisted gastrulation (TWSG1). Twsg1(-/-) mice have a spectrum of craniofacial phenotypes, including mandibular defects that range from micrognathia to agnathia. At E9.5, the distal region of the mutant BA1 was prematurely and variably fused with loss of distal markers eHand and Msx1. Expression of proximal markers Fgf8 and Barx1 was expanded across the fused BA1. The expression of Bmp4 and Msx2 was preserved in the distal region, but shifted ventrally. While wild type embryos showed a gradient of BMP signaling with higher activity in the distal region of BA1, this gradient was disrupted and shifted ventrally in the mutants. Thus, loss of TWSG1 results in disruption of the BMP4 gradient at the level of signaling activity as well as mRNA expression. Altered distribution of BMP signaling leads to a shift in gene expression and increase in apoptosis. The extent of apoptosis may account for the variable degree of mandibular defects in Twsg1 mutants.
Collapse
|
18
|
Smerdel-Ramoya A, Zanotti S, Stadmeyer L, Durant D, Canalis E. Skeletal overexpression of connective tissue growth factor impairs bone formation and causes osteopenia. Endocrinology 2008; 149:4374-81. [PMID: 18535099 PMCID: PMC2553373 DOI: 10.1210/en.2008-0254] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/23/2008] [Indexed: 01/08/2023]
Abstract
Connective tissue growth factor (CTGF), a member of the CCN family of proteins, is expressed in skeletal cells, and the ctgf null mutation leads to neonatal lethality due to defects in skeletal development. To define the function of CTGF in the postnatal skeleton, we created transgenic mice overexpressing CTGF under the control of the human osteocalcin promoter. CTGF transgenic female and male mice exhibited a significant decrease in bone mineral density, compared with wild-type littermate controls. Bone histomorphometry revealed that CTGF overexpression caused decreased trabecular bone volume due to impaired osteoblastic activity because mineral apposition and bone formation rates were decreased. Osteoblast and osteoclast number and bone resorption were not altered. Calvarial osteoblasts and stromal cells from CTGF transgenics displayed decreased alkaline phosphatase and osteocalcin mRNA levels and reduced bone morphogenetic protein (BMP) signaling mothers against decapentaplegic, Wnt/beta-catenin, and IGF-I/Akt signaling. In conclusion, CTGF overexpression in vivo causes osteopenia, secondary to decreased bone formation, possibly by antagonizing BMP, Wnt, and IGF-I signaling and activity.
Collapse
Affiliation(s)
- Anna Smerdel-Ramoya
- Department of Research, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, Connecticut 06105-1299, USA
| | | | | | | | | |
Collapse
|
19
|
Smerdel-Ramoya A, Zanotti S, Deregowski V, Canalis E. Connective tissue growth factor enhances osteoblastogenesis in vitro. J Biol Chem 2008; 283:22690-9. [PMID: 18583340 DOI: 10.1074/jbc.m710140200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Connective tissue growth factor (CTGF), a member of the CCN family of proteins, is expressed by osteoblasts, but its function in cells of the osteoblastic lineage has not been established. We investigated the effects of CTGF overexpression by transducing murine ST-2 stromal cells with a retroviral vector, where CTGF is under the control of the cytomegalovirus promoter. Overexpression of CTGF in ST-2 cells increased alkaline phosphatase activity, osteocalcin and alkaline phosphatase mRNA levels, and mineralized nodule formation. CTGF overexpression decreased the effect of bone morphogenetic protein-2 on Smad 1/5/8 phosphorylation and of Wnt 3 on cytosolic beta-catenin, indicating that the stimulatory effect on osteoblastogenesis was unrelated to BMP and Wnt signaling. CTGF overexpression suppressed Notch signaling and induced the transcription of hairy and E (spl)-1 (HES)-1, by Notch-independent mechanisms. CTGF induced nuclear factor of activated T cells (NFAT) transactivation by a calcineurin-dependent mechanism. Down-regulation of CTGF enhanced Notch signaling and decreased HES-1 transcription and NFAT transactivation. Similar effects were observed following forced CTGF overexpression, the addition of CTGF protein, or the transduction of ST-2 cells with a retroviral vector expressing HES-1. In conclusion, CTGF enhances osteoblastogenesis, possibly by inhibiting Notch signaling and inducing HES-1 transcription and NFAT transactivation.
Collapse
Affiliation(s)
- Anna Smerdel-Ramoya
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | | | | | |
Collapse
|
20
|
Zhang JL, Huang Y, Qiu LY, Nickel J, Sebald W. von Willebrand Factor Type C Domain-containing Proteins Regulate Bone Morphogenetic Protein Signaling through Different Recognition Mechanisms. J Biol Chem 2007; 282:20002-14. [PMID: 17483092 DOI: 10.1074/jbc.m700456200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) function is regulated in the extracellular space by many modulator proteins, including those containing a von Willebrand factor type C (VWC) domain. The function of the VWC domain-containing proteins in development and diseases has been extensively studied. The structural basis, however, for the mechanism by which BMP is regulated by these proteins is still poorly understood. By analyzing chordin, CHL2 (chordin-like 2), and CV2 (crossveinless 2) as well as their individual VWC domains, we show that the VWC domain is a versatile binding module that in its multiple forms and environments can expose a variety of binding specificities. Three of four, two of three, and one of five VWCs from chordin, CHL2, and CV2, respectively, can bind BMPs. Using an array of BMP-2 mutant proteins, it can be demonstrated that the binding-competent VWC domains all use a specific subset of BMP-2 binding determinants that overlap with the binding site for the type II receptors (knuckle epitope) or for the type I receptors (wrist epitope). This explains the competition between modulator proteins and receptors for BMP binding and therefore the inhibition of BMP signaling. A subset of VWC domains from CHL2 binds to the Tsg (twisted gastrulation) protein similar to chordin. A stable ternary complex consisting of BMP-2, CHL2, and Tsg can be formed, thus making CHL2 a more efficient BMP-2 inhibitor. The VWCs of CV2, however, do not interact with Tsg. The present results show that chordin, CHL2, and CV2 regulate BMP-2 signaling by different recognition mechanisms.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Rydziel S, Stadmeyer L, Zanotti S, Durant D, Smerdel-Ramoya A, Canalis E. Nephroblastoma overexpressed (Nov) inhibits osteoblastogenesis and causes osteopenia. J Biol Chem 2007; 282:19762-72. [PMID: 17500060 DOI: 10.1074/jbc.m700212200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nephroblastoma overexpressed (Nov), a member of the Cyr 61, connective tissue growth factor, Nov (CCN) family of proteins, is expressed by osteoblasts, but its function in cells of the osteoblastic lineage is not known. We investigated the effects of Nov overexpression by transducing murine ST-2 stromal and MC3T3 osteoblastic cells with a retroviral vector where Nov is under the control of the cytomegalovirus promoter. We also examined the skeletal phenotype of transgenic mice expressing Nov under the control of the human osteocalcin promoter. Overexpression of Nov in ST-2 cells inhibited the appearance of mineralized nodules and decreased alkaline phosphatase activity and osteocalcin mRNA levels. Nov overexpression inhibited the effect of bone morphogenetic protein (BMP)-2 on the phosphorylation of Smad 1/5/8; on the transactivation of 12xSBE-Oc-pGL3, a BMP/Smad signaling reporter construct, and of Wnt 3 on cytoplasmic beta-catenin levels; and on the transactivation of the Wnt/beta-catenin signaling reporter construct 16xTCF-Luc. Nov overexpression did not activate Notch or transforming growth factor beta signaling. Glutathione S-transferase pulldown assays demonstrated direct Nov-BMP interactions. Nov transgenic mice exhibited osteopenia. In conclusion, Nov binds BMP-2 and antagonizes BMP-2 and Wnt activity, and its overexpression inhibits osteoblastogenesis and causes osteopenia.
Collapse
Affiliation(s)
- Sheila Rydziel
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | | | | | | | |
Collapse
|