1
|
Abdul-Azees PA, Rajesh R, Block TJ, Dean DD, Yeh CK, Capitano M, Kacena M, Chen XD, Marinković M. CCN Proteins as Matricellular Regulators of Bone in Aging and Disease. Curr Osteoporos Rep 2025; 23:23. [PMID: 40407982 PMCID: PMC12102002 DOI: 10.1007/s11914-025-00915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/26/2025]
Abstract
PURPOSE OF REVIEW This review explores the role of cell communication network (CCN) proteins in regulating skeletal physiology, aging, and disease, particularly within the context of balanced bone remodeling. RECENT FINDINGS Recent conceptualization of paracrine and endocrine networks in bone marrow as a form of osteoimmunological crosstalk suggests a significant role for matricellular signaling in regulating bone homeostasis. As multifunctional adapters of cell-matrix interactions, CCNs are emerging as a focal point for parathyroid hormone (PTH) signaling and regulation of the RANKL/RANK/OPG axis in skeletal aging. Altered bone marrow CCN expression creates a permissive environment for accelerated postmenopausal bone loss and may contribute to the pathogenesis of osteoporosis and other diseases related to skeletal aging. CCNs modulate fundamental signaling mechanisms in bone development, homeostasis and repair. During aging, dysregulation of CCNs may negatively affect skeletal health and contribute to disease progression. As a result, CCNs may constitute promising therapeutic targets for improving and maintaining aging bone health.
Collapse
Affiliation(s)
- Parveez Ahamed Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229 - 3900, USA
| | - Rahul Rajesh
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229 - 3900, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229 - 3900, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229 - 3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Maegan Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Research Service, Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229 - 3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Miloš Marinković
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Research Service, Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Li J, Zhang D, Zhang Y, Ge J, Yang C. Mitochondria-specific antioxidant MitoTEMPO alleviates senescence of bone marrow mesenchymal stem cells in ovariectomized rats. J Cell Physiol 2024; 239:e31323. [PMID: 38801103 DOI: 10.1002/jcp.31323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Senescence in bone marrow mesenchymal stem cells (BMSCs), triggered by excessive oxidative stress, plays a crucial role in the onset of postmenopausal osteoporosis. Recent studies underscore the importance of mitochondrial rehabilitation and quality control as key determinants in the modulation of oxidative stress and cellular senescence. MitoTEMPO, a mitochondria-targeted antioxidant, has been shown to mitigate the heightened levels of reactive oxygen species (ROS). In our research, we observed that BMSCs from ovariectomized (OVX) rats displayed premature senescence, which was attributed to combined mitochondrial and lysosomal dysfunction, a condition that worsens with extended estrogen deprivation. Treatment with MitoTEMPO effectively reversed these effects, reinstating lysosomal functionality and suppressing the mitochondrial unfolded protein response (UPRmt). Subsequent in vivo experiments corroborated these observations, revealing that MitoTEMPO administration in OVX rats curtailed trabecular bone loss and reduced the expression of p53, HSP60, and CLPP in the trabecular bone region of the proximal tibia. Overall, our findings suggest that MitoTEMPO holds promise as a therapeutic agent to counteract senescence in OVX-BMSCs, offering a potential strategy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Yang BC, Lan SM, Ju CP, Chern Lin JH. Osteoporotic Goat Spine Implantation Study Using a Synthetic, Resorbable Ca/P/S-Based Bone Substitute. Front Bioeng Biotechnol 2020; 8:876. [PMID: 32850733 PMCID: PMC7417633 DOI: 10.3389/fbioe.2020.00876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/08/2020] [Indexed: 01/05/2023] Open
Abstract
One primary purpose of the present study is to clarify whether the highly porous, resorbable Ca/P/S-based bone substitute used in this study would still induce an osteoporotic bone when implanted into the osteoporotic vertebral defects of ovariectomized (OVX) goats, or the newly-grown bone would expectantly be rather healthy bone. The bone substitute material used for the study is a synthetic, 100% inorganic, highly porous and fast-resorbable Ca/P/S-based material (Ezechbone® Granule CBS-400). The results show that the OVX procedure along with a low calcium diet and breeding away from light can successfully induce osteoporosis in the present female experimental goats. The histological examination reveals a newly-formed trabecular bone network within the surgically-created defect of the CBS-400-implanted (OVX_IP) goat. This new trabecular bone network in the OVX_IP goat appears much denser than the OVX goat and comparable to the healthy control goat. Histomorphometry show that, among all the experimental goats, the OVX_IP goat has the highest trabecular thickness and lowest trabecular bone packet prevalence. The differences in trabecular plate separation, trabecular number and trabecular bone tissue area ratio between the OVX_IP goat and the control goat are not significant, indicating that the trabecular bone architecture of the OVX_IP goat has substantially recovered to the normal level in about 6 months after implantation without signs of osteoporosis-related delay in the bone maturing process. The quick and nicely recovered trabecular architecture parameters observed in the OVX_IP goat indicate that the present Ca/P/S-based bone substitute material has a high potential to treat osteoporotic fractures.
Collapse
Affiliation(s)
- Bing-Chen Yang
- Department of Materials Science and Engineering, College of Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Sheng-Min Lan
- Department of Orthopedics, National Cheng-Kung University Hospital Dou-Liou Branch, Yunlin, Taiwan
| | - Chien-Ping Ju
- Department of Materials Science and Engineering, College of Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Jiin-Huey Chern Lin
- Department of Materials Science and Engineering, College of Engineering, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Association of gut microbiota composition and function with an aged rat model of senile osteoporosis using 16S rRNA and metagenomic sequencing analysis. Aging (Albany NY) 2020; 12:10795-10808. [PMID: 32487781 PMCID: PMC7346068 DOI: 10.18632/aging.103293] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Recently, more interest has been paid to the association between bone mass and gut microecological dysbiosis. The results of clinical studies comparing gut microbiota (GM) in osteoporosis patients have been inconsistent due to different inclusion and exclusion criteria. To date, the association between the GM and senile osteoporosis remains poorly understood. Here, we utilized an aged rat model (22 months old) of senile osteoporosis to study the association of the composition and function of the GM with osteoporosis by 16S rRNA and metagenomic sequencing. The results showed that there was a significant reduction in alpha diversity and the F/B (Firmicutes/Bacteroidetes) ratio in aged rats. At the genus level, the enrichment of Helicobacter was potentially related to osteoporosis as a risk factor. Metagenomics results based on two databases indicated that shifts in the GM contribute to senile osteoporosis through metabolic pathways and subsequent immune disorders. In conclusion, our study reveals the association of gut microbiota composition and function with senile osteoporosis in an aged rat model in a brand new way, and variations in the GM might contribute to senile osteoporosis through metabolic pathways.
Collapse
|
5
|
Vila È, Huerta-Ramos E, Núñez C, Usall J, Ramos B. Specificity proteins 1 and 4 in peripheral blood mononuclear cells in postmenopausal women with schizophrenia: a 24-week double-blind, randomized, parallel, placebo-controlled trial. Eur Arch Psychiatry Clin Neurosci 2019; 269:941-948. [PMID: 30167782 DOI: 10.1007/s00406-018-0938-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Accumulating evidence suggests that Specificity Protein 1 (SP1) and 4 (SP4) transcription factors are involved in the pathophysiology of schizophrenia. The therapeutic use of selective oestrogen modulators such as raloxifene added to antipsychotic drugs in the treatment of postmenopausal women with schizophrenia has been investigated in a few clinical trials, which reported an improvement in negative, positive, and general psychopathological symptoms. We aimed to investigate the possible association between peripheral SP protein levels and symptom improvement in postmenopausal women with schizophrenia treated with adjuvant raloxifene. In a subgroup of 14 postmenopausal women with schizophrenia from a 24-week, randomized, parallel, double-blind, placebo-controlled clinical trial (NCT015736370), we investigated changes in SP1 and SP4 protein levels in peripheral blood mononuclear cells. Participants were randomized to either 60 mg/day adjunctive raloxifene or placebo. Psychopathological symptoms were assessed at baseline and at week 24 with the Positive and Negative Syndrome Scale (PANSS). The expression of SP proteins was evaluated by immunoblot, and changes in PANSS scores and protein levels were compared at baseline and after 24 weeks of treatment. An improvement in symptoms was observed in the intervention group, but not in placebo group. Post-treatment protein levels of SP4, but not SP1, correlated with improvements in general and total PANSS subscales in the raloxifene intervention group. A reduction in SP4 levels was found after raloxifene treatment. These results suggest that SP4 may be involved in raloxifene symptom improvement in postmenopausal women and could be a potential candidate for future studies investigating blood-based biomarkers for raloxifene effectiveness.
Collapse
Affiliation(s)
- Èlia Vila
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
| | - Elena Huerta-Ramos
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain
| | - Christian Núñez
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain
| | - Judith Usall
- Intervencions en Salut Mental, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain.
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Catalan Group in Women's Mental Health Research (GTRDSM), Barcelona, Spain.
| | - Belén Ramos
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.
- Parc Sanitari Sant Joan de Déu, Doctor Antoni Pujadas 42, 08830, Sant Boi de Llobregat, Spain.
- Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
6
|
Yang X, Xu S, Chen X, He D, Ke X, Zhang L, Yang G, Liu A, Mou X, Xia W, Gou Z. Intra-bone marrow injection of trace elements co-doped calcium phosphate microparticles for the treatment of osteoporotic rat. J Biomed Mater Res A 2017; 105:1422-1432. [PMID: 28233417 DOI: 10.1002/jbm.a.36027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou 310058 China
| | - Sanzhong Xu
- Department of Orthopaedic Surgery; the First Affiliated hospital, School of Medicine of Zhejiang University; Hangzhou 310003 China
| | - Xiaoyi Chen
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou 310058 China
- Clinical Research Institute, Zhejiang Provincial People's Hospital; Hangzhou Zhejiang 310014 People's Republic of China
| | - Dongshuang He
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou 310058 China
| | - Xiurong Ke
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an 325200 China
| | - Lei Zhang
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an 325200 China
| | - Guojing Yang
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an 325200 China
| | - An Liu
- Department of Orthopaedic Surgery; Second Affiliated Hospital, School of Medicine, Zhejiang University; Hangzhou 310009 China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital; Hangzhou Zhejiang 310014 People's Republic of China
| | - Wei Xia
- Department of Engineering Sciences, The Ångstrom Laboratory; Uppsala University; Box 534 Uppsala 75121 Sweden
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
7
|
Zhou Y, Wu Y, Ma W, Jiang X, Takemra A, Uemura M, Xia L, Lin K, Xu Y. The effect of quercetin delivery system on osteogenesis and angiogenesis under osteoporotic conditions. J Mater Chem B 2017; 5:612-625. [DOI: 10.1039/c6tb02312f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bone regeneration under osteoporotic conditions with impaired angiogenesis, osteogenesis and remodeling represents a great challenge.
Collapse
Affiliation(s)
- Yuning Zhou
- Department of Oral Surgery
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai
| | - Yuqiong Wu
- Department of Prosthodontics
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Wudi Ma
- Department of Oral Surgery
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai
| | - Xinquan Jiang
- Department of Prosthodontics
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | | | - Mamoru Uemura
- Department of Anatomy
- Osaka Dental University
- Osaka
- Japan
| | - Lunguo Xia
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
| | - Kaili Lin
- School & Hospital of Stomatology
- Tongji University
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Shanghai, 200072
- China
| | - Yuanjin Xu
- Department of Oral Surgery
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai
| |
Collapse
|
8
|
Chen L, Song W, Markel DC, Shi T, Muzik O, Matthew H, Ren W. Flow perfusion culture of MC3T3-E1 osteogenic cells on gradient calcium polyphosphate scaffolds with different pore sizes. J Biomater Appl 2015; 30:908-18. [DOI: 10.1177/0885328215608335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Calcium polyphosphate is a biodegradable bone substitute. It remains a challenge to prepare porous calcium polyphosphate with desired gradient porous structures. In this study, a modified one-step gravity sintering method was used to prepare calcium polyphosphate scaffolds with desired-gradient-pore-size distribution. The differences of porous structure, mechanical strength, and degradation rate between gradient and homogenous calcium polyphosphate scaffolds were evaluated by micro-computed tomography, scanning electron microscopy, and mechanical testing. Preosteoblastic MC3T3-E1 cells were seeded onto gradient and homogenous calcium polyphosphate scaffolds and cultured in a flow perfusion bioreactor. The distribution, proliferation, and differentiation of the MC3T3-E1 cells were compared to that of homogenous calcium polyphosphate scaffolds. Though no significant difference of cell proliferation was found between the gradient and the homogenous calcium polyphosphate scaffolds, a much higher cell differentiation and mineralization were observed in the gradient calcium polyphosphate scaffolds than that of the homogenous calcium polyphosphate scaffolds, as manifested by increased alkaline phosphatase activity ( p < 0.05). The improved distribution and differentiation of cultured cells within gradient scaffolds were further supported by both 18F-fluorine micro-positron emission tomography scanning and in vitro tetracycline labeling. We conclude that the calcium polyphosphate scaffold with gradient pore sizes enhances osteogenic cell differentiation as well as mineralization. The in vivo performance of gradient calcium polyphosphate scaffolds warrants further investigation in animal bone defect models.
Collapse
Affiliation(s)
- Liang Chen
- Department of Biomedical Engineering, Wayne State University, USA
| | - Wei Song
- Department of Biomedical Engineering, Wayne State University, USA
| | - David C Markel
- Detroit Medical Center & Providence Hospital Orthopaedic Residency, USA
- Department of Orthopaedic Surgery, Providence Hospital and Medical Centers, USA
| | - Tong Shi
- Department of Biomedical Engineering, Wayne State University, USA
| | | | - Howard Matthew
- Department of Biomedical Engineering, Wayne State University, USA
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, USA
- Department of Orthopaedic Surgery, Providence Hospital and Medical Centers, USA
| |
Collapse
|
9
|
van Houdt CIA, Tim CR, Crovace MC, Zanotto ED, Peitl O, Ulrich DJO, Jansen JA, Parizotto NA, Renno AC, van den Beucken JJJP. Bone regeneration and gene expression in bone defects under healthy and osteoporotic bone conditions using two commercially available bone graft substitutes. ACTA ACUST UNITED AC 2015; 10:035003. [PMID: 25953955 DOI: 10.1088/1748-6041/10/3/035003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biosilicate(®) and Bio-Oss(®) are two commercially available bone substitutes, however, little is known regarding their efficacy in osteoporotic conditions. The purpose of this study was to evaluate the osteogenic properties of both materials, at tissue and molecular level. Thirty-six Wistar rats were submitted to ovariectomy (OVX) for inducing osteoporotic conditions and sham surgery (SHAM) as a control. Bone defects were created in both femurs, which were filled with Biosilicate(®) or Bio-Oss(®), and empty defects were used as control. For the healthy condition both Biosilicate(®) and Bio-Oss(®) did not improve bone formation after 4 weeks. Histomorphometric evaluation of osteoporotic bone defects with bone substitutes showed more bone formation, significant for Bio-Oss(®). Molecular biological evaluation was performed by gene-expression analysis (Runx-2, ALP, OC, OPG, RANKL). The relative gene expression was increased with Biosilicate(®) for all genes in OVX rats and for Runx-2, ALP, OC and RANKL in SHAM rats. In contrast, with Bio-Oss(®), the relative gene expression of OVX rats was similar for all three groups. For SHAM rats it was increased for Runx-2, ALP, OC and RANKL. Since both materials improved bone regeneration in osteoporotic conditions, our results suggest that bone defects in osteoporotic conditions can be efficiently treated with these two bone substitutes.
Collapse
|
10
|
In vitro proliferation and differentiation potential of bone marrow-derived mesenchymal stem cells from ovariectomized rats. Tissue Cell 2014; 46:450-6. [PMID: 25257163 DOI: 10.1016/j.tice.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 11/20/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMMSCs) from the patients suffering from age-related osteoporosis were found to have numerous degeneration, such as decreased growth rate, impaired capacity of differentiating into local tissue, and repressed telomerase activity. However, it is not clear whether post-menopausal osteoporotic bone is either subject to such decline in cellular function. In the present study, bone marrow cells were harvested from ovariectomized (OVX) and Sham rats and cultured in vitro at 3 months post-surgery. MTT assay indicated that the proliferation potential of (OVX)BMMSCs was always higher than that of (Sham)BMMSCs, no matter cultured in basic, osteoblastic or adipogenic medium. Alkaline phosphatase activity assay, Alizarin red S staining, Oil red O staining and real-time RT-PCR analysis further demonstrated that bilateral ovariectomization positively influenced the osteoblastic and adipogenic differentiation potential of BMMSCs, this action may be partly mediated through up-regulation of osteoblastic special markers core binding factor a1, collagen type I and low-density lipoprotein receptor-related protein 5, as well as adipogenic special markers peroxisome proliferators activated receptor gamma, CCAAT/enhancer binding protein alpha and adipocyte lipid-binding protein 2. These results may hold great promise for using post-menopausal osteoporotic bone as an attractive autologous marrow source for tissue engineering and cell-based therapies.
Collapse
|
11
|
Pineda B, Serna E, Laguna-Fernández A, Noguera I, Panach L, Hermenegildo C, Tarín JJ, Cano A, García-Pérez MÁ. Gene expression profile induced by ovariectomy in bone marrow of mice: a functional approach to identify new candidate genes associated to osteoporosis risk in women. Bone 2014; 65:33-41. [PMID: 24815918 DOI: 10.1016/j.bone.2014.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 01/24/2023]
Abstract
Osteoporosis is a multifactorial skeletal pathology with a main genetic component. To date, however, the majority of genes associated with this pathology remain unknown since genes cataloged to date only explain a part of the heritability of bone phenotypes. In the present study, we have used a genome-wide gene expression approach by means of microarrays to identify new candidate genes involved in the physiopathology of osteoporosis, using as a model the ovariectomized (OVX) mice by comparing global bone marrow gene expression of the OVX mice with those of SHAM operated mice. One hundred and eighty transcripts were found to be differentially expressed between groups. The analysis showed 23 significant regulatory networks, of which the top five canonical pathways included B-cell development, primary immunodeficiency signaling, PI3K signaling in B-cells, phospholipase C signaling, and FcgRIIB signaling in B-cells. Twelve differentially expressed genes were validated by MALDI-TOF mass spectrometry with good reproducibility. Finally, the association to bone phenotypes of SNPs in genes whose expression was increased (IL7R and CD79A) or decreased (GPX3 and IRAK3) by OVX in mice was analyzed in a cohort of 706 postmenopausal women. We detected an association of a SNP in a gene involved in the detoxification of free radicals like glutathione peroxidase 3 (GPX3) with femoral neck BMD (rs8177447, P=0.043) and two SNPs in the Ig-alpha protein of the B-cell antigen component gene (CD79A) with lumbar spine BMD (rs3810153 and rs1428922, P=0.016 and P=0.001, respectively). These results reinforce the role of antioxidant pathways and of B-cells in bone metabolism. Furthermore, it shows that a genome-wide gene expression approach in animal models is a useful method for detecting genes associated to BMD and osteoporosis risk in humans.
Collapse
Affiliation(s)
- Begoña Pineda
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain
| | - Eva Serna
- Research Unit - INCLIVA, Faculty of Medicine, University of Valencia, Spain
| | | | - Inmaculada Noguera
- Research Unit - INCLIVA, Faculty of Medicine, University of Valencia, Spain
| | - Layla Panach
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain
| | - Carlos Hermenegildo
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, Spain
| | - Juan J Tarín
- Department of Functional Biology and Physical Anthropology, University of Valencia, Spain
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Spain
| | - Miguel Ángel García-Pérez
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain; Department of Genetics, University of Valencia, Spain.
| |
Collapse
|
12
|
Palmer GD, Attur MG, Yang Q, Liu J, Moon P, Beier F, Abramson SB. F-spondin deficient mice have a high bone mass phenotype. PLoS One 2014; 9:e98388. [PMID: 24875054 PMCID: PMC4038615 DOI: 10.1371/journal.pone.0098388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/02/2014] [Indexed: 01/30/2023] Open
Abstract
F-spondin is a pericellular matrix protein upregulated in developing growth plate cartilage and articular cartilage during osteoarthritis. To address its function in bone and cartilage in vivo, we generated mice that were deficient for the F-spondin gene, Spon1. Spon1−/− mice were viable and developed normally to adulthood with no major skeletal abnormalities. At 6 months, femurs and tibiae of Spon1−/− mice exhibited increased bone mass, evidenced by histological staining and micro CT analyses, which persisted up to 12 months. In contrast, no major abnormalities were observed in articular cartilage at any age group. Immunohistochemical staining of femurs and tibiae revealed increased levels of periostin, alkaline phosphate and tartrate resistant acid phosphatase (TRAP) activity in the growth plate region of Spon1−/− mice, suggesting elevated bone synthesis and turnover. However, there were no differences in serum levels of TRAP, the bone resorption marker, CTX-1, or osteoclast differentiation potential between genotypes. Knockout mice also exhibited reduced levels of TGF-β1 in serum and cultured costal chondrocytes relative to wild type. This was accompanied by increased levels of the BMP-regulatory SMADs, P-SMAD1/5 in tibiae and chondrocytes. Our findings indicate a previously unrecognized role for Spon1 as a negative regulator of bone mass. We speculate that Spon1 deletion leads to a local and systemic reduction of TGF-β levels resulting in increased BMP signaling and increased bone deposition in adult mice.
Collapse
Affiliation(s)
- Glyn D Palmer
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| | - Mukundan G Attur
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| | - Qing Yang
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| | - James Liu
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| | - Paxton Moon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Steven B Abramson
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| |
Collapse
|
13
|
Kwak J, Zara JN, Chiang M, Ngo R, Shen J, James AW, Le KM, Moon C, Zhang X, Gou Z, Ting K, Soo C. NELL-1 injection maintains long-bone quantity and quality in an ovariectomy-induced osteoporotic senile rat model. Tissue Eng Part A 2013; 19:426-36. [PMID: 23083222 PMCID: PMC3542871 DOI: 10.1089/ten.tea.2012.0042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/24/2012] [Indexed: 02/02/2023] Open
Abstract
Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0-50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures.
Collapse
Affiliation(s)
- Jinny Kwak
- Section of Orthodontics School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Janette N. Zara
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Michael Chiang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Richard Ngo
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Jia Shen
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, California
| | - Aaron W. James
- Section of Orthodontics School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Khoi M. Le
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Crystal Moon
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Zhongru Gou
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Kang Ting
- Section of Orthodontics School of Dentistry, University of California, Los Angeles, Los Angeles, California
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Chia Soo
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
14
|
Bernardini G, Braconi D, Spreafico A, Santucci A. Post-genomics of bone metabolic dysfunctions and neoplasias. Proteomics 2012; 12:708-21. [PMID: 22246652 DOI: 10.1002/pmic.201100358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 12/14/2022]
Abstract
Post-genomic research on osteoblastic and osteoclastic cells, in contrast to that on many other cell types, has only been undertaken recently. Nevertheless, important information has been gained from these investigations on the mechanisms involved in osteoblast differentiation and on markers relevant for tissue regeneration and therapeutic validation of drugs, hormones and growth factors. These protein indicators may also have a diagnostic and prognostic value for bone dysfunctions and tumors. Some reviews have already focused on the application of transcriptomics and/or proteomics for exploring skeletal biology and related disorders. The main goal of the present review is to systematically summarize the most relevant post-genomic studies on various metabolic bone diseases (osteoporosis, Paget's disease and osteonecrosis), neoplasias (osteosarcoma) and metabolic conditions that indirectly affect bone tissue, such as alkaptonuria.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Siena, Italy
| | | | | | | |
Collapse
|
15
|
Chang HX, Yang L, Li Z, Chen G, Dai G. Age-related biological characterization of mesenchymal progenitor cells in human articular cartilage. Orthopedics 2011; 34:e382-8. [PMID: 21815581 DOI: 10.3928/01477447-20110627-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adult articular cartilage has a low regeneration capacity due to lack of viable progenitor cells caused by limited blood supply to cartilage. However, recent studies have demonstrated the existence of chondroprogenitor cells in articular cartilage. A critical question is whether these mesenchymal progenitor cells are functionally viable for tissue renewal and cartilage repair to postpone cartilage degeneration. This study was designed to compare the number and function of mesenchymal progenitor cells in articular cartilage collected from human fetuses, healthy adults (aged 28-45 years), and elderly adults (aged 60-75 years) and cultured in vitro. We detected multipotent mesenchymal progenitor cells, defined as CD105+/CD166+ cells, in human articular cartilage of all ages. However, mesenchymal progenitor cells accounted for 94.69%±2.31%, 4.85%±2.62%, and 6.33%±3.05% of cells in articular cartilage obtained from fetuses, adults, and elderly patients, respectively (P<.001). Furthermore, fetal mesenchymal progenitor cells had the highest rates of proliferation measured by cell doubling times and chondrogenic differentiation as compared to those from adult and elderly patients. In contrast, alkaline phosphatase levels, which are indicative of osteogenic differentiation, did not show significant reduction with aging. However, spontaneous osteogenic differentiation was detected only in mesenchymal progenitor cells from elderly patients (with lower Markin scales). The lower chondrogenic and spontaneous osteogenic differentiation of mesenchymal progenitor cells derived from elderly patients may be associated with the development of primary osteoarthritis. These results suggest that measuring cartilage mesenchymal progenitor cells may not only identify underlying mechanisms but also offer new diagnostic and therapeutic potential for patients with osteoarthritis.
Collapse
Affiliation(s)
- Hong-Xing Chang
- Department of Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
16
|
Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, Kodama T, Yamaguchi A, Owen MJ, Takahashi S, Takayanagi H. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 2010; 120:3455-65. [PMID: 20877012 DOI: 10.1172/jci42528] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/14/2010] [Indexed: 12/13/2022] Open
Abstract
Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf(-/-) mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf(+/-) mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Melhus G, Brorson SH, Baekkevold ES, Andersson G, Jemtland R, Olstad OK, Reinholt FP. Gene expression and distribution of key bone turnover markers in the callus of estrogen-deficient, vitamin D-depleted rats. Calcif Tissue Int 2010; 87:77-89. [PMID: 20495792 PMCID: PMC2887935 DOI: 10.1007/s00223-010-9371-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/24/2010] [Indexed: 11/26/2022]
Abstract
An experimental rat model was used to test the hypothesis that in osteoporosis (OP) the molecular composition of the extracellular matrix in the fracture callus is disturbed. OP was induced at 10 weeks of age by ovariectomy and a vitamin D(3)-deficient diet, and sham-operated animals fed normal diet served as controls. Three months later a closed tibial fracture was made and stabilized with an intramedullary nail. After 3 and 6 weeks of healing, the animals were killed and the fracture calluses examined with global gene expression, in situ mRNA expression, and ultrastructural protein distribution of four bone turnover markers: osteopontin, bone sialoprotein, tartrate-resistant acid phosphatase, and cathepsin K. Global gene expression showed a relatively small number of differently regulated genes, mostly upregulated and at 3 weeks. The four chosen markers were not differently regulated, and only minor differences in the in situ mRNA expression and ultrastructural protein distribution were detected. Gene expression and composition of fracture calluses are not generally disturbed in experimental OP.
Collapse
Affiliation(s)
- Gunhild Melhus
- Institute of Pathology, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
18
|
Fan W, Bouwense SAW, Crawford R, Xiao Y. Structural and cellular features in metaphyseal and diaphyseal periosteum of osteoporotic rats. J Mol Histol 2010; 41:51-60. [PMID: 20232237 PMCID: PMC2852588 DOI: 10.1007/s10735-010-9261-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 03/02/2010] [Indexed: 11/30/2022]
Abstract
Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P < 0.001). The number of TRAP+ osteoclasts in bone resorption pits, VEGF+ cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P < 0.05), while no significant difference was detected in the number of ALP+ cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system.
Collapse
Affiliation(s)
- Wei Fan
- Bone Tissue Engineering, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Qld 4059, Australia
| | | | | | | |
Collapse
|
19
|
Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone 2009; 44:87-101. [PMID: 18840552 DOI: 10.1016/j.bone.2008.08.120] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/06/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Osteoporosis (OP) is a common age-related systemic skeletal disease, with a strong genetic component, characterised by loss of bone mass and strength, which leads to increased bone fragility and susceptibility to fracture. Although some progress has been made in identifying genes that may contribute to OP disease, much of the genetic component of OP has yet to be accounted for. Therefore, to investigate the molecular basis for the changes in bone causally involved in OP and fragility fracture, we have used a microarray approach. We have analysed altered gene expression in human OP fracture bone by comparing mRNA in bone from individuals with fracture of the neck of the proximal femur (OP) with that from age-matched individuals with osteoarthritis (OA), and control (CTL) individuals with no known bone pathology. The OA sample set was included because an inverse association, with respect to bone density, has been reported between OA and the OP individuals. Compugen H19K oligo human microarray slides were used to compare the gene expression profiles of three sets of female samples comprising, 10 OP-CTL, 10 OP-OA, and 10 OA-CTL sample pairs. Using linear models for microarray analysis (Limma), 150 differentially expressed genes in OP bone with t scores >5 were identified. Differential expression of 32 genes in OP bone was confirmed by real time PCR analysis (p<0.01). Many of the genes identified have known or suspected roles in bone metabolism and in some cases have been implicated previously in OP pathogenesis. Three major sets of differentially expressed genes in OP bone were identified with known or suspected roles in either osteoblast maturation (PRRX1, ANXA2, ST14, CTSB, SPARC, FST, LGALS1, SPP1, ADM, and COL4A1), myelomonocytic differentiation and osteoclastogenesis (TREM2, ANXA2, IL10, CD14, CCR1, ADAM9, CCL2, CTGF, and KLF10), or adipogenesis, lipid and/or glucose metabolism (IL10, MARCO, CD14, AEBP1, FST, CCL2, CTGF, SLC14A1, ANGPTL4, ADM, TAZ, PEA15, and DOK4). Altered expression of these genes and others in these groups is consistent with previously suggested underlying molecular mechanisms for OP that include altered osteoblast and osteoclast differentiation and function, and an imbalance between osteoblastogenesis and adipogenesis.
Collapse
Affiliation(s)
- B Hopwood
- Division of Tissue Pathology, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
20
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
21
|
Hollinger JO, Onikepe AO, MacKrell J, Einhorn T, Bradica G, Lynch S, Hart CE. Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix. J Orthop Res 2008; 26:83-90. [PMID: 17676626 DOI: 10.1002/jor.20453] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aging and osteoporosis contribute to decreased bone mass and bone mineral density as well as compromised fracture healing rates and bone repair quality. Consequently, the purpose of this study was to determine if recombinant human platelet-derived growth factor-BB (rhPDGF-BB) delivered in an injectable beta-tricalcium phosphate/collagen matrix would enhance tibial fracture healing in geriatric (>2 years of age), osteoporotic rats. A total of 80 rats were divided equally among four groups: Fracture alone; Fracture plus matrix; Fracture plus matrix and either 0.3 mg/mL or 1.0 mg/mL rhPDGF-BB. At 3 and 5 weeks, rats were euthanized and treatment outcome was assessed histologically, radiographically, biomechanically, and by micro-CT. Results indicated rhPDGF-BB-treated fractures in osteoporotic, geriatric rats caused a statistically significant time-dependent increase in torsional strength 5 weeks after treatment. The healed fractures were equivalent in torsional strength to the contralateral, unoperated tibiae. Data from the study are the first, to our knowledge, to underscore rhPDGF-BB efficacy in an injectable beta-tricalcium phosphate/collagen matrix accelerated fracture repair in a geriatric, osteoporotic rat model.
Collapse
Affiliation(s)
- Jeffrey O Hollinger
- Bone Tissue Engineering Center, Carnegie Mellon University, 125D Smith Hall, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|