1
|
Asayag K, Peled E, Assalia M, Crispel Y, Yanovich C, Cohen H, Keren-Politansky A, Nadir Y. Steroids and Malignancy Increase Local Heparanase and Decrease Markers of Osteoblast Activity in Bone Tissue Microcirculation. Biomolecules 2024; 14:1506. [PMID: 39766213 PMCID: PMC11673960 DOI: 10.3390/biom14121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 01/30/2025] Open
Abstract
Bone metastasis and steroids are known to activate the coagulation system and induce osteoporosis, pathological bone fractures, and bone pain. Heparanase is a protein known to enhance the hemostatic system and to promote angiogenesis, metastasis, and inflammation. The objective of the present study was to evaluate the effects of steroids and malignancy on the coagulation factors and osteoblast activity in the bone tissue. The effects of dexacort and malignant medium were evaluated in osteoblasts derived from human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs). The bones of mice treated with dexacort for 1 month were studied. Bone biopsies of ten patients with bone metastasis, ten with steroid-induced avascular necrosis (AVN), and ten with osteoarthritis were compared to ten controls. We found that dexacort and malignant medium significantly increased the heparanase levels in osteoblasts and HUVECs and decreased the levels of alkaline phosphatase (ALKP). Peptide 16AC, derived from heparanase, which interacts with tissue factor (TF), further increased the effect, while peptide 6, which inhibits interactions between heparanase and TF, reversed the effect in these cells. The bone microcirculation of mice treated with dexacort exhibited significantly higher levels of heparanase, TF, TF pathway inhibitor (TFPI), TFPI-2, thrombin, and syndecan-1, but reduced levels of osteocalcin and ALKP. The pathological human bone biopsies' microcirculation exhibited significantly dilated blood vessels and higher levels of heparanase, TF, TFPI, TFPI-2, and fibrin. In summary, steroids and malignancy increased the activation of the coagulation system in the bone microcirculation and reduced the osteoblast activity. Heparanase inhibitors should be further investigated to attenuate bone fractures and pain.
Collapse
Affiliation(s)
- Keren Asayag
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel; (K.A.); (M.A.); (Y.C.); (C.Y.); (H.C.); (A.K.-P.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology—Technion, Haifa 3109601, Israel;
| | - Eli Peled
- The Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology—Technion, Haifa 3109601, Israel;
- Orthopedic Division, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Mai Assalia
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel; (K.A.); (M.A.); (Y.C.); (C.Y.); (H.C.); (A.K.-P.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology—Technion, Haifa 3109601, Israel;
| | - Yonatan Crispel
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel; (K.A.); (M.A.); (Y.C.); (C.Y.); (H.C.); (A.K.-P.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology—Technion, Haifa 3109601, Israel;
| | - Chen Yanovich
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel; (K.A.); (M.A.); (Y.C.); (C.Y.); (H.C.); (A.K.-P.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology—Technion, Haifa 3109601, Israel;
| | - Haim Cohen
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel; (K.A.); (M.A.); (Y.C.); (C.Y.); (H.C.); (A.K.-P.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology—Technion, Haifa 3109601, Israel;
| | - Anat Keren-Politansky
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel; (K.A.); (M.A.); (Y.C.); (C.Y.); (H.C.); (A.K.-P.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology—Technion, Haifa 3109601, Israel;
| | - Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel; (K.A.); (M.A.); (Y.C.); (C.Y.); (H.C.); (A.K.-P.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology—Technion, Haifa 3109601, Israel;
| |
Collapse
|
2
|
Zhang L, Peng Y, Guo T, Fang W, Li Z, Yang X. Uniaxial static strain enhances osteogenic and angiogenic potential under hypoxic conditions in distraction osteogenesis. J Orthop Surg Res 2024; 19:711. [PMID: 39487512 PMCID: PMC11531187 DOI: 10.1186/s13018-024-05212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVE Bone incision leads to interrupted and sluggish blood flow in the process of distraction osteogenesis (DO), creating a hypoxia (0-2% oxygen tension) at the center of the bone callus. This hypoxia is critical in the coupling of osteogenesis and angiogenesis during DO. This study aimed to investigate the effect of Uniaxial Static Strain (USS) on osteogenesis in osteoblasts under hypoxic conditions, with a focus on the expression of osteogenic markers and angiogenic factors. METHODS The USS was made by a multi-unit tension compression device.Osteoblasts were subjected to 10% USS made under hypoxic conditions to mimic the process of DO in vitro. The cell proliferation, alkaline phosphatase (ALP) activity, mineralized nodule formation, and expression of osteogenic and angiogenic markers were evaluated by using a CCK-8 assay, alkaline phosphatase (ALP) staining, ALP activity assay, alizarin red S staining, qRT-PCR, Western blotting and ELISA. RESULTS Hypoxia inhibited osteoblast cell proliferation, ALP activity, mineralized nodule formation, and the expression of runt-related transcription factor 2 (Runx- 2), osteopontin(OPN), osteocalcin (OCN), collagen type I (Col1a1). Conversely, hypoxia upregulated the expression of hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF), which are associated with angiogenesis. However, the application of USS enhanced osteoblasts' osteogenic capacity and upregulated angiogenic factors under hypoxic conditions. CONCLUSION USS can enhance osteogenesis in osteoblasts under hypoxic conditions. Moreover, it may stimulate angiogenesis by promoting the expression of VEGF, which further contributes to bone formation. This finding provides important implications for understanding the mechanisms involved in bone regeneration and may have clinical applications in optimizing the effectiveness of DO techniques.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard,Haizhu District, Guangzhou City, Guangdong Province, China
| | - Yanhui Peng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard,Haizhu District, Guangzhou City, Guangdong Province, China
| | - Ting Guo
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard,Haizhu District, Guangzhou City, Guangdong Province, China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard,Haizhu District, Guangzhou City, Guangdong Province, China
| | - Zhengqiang Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard,Haizhu District, Guangzhou City, Guangdong Province, China
| | - Xiaoqin Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard,Haizhu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
3
|
Qin W, Liu K, Su H, Hou J, Yang S, Pan K, Yang S, Liu J, Zhou P, Lin Z, Zhen P, Mo Y, Fan B, Li Z, Kuang X, Nie X, Hua Q. Tibial cortex transverse transport promotes ischemic diabetic foot ulcer healing via enhanced angiogenesis and inflammation modulation in a novel rat model. Eur J Med Res 2024; 29:155. [PMID: 38449025 PMCID: PMC10918950 DOI: 10.1186/s40001-024-01752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Tibial Cortex Transverse Transport (TTT) represents an innovative surgical method for treating lower extremity diabetic foot ulcers (DFUs), yet its underlying mechanisms remain elusive. Establishing an animal model that closely mirrors clinical scenarios is both critical and novel for elucidating the mechanisms of TTT. METHODS We established a diabetic rat model with induced hindlimb ischemia to mimic the clinical manifestation of DFUs. TTT was applied using an external fixator for regulated bone movement. Treatment efficacy was evaluated through wound healing assessments, histological analyses, and immunohistochemical techniques to elucidate biological processes. RESULTS The TTT group demonstrated expedited wound healing, improved skin tissue regeneration, and diminished inflammation relative to controls. Marked neovascularization and upregulation of angiogenic factors were observed, with the HIF-1α/SDF-1/CXCR4 pathway and an increase in EPCs being pivotal in these processes. A transition toward anti-inflammatory M2 macrophages indicated TTT's immunomodulatory capacity. CONCLUSION Our innovative rat model effectively demonstrates the therapeutic potential of TTT in treating DFUs. We identified TTT's roles in promoting angiogenesis and modulating the immune system. This paves the way for further in-depth research and potential clinical applications to improve DFU management strategies.
Collapse
Affiliation(s)
- Wencong Qin
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kaibin Liu
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongjie Su
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jun Hou
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Shenghui Yang
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Kaixiang Pan
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sijie Yang
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jie Liu
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Peilin Zhou
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhanming Lin
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Puxiang Zhen
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Demonstration Center for Experimental (General Practice) Education, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Yongjun Mo
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Binguang Fan
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaocong Kuang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
- Yulin Campus of Guangxi Medical University, Yulin, Guangxi, China
| | - Xinyu Nie
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Qikai Hua
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Chang Q, Fujio M, Tsuboi M, Bian H, Wakasugi M, Hibi H. High-mobility group box 1 accelerates distraction osteogenesis healing via the recruitment of endogenous stem/progenitor cells. Cytotherapy 2023:S1465-3249(23)00960-X. [PMID: 37354151 DOI: 10.1016/j.jcyt.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AIMS While distraction osteogenesis (DO) achieves substantial bone regeneration, prolonged fixation may lead to infections. Existing stem cell and physical therapies have limitations, requiring the development of novel therapeutic approaches. Here, we evaluated high-mobility group box 1 (HMGB1) as a novel therapeutic target for DO treatment. METHODS Micro-computed tomography (Micro-CT) analysis and histological staining of samples obtained from tibial DO model mice was performed. Transwell migration, wound healing, and proliferation assays were also performed on cultured human mesenchymal stem cells (hMSCs) and human umbilival vein endothelial cells (HUVECs). Tube formation assay was performed on HUVECs, whereas osteogenic differentiation assay was performed on hMSCs. RESULTS Micro-CT analysis and histological staining of mouse samples revealed that HMGB1 promotes bone regeneration during DO via the recruitment of PDGFRα and Sca-1 positve (PαS+) cells and endothelial progenitor cells. Furthermore, HMGB1 accelerated angiogenesis during DO, promoted the migration and osteogenic differentiation of hMSCs as well as the proliferation, migration and angiogenesis of HUVECs in vitro. CONCLUSIONS Our findings suggest that HMGB1 has a positive influence on endogenous stem/progenitor cells, representing a novel therapeutic target for the acceleration of DO-driven bone regeneration.
Collapse
Affiliation(s)
- Qi Chang
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahito Fujio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Makoto Tsuboi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Huiting Bian
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masashi Wakasugi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
5
|
Liao F, Liao Z, Zhang T, Jiang W, Zhu P, Zhao Z, Shi H, Zhao D, Zhou N, Huang X. ECFC-derived exosomal THBS1 mediates angiogenesis and osteogenesis in distraction osteogenesis via the PI3K/AKT/ERK pathway. J Orthop Translat 2022; 37:12-22. [PMID: 36196150 PMCID: PMC9513111 DOI: 10.1016/j.jot.2022.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Distraction osteogenesis (DO) is a widely used bone regenerative technique. However, the DO process is slow, and the consolidation phase is long. Therefore, it is of great clinical significance to explore the mechanism of DO, and shorten its duration. Recent studies reported that stem cell exosomes may play an important role in promoting angiogenesis related to DO, but the mechanism remains unclear. Methods Canine endothelial colony-forming cells (ECFCs) were isolated and cultured, and the expression of THBS1 in canine ECFCs were inhibited using a lentiviral vector. The exosomes secreted by canine ECFCs were isolated and extracted, and the effect of exosomes on the angiogenic activity of Human umbilical vein endothelial cells (HUVECs) was detected by proliferation, migration, and tube formation experiments. WB and qRT-PCR were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on HUVECs angiogenesis. Then, a mandibular distraction osteogenesis (MDO) model was established in adult male beagles, and exosomes were injected into the canine peripheral blood. Micro-CT, H&E, Masson, and IHC staining were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on angiogenesis and osteogenesis in the DO area. Results ECFC-Exo accelerated HUVECs proliferation, migration and tube formation, and this ability was enhanced by inhibiting the expression of THBS1 in ECFC-Exo. Using Western blot-mediated detection, we demonstrated that inhibiting THBS1 expression in ECFCs-Exo activated PI3K, AKT, and ERK phosphorylation levels in HUVECs, which promoted VEGF and bFGF expressions. In the DO model of the canine mandible, ECFCs-Exo injected into the peripheral blood aggregated into the DO gap, thus promoting angiogenesis and bone formation in the DO tissue by reducing THBS1 expression in ECFC-Exo. Conclusion Our findings suggested that ECFC-Exos markedly enhances angiogenesis of endothelial cells, and promotes bone healing in canine MDO. Thus, THBS1 plays a crucial role in the ECFC-Exos-mediated regulation of canine MDO angiogenesis and bone remodeling. The translational potential of this article This study reveals that the angiogenic promotion via THBS1 suppression in ECFC-Exos may be a promising strategy for shortening the DO duration.
Collapse
Affiliation(s)
- Fengchun Liao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Ziqi Liao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Tao Zhang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Henglei Shi
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
- Corresponding author. Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
- Corresponding author. Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
6
|
Shen Z, Dong W, Chen Z, Chen G, Zhang Y, Li Z, Lin H, Chen H, Huang M, Guo Y, Jiang Z. Total flavonoids of Rhizoma Drynariae enhances CD31 hiEmcn hi vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis. Int J Mol Med 2022; 50:112. [PMID: 35795995 PMCID: PMC9330352 DOI: 10.3892/ijmm.2022.5167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 11/06/2022] Open
Abstract
Total flavonoids of Rhizoma Drynariae (TFRD), extracted from the kidney‑tonifying Traditional Chinese medicine Rhizoma Drynariae, can be effective in treating osteoporosis, bone fractures and defects. However, the pharmacological effects of TFRD on the specific vessel subtype CD31hiEmcnhi during distraction osteogenesis (DO) remains unclear. The present study aimed to investigate the effects of TFRD on CD31hiEmcnhi vessels in a rat model of DO. In the present study, tibial DO models were established using 60 rats with a distraction rate of 0.2 mm per day for 20 days. Co‑immunofluorescence staining of CD31 and endomucin (Emcn) was conducted to determine CD31hiEmcnhi vessels. Radiographic, angiographic and histological analyses were performed to assess bone and vessel formation. Tube formation, alkaline phosphatase (ALP) and Von Kossa staining assays were performed to test angiogenesis of endothelial precursor cells (EPCs) and osteogenesis of bone marrow‑derived mesenchymal stem cells (BMSCs). Additionally, expression levels of platelet‑derived growth factor (PDGF)‑BB, VEGF, runt‑related transcription factor 2 (RUNX2) and Osterix (OSX) were determined by western blotting and reverse transcription‑quantitative PCR. The in vivo assays demonstrated that TFRD markedly promoted CD31hiEmcnhi vessel formation during DO, whereas PDGF‑BB neutralizing antibody suppressed vessel formation. Furthermore, the ALP, Von Kossa staining and tube formation assays indicated that TFRD notably elevated the angiogenic capacity of EPCs and osteogenic capacity of BMSCs under stress conditions, which was significantly suppressed by blocking PDGF‑BB. The protein and mRNA levels of PDGF‑BB, VEGF, RUNX2 and OSX were upregulated by TFRD, but downregulated by blocking PDGF‑BB. Thus, TFRD could facilitate CD31hiEmcnhi vessel formation and subsequently enhance angiogenic‑osteogenic coupling to regenerate bone defects during DO via the PDGF‑BB/VEGF/RUNX2/OSX signaling axis, which indicated that CD31hiEmcnhi vessels could be a potential novel therapeutic target for DO, and TFRD may represent a promising drug for promoting bone regeneration in DO by increasing CD31hiEmcnhi vessels.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China
| | - Wei Dong
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China
| | - Zehua Chen
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China
| | - Guoqian Chen
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yan Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Zige Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Haixiong Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Huamei Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Minling Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| | - Ying Guo
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China
| | - Ziwei Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
| |
Collapse
|
7
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Combination of Carbonate Hydroxyapatite and Stem Cells from Human Deciduous Teeth Promotes Bone Regeneration by Enhancing BMP-2, VEGF and CD31 Expression in Immunodeficient Mice. Cells 2022; 11:cells11121914. [PMID: 35741043 PMCID: PMC9221865 DOI: 10.3390/cells11121914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to clarify the efficiency of a combination of stem cells from human deciduous teeth and carbonate apatite in bone regeneration of calvarial defects. Immunodeficient mice (n = 5 for each group/4 groups) with artificial calvarial bone defects (5 mm in diameter) were developed, and stem cells from human deciduous teeth (SHEDs) and carbonate hydroxyapatite (CAP) granules were transplanted with an atelocollagen sponge as a scaffold. A 3D analysis using microcomputed tomography, and 12 weeks after transplantation, histological and immunohistochemical evaluations of markers of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and cluster of differentiation (CD) 31 were performed. In the 3D analysis, regenerated bone formation was observed in SHEDs and CAP, with the combination of SHEDs and CAP showing significantly greater bone regeneration than that in the other groups. Histological and immunohistochemical evaluations showed that combining SHEDs and CAP enhanced the expression of BMP-2, VEGF, and CD31, and promoted bone regeneration. This study demonstrates that the combination of SHEDs and CAP transplantation may be a promising tool for bone regeneration in alveolar defects.
Collapse
|
9
|
Shi H, Zhao Z, Jiang W, Zhu P, Zhou N, Huang X. A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Front Cell Dev Biol 2022; 10:878697. [PMID: 35686054 PMCID: PMC9173585 DOI: 10.3389/fcell.2022.878697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
In addition to its important transport functions, the skeletal system is involved in complex biological activities for the regulation of blood vessels. Endothelial progenitor cells (EPCs), as stem cells of endothelial cells (ECs), possess an effective proliferative capacity and a powerful angiogenic capacity prior to their differentiation. They demonstrate synergistic effects to promote bone regeneration and vascularization more effectively by co-culturing with multiple cells. EPCs demonstrate a significant therapeutic potential for the treatment of various bone diseases by secreting a combination of growth factors, regulating cellular functions, and promoting bone regeneration. In this review, we retrospect the definition and properties of EPCs, their interaction with mesenchymal stem cells, ECs, smooth muscle cells, and immune cells in bone regeneration, vascularization, and immunity, summarizing their mechanism of action and contribution to bone biology. Additionally, we generalized their role and potential mechanisms in the treatment of various bone diseases, possibly indicating their clinical application.
Collapse
Affiliation(s)
- Henglei Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| |
Collapse
|
10
|
Moraes de Lima Perini M, Valuch CR, Dadwal UC, Awosanya OD, Mostardo SL, Blosser RJ, Knox AM, McGuire AC, Battina HL, Nazzal M, Kacena MA, Li J. Characterization and assessment of lung and bone marrow derived endothelial cells and their bone regenerative potential. Front Endocrinol (Lausanne) 2022; 13:935391. [PMID: 36120459 PMCID: PMC9470942 DOI: 10.3389/fendo.2022.935391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is important for successful fracture repair. Aging negatively affects the number and activity of endothelial cells (ECs) and subsequently leads to impaired bone healing. We previously showed that implantation of lung-derived endothelial cells (LECs) improved fracture healing in rats. In this study, we characterized and compared neonatal lung and bone marrow-derived endothelial cells (neonatal LECs and neonatal BMECs) and further asses3sed if implantation of neonatal BMECs could enhance bone healing in both young and aged mice. We assessed neonatal EC tube formation, proliferation, and wound migration ability in vitro in ECs isolated from the bone marrow and lungs of neonatal mice. The in vitro studies demonstrated that both neonatal LECs and neonatal BMECs exhibited EC traits. To test the function of neonatal ECs in vivo, we created a femoral fracture in young and aged mice and implanted a collagen sponge to deliver neonatal BMECs at the fracture site. In the mouse fracture model, endochondral ossification was delayed in aged control mice compared to young controls. Neonatal BMECs significantly improved endochondral bone formation only in aged mice. These data suggest BMECs have potential to enhance aged bone healing. Compared to LECs, BMECs are more feasible for translational cell therapy and clinical applications in bone repair. Future studies are needed to examine the fate and function of BMECs implanted into the fracture sites.
Collapse
Affiliation(s)
| | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Murad Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs (VA) Medical Center, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Jiliang Li,
| |
Collapse
|
11
|
Jiang W, Zhu P, Huang F, Zhao Z, Zhang T, An X, Liao F, Guo L, Liu Y, Zhou N, Huang X. The RNA Methyltransferase METTL3 Promotes Endothelial Progenitor Cell Angiogenesis in Mandibular Distraction Osteogenesis via the PI3K/AKT Pathway. Front Cell Dev Biol 2021; 9:720925. [PMID: 34790657 PMCID: PMC8591310 DOI: 10.3389/fcell.2021.720925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
Distraction osteogenesis (DO) is used to treat large bone defects in the field of oral and maxillofacial surgery. Successful DO-mediated bone regeneration is dependent upon angiogenesis, and endothelial progenitor cells (EPCs) are key mediators of angiogenic processes. The N6-methyladenosine (m6A) methyltransferase has been identified as an important regulator of diverse biological processes, but its role in EPC-mediated angiogenesis during DO remains to be clarified. In the present study, we found that the level of m6A modification was significantly elevated during the process of DO and that it was also increased in the context of EPC angiogenesis under hypoxic conditions, which was characterized by increased METTL3 levels. After knocking down METTL3 in EPCs, m6A RNA methylation, proliferation, tube formation, migration, and chicken embryo chorioallantoic membrane (CAM) angiogenic activity were inhibited, whereas the opposite was observed upon the overexpression of METTL3. Mechanistically, METTL3 silencing reduced the levels of VEGF and PI3Kp110 as well as the phosphorylation of AKT, whereas METTL3 overexpression reduced these levels. SC79-mediated AKT phosphorylation was also able to restore the angiogenic capabilities of METTL3-deficient EPCs in vitro and ex vivo. In vivo, METTL3-overexpressing EPCs were additionally transplanted into the DO callus, significantly enhancing bone regeneration as evidenced by improved radiological and histological manifestations in a canine mandibular DO model after consolidation over a 4-week period. Overall, these results indicate that METTL3 accelerates bone regeneration during DO by enhancing EPC angiogenesis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Fangfang Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Tao Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Xiaoning An
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Fengchun Liao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Lina Guo
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Yan Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China
| |
Collapse
|
12
|
Systemic Administration of G-CSF Accelerates Bone Regeneration and Modulates Mobilization of Progenitor Cells in a Rat Model of Distraction Osteogenesis. Int J Mol Sci 2021; 22:ijms22073505. [PMID: 33800710 PMCID: PMC8037338 DOI: 10.3390/ijms22073505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.
Collapse
|
13
|
Zhu P, Jiang W, He S, Zhang T, Liao F, Liu D, An X, Huang X, Zhou N. Panax notoginseng saponins promote endothelial progenitor cell angiogenesis via the Wnt/β-catenin pathway. BMC Complement Med Ther 2021; 21:53. [PMID: 33557814 PMCID: PMC7869233 DOI: 10.1186/s12906-021-03219-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Distraction osteogenesis (DO) is an effective treatment in craniomaxillofacial surgery. However, the issue of sufficient blood supply at the regeneration tissue has limited its wide application. Panax notoginseng saponins (PNS) is a Traditional Chinese Medicine that is commonly used to treat a range of angiogenic diseases. However, the mechanisms whereby PNS alters angiogenesis in endothelial progenitor cells (EPCs) have yet to be clarified. Methods EPCs were identified by immunofluorescence, confirmed by their uptake of fluorescently labeled Dil-ac-LDL and FITC-UEA-1. EPCs were treated with different concentrations of PNS, and the effects of PNS on cell proliferation were measured on the optimal concentration of PNS determined. The effects of PNS on angiogenesis and migration, angiogenic cytokines mRNA expression and the proteins of the Wnt pathway were investigated. Then knocked down β-catenin in EPCs and treated with the optimum concentrational PNS, their angiogenic potential was evaluated in tube formation and migration assays. In addition, the expression of cytokines associated with angiogenesis and Wnt/β-catenin was then assessed via WB and RT-qPCR. Results We were able to determine the optimal concentration of PNS in the promotion of cell proliferation, tube formation, and migration to be 6.25 mg/L. PNS treatment increased the mRNA levels of VEGF, bFGF, VE-Cadherin, WNT3a, LRP5, β-catenin, and TCF4. After knocked down β-catenin expression, we found that PNS could sufficient to partially reverse the suppression of EPC angiogenesis. Conclusions Overall, 6.25 mg/L PNS can promote EPC angiogenesis via Wnt/β-catenin signaling pathway activation.
Collapse
Affiliation(s)
- Peiqi Zhu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Weidong Jiang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Shixi He
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Tao Zhang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Fengchun Liao
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Di Liu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaoning An
- Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xuanping Huang
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| | - Nuo Zhou
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| |
Collapse
|
14
|
Jiang W, Zhu P, Zhang T, Liao F, Yu Y, Liu Y, Shen H, Zhao Z, Huang X, Zhou N. MicroRNA-205 mediates endothelial progenitor functions in distraction osteogenesis by targeting the transcription regulator NOTCH2. Stem Cell Res Ther 2021; 12:101. [PMID: 33536058 PMCID: PMC7860583 DOI: 10.1186/s13287-021-02150-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Distraction osteogenesis (DO) is a highly efficacious form of reconstructive bone regeneration, but its clinical utility is limited by the prolonged period required for bone consolidation to occur. Understanding the mechanistic basis for DO and shortening this consolidation phase thus represent promising approaches to improving the clinical utility of this procedure. Methods A mandibular DO (MDO) canine model was established, after which small RNA sequencing was performed to identify relevant molecular targets genes. Putative miRNA target genes were identified through bioinformatics and confirmed through qPCR, Western blotting, and dual-luciferase reporter assays. Peripheral blood samples were collected to isolate serum and endothelial colony-forming cells (ECFCs) in order to measure miR-205, NOTCH2, and angiogenic cytokines expression levels. Lentiviral constructs were then used to inhibit or overexpress miR-205 and NOTCH2 in isolated ECFCs, after which the angiogenic activity of these cells was evaluated in migration, wound healing, proliferation, tube formation, and chick chorioallantoic membrane (CAM) assay. Autologous ECFCs transfected to knockdown miR-205 and were injected directly into the distraction callus. On days 14, 28, 35 and 42 after surgery, bone density was evaluated via CBCT, and callus samples were collected and evaluated via histological staining to analyze bone regeneration and remodeling. Results MiR-205 was identified as being one of the miRNAs that was most significantly downregulated in MDO callus samples. Downregulation of miR-205 was also observed in DO-ECFCs and serum of animals undergoing MDO. Inhibiting miR-205 markedly enhanced angiogenesis, whereas overexpressing miR-205 had the opposite effect in vitro. Importantly, NOTCH2, which is a unique regulator in bone angiogenesis, was identified as a miR-205 target gene. Consistent with this regulatory relationship, knocking down NOTCH2 suppressed angiogenesis, and transduction with a miR-205 inhibitor lentivirus was sufficient to rescue angiogenic activity. When ECFCs in which miR-205 had been inhibited were transplanted into the MDO callus, this significantly bolstered osteogenesis, and remodeling in vivo. Conclusions MiR-205 is a significant regulator of the MDO process, and inhibiting this miRNA can accelerate MDO-related mineralization. Overall, these results offer new insights into the mechanistic basis for this procedure, highlighting potential targets for therapeutic clinical intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02150-x.
Collapse
Affiliation(s)
- Weidong Jiang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Peiqi Zhu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Tao Zhang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Fengchun Liao
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Yangyang Yu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Yan Liu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Huijuan Shen
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Zhenchen Zhao
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Xuanping Huang
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| | - Nuo Zhou
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| |
Collapse
|
15
|
Shen Z, Chen Z, Li Z, Zhang Y, Jiang T, Lin H, Huang M, Chen H, Feng J, Jiang Z. Total Flavonoids of Rhizoma Drynariae Enhances Angiogenic-Osteogenic Coupling During Distraction Osteogenesis by Promoting Type H Vessel Formation Through PDGF-BB/PDGFR-β Instead of HIF-1α/ VEGF Axis. Front Pharmacol 2020; 11:503524. [PMID: 33328980 PMCID: PMC7729076 DOI: 10.3389/fphar.2020.503524] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Total flavonoids of Rhizoma Drynariae (TFRD), extracted from the kidney-tonifying traditional Chinese medicine Rhizoma Rrynariae, has been proved to be effective in treating osteoporosis, bone fractures and defects. However, pharmacological effects of TFRD on type H vessels, angiogenic-osteogenic coupling in distraction osteogenesis (DO) and the mechanism remain unclear. This study aims at investigating whether type H vessels exist in the DO model, effects of TFRD on angiogenic-osteogenic coupling and further elucidating the underlying mechanism. Methods: Rats models of DO and bone fracture (FR) were established, and then were separately divided into TFRD and control subgroups. Imageological and histological analyses were performed to assess bone and vessel formation. Immunofluorescent staining of CD31 and endomucin (Emcn) was conducted to determine type H vessel formation. Matrigel tube formation, ALP and Alizarin Red S staining assays were performed to test the effects of TFRD on angiogenesis or osteogenesis of endothelial precursor cells (EPCs) or bone marrow-derived mesenchymal stem cells (BMSCs). Additionally, expression levels of HIF-1α, VEGF, PDGF-BB, RUNX2 and OSX were determined by ELISA, qPCR or western blot, respectively. Results: The in vivo results indicated more formed type H vessels in DO groups than in FR groups and TFRD obviously increased the abundance of type H vessels. Moreover, groups with higher abundance of type H vessels showed better angiogenesis and osteogenesis outcomes. Further in vitro experiments showed that TFRD significantly promoted while blocking PDGF-BB remarkably suppressed the angiogenic activity of EPCs under stress conditions. The levels of p-AKT and p-ERK1/2, downstream mediators of the PDGF-BB pathway, were up-regulated by TFRD but blocked by function blocking anti-PDGF-BB antibody. In contrast, the activated AKT and ERK1/2 and corresponding tube formation were not affected by the HIF-1α inhibitor. Besides, blocking PDGF-BB inhibited the osteogenic differentiation of the stretched BMSCs, but TFRD enhanced the osteogenic activity of BMSCs and ameliorated the inhibition, with more calcium nodes, higher ALP activity and mRNA and protein levels of RUNX2 and OSX. Conclusion: Type H vessels exist in the DO model and TFRD enhances angiogenic-osteogenic coupling during DO by promoting type H vessel formation via PDGF-BB/PDGFR-β instead of HIF-1α/VEGF axis.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
- Department of Orthopaedics, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehua Chen
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zige Li
- Department of Orthopaedics, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Jiang
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haixiong Lin
- Department of Orthopaedics, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minling Huang
- Department of Orthopaedics, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huamei Chen
- Department of Orthopaedics, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junjie Feng
- Department of Orthopaedics, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Jiang
- Department of Orthopaedics, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Mi J, Xu J, Yao H, Li X, Tong W, Li Y, Dai B, He X, Chow DHK, Li G, Lui KO, Zhao J, Qin L. Calcitonin Gene-Related Peptide Enhances Distraction Osteogenesis by Increasing Angiogenesis. Tissue Eng Part A 2020; 27:87-102. [PMID: 32375579 DOI: 10.1089/ten.tea.2020.0009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Distraction osteogenesis (DO) is a well-established surgical technique for treating bone defect and limb lengthening. The major drawback of DO is the long treatment period as the external fixator has to be kept in place until consolidation is completed. Calcitonin gene-related peptide (CGRP) has been reported to promote angiogenesis by affecting endothelial progenitor cells (EPCs) in limb ischemia and wound healing. Thus, the goal of this study was to evaluate the angiogenic effect of exogenous CGRP on bone regeneration in a rat DO model. Exogenous CGRP was directly injected into the bone defect after each cycle of distraction in vivo. Microcomputed tomography, biomechanical test, and histological analysis were performed to assess the new bone formation. Angiography and immunofluorescence were performed to assess the formation of blood vessels. CD31+CD144+ EPCs in the bone defect were quantified with flow cytometry. In in vitro study, bone marrow stem cells (BMSCs) were used to investigate the effect of CGRP on EPCs production during endothelial differentiation. Our results showed that CGRP significantly promoted bone regeneration and vessel formation after consolidation. CGRP significantly increased the fraction of CD31+CD144+EPCs and the capillary density in the bone defect at the end of distraction phase. CGRP increased EPC population in the endothelial differentiation of BMSCs in vitro by activating PI3K/AKT signaling pathway. Furthermore, differentiated EPCs rapidly assembled into tube-like structures and promoted osteogenic differentiation of BMSCs. In conclusion, CGRP increased EPC population and promoted blood vessel formation and bone regeneration at the defect region in a DO model. Impact statement Distraction osteogenesis (DO) is a well-established surgical technique for limb lengthening and bone defect. The disadvantage of this technique is that external fixator is needed to be kept in place for about 12 months. This may result in increased risk of infection, financial burden, and negative psychological impacts. In this study, we have injected calcitonin gene-related peptide (CGRP) into the defect region after distraction and found that CGRP enhanced vessel formation and bone regeneration in a rat DO model. This suggests that a controlled delivery system for CGRP could be developed and applied clinically for accelerating bone regeneration in patients with DO.
Collapse
Affiliation(s)
- Jie Mi
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
An update to the advances in understanding distraction histogenesis: From biological mechanisms to novel clinical applications. J Orthop Translat 2020. [DOI: 10.1016/j.jot.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
He X, Han Z, Jiang W, Huang F, Ren C, Wei Q, Zhou N. Hypoxia improved vasculogenesis in distraction osteogenesis through Mesenchymal-Epithelial transition (MET), Wnt/β-catenin signaling pathway, and autophagy. Acta Histochem 2020; 122:151593. [PMID: 32778247 DOI: 10.1016/j.acthis.2020.151593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/16/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The osteogenesis rate of distraction osteogenesis is 4-6 times faster than that of infants, far beyond fracture healing. However, the osteogenesis mechanism of DO is complicated and inconclusive owing to two significant elements: mechanical tension which is well explored and trauma caused by bone fracture. Vasculogenesis and EPCs are critical for successful bone regeneration during DO. Thus, this study aimed to explore the effects of hypoxia caused by trauma or CoCl2 on the vasculogenesis of DO and EPCs. MATERIAL AND METHODS Mandibular DO and BF models were generated using 6 beagle dogs with a distraction rate of 1 mm per day for 7 days or acute lengthening for 7 mm. The vasculogenesis in DO-gap or BF-gap were assessed via histological analyses, qRT-PCR and immunofluorescence staining. Dog bone marrow EPCs were isolated and cultured with or without 0.1 mM CoCl2. The effect of hypoxia caused by CoCl2 were subsequently valuated via in vitro assays including Cell Counting Kit-8, transwell assay, qRT-PCR, western blot, and immunofluorescence staining. RESULTS Histological analyses, qRT-PCR and immunofluorescence staining revealed that vasculogenesis markedly accelerated in DO-gap compared with BF-gap, and the DO-gap displayed more positive to CD133, CD34, HIF-1α, E-cadherin, beclin1, β-catenin, VEGF, bFGF, and less positive to ZEB1 than BF-gap. In addition, in vitro analyses revealed CoCl2 treatment enhanced EPCs proliferation and migration, and the levels of HIF-1α, E-cadherin, β-catenin, beclin1, VEGF, bFGF of EPCs were increased, but the level of ZEB1 was decreased. CONCLUSION Our studies showed that hypoxia promoted vasculogenesis in DO and EPCs, and the mechanism may involve autophagy, Wnt/β-catenin signaling pathway, and Mesenchymal-Epithelial transition (MET).
Collapse
Affiliation(s)
- Xuan He
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Zhiqi Han
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Weidong Jiang
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Fangfang Huang
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Chao Ren
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Qian Wei
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Nuo Zhou
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China.
| |
Collapse
|
19
|
Goodman SB, Lin T. Modifying MSC Phenotype to Facilitate Bone Healing: Biological Approaches. Front Bioeng Biotechnol 2020; 8:641. [PMID: 32671040 PMCID: PMC7328340 DOI: 10.3389/fbioe.2020.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Healing of fractures and bone defects normally follows an orderly series of events including formation of a hematoma and an initial stage of inflammation, development of soft callus, formation of hard callus, and finally the stage of bone remodeling. In cases of severe musculoskeletal injury due to trauma, infection, irradiation and other adverse stimuli, deficient healing may lead to delayed or non-union; this results in a residual bone defect with instability, pain and loss of function. Modern methods of mechanical stabilization and autologous bone grafting are often successful in achieving fracture union and healing of bone defects; however, in some cases, this treatment is unsuccessful because of inadequate biological factors. Specifically, the systemic and local microenvironment may not be conducive to bone healing because of a loss of the progenitor cell population for bone and vascular lineage cells. Autologous bone grafting can provide the necessary scaffold, progenitor and differentiated lineage cells, and biological cues for bone reconstruction, however, autologous bone graft may be limited in quantity or quality. These unfavorable circumstances are magnified in systemic conditions with chronic inflammation, including obesity, diabetes, chronic renal disease, aging and others. Recently, strategies have been devised to both mitigate the necessity for, and complications from, open procedures for harvesting of autologous bone by using minimally invasive aspiration techniques and concentration of iliac crest bone cells, followed by local injection into the defect site. More elaborate strategies (not yet approved by the U.S. Food and Drug Administration-FDA) include isolation and expansion of subpopulations of the harvested cells, preconditioning of these cells or inserting specific genes to modulate or facilitate bone healing. We review the literature pertinent to the subject of modifying autologous harvested cells including MSCs to facilitate bone healing. Although many of these techniques and technologies are still in the preclinical stage and not yet approved for use in humans by the FDA, novel approaches to accelerate bone healing by modifying cells has great potential to mitigate the physical, economic and social burden of non-healing fractures and bone defects.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Orthopaedic Research Laboratories, Stanford University, Stanford, CA, United States
| |
Collapse
|
20
|
Tamari T, Kawar-Jaraisy R, Doppelt O, Giladi B, Sabbah N, Zigdon-Giladi H. The Paracrine Role of Endothelial Cells in Bone Formation via CXCR4/SDF-1 Pathway. Cells 2020; 9:cells9061325. [PMID: 32466427 PMCID: PMC7349013 DOI: 10.3390/cells9061325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Vascularization is a prerequisite for bone formation. Endothelial progenitor cells (EPCs) stimulate bone formation by creating a vascular network. Moreover, EPCs secrete various bioactive molecules that may regulate bone formation. The aim of this research was to shed light on the pathways of EPCs in bone formation. In a subcutaneous nude mouse ectopic bone model, the transplantation of human EPCs onto β-TCP scaffold increased angiogenesis (p < 0.001) and mineralization (p < 0.01), compared to human neonatal dermal fibroblasts (HNDF group) and a-cellular scaffold transplantation (β-TCP group). Human EPCs were lining blood vessels lumen; however, the majority of the vessels originated from endogenous mouse endothelial cells at a higher level in the EPC group (p < 01). Ectopic mineralization was mostly found in the EPCs group, and can be attributed to the recruitment of endogenous mesenchymal cells ten days after transplantation (p < 0.0001). Stromal derived factor-1 gene was expressed at high levels in EPCs and controlled the migration of mesenchymal and endothelial cells towards EPC conditioned medium in vitro. Blocking SDF-1 receptors on both cells abolished cell migration. In conclusion, EPCs contribute to osteogenesis mainly by the secretion of SDF-1, that stimulates homing of endothelial and mesenchymal cells. This data may be used to accelerate bone formation in the future.
Collapse
Affiliation(s)
- Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Rawan Kawar-Jaraisy
- The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv 69978, Israel;
| | - Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Ben Giladi
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Nadin Sabbah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
- Correspondence: ; Tel.: +972-4-8543606
| |
Collapse
|
21
|
Li L, Liu W, Zhao Y, Ma P, Zha S, Chen P, Lu H, Jiang X, Wan S, Luo J, Dai Q, Hu J, Utomo YKS, Han X, Yang Z, Yang L, He Q. Dual-Peptide-Functionalized Nanofibrous Scaffolds Recruit Host Endothelial Progenitor Cells for Vasculogenesis to Repair Calvarial Defects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3474-3493. [PMID: 31874023 DOI: 10.1021/acsami.9b21434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vasculogenesis (de novo formation of vessels) induced by endothelial progenitor cells (EPCs) is requisite for vascularized bone regeneration. However, there exist few available options for promoting vasculogenesis within artificial bone grafts except for exogenous EPC transplantation, which suffers from the source of EPC, safety, cost, and time concerns in clinical applications. This study aimed at endogenous EPC recruitment for vascularized bone regeneration by using a bioinspired EPC-induced graft. The EPC-induced graft was created by immobilizing two bioactive peptides, WKYMVm and YIGSR, on the surface of poly(ε-caprolactone) (PCL)/poliglecaprone (PGC) nanofibrous scaffolds via a polyglycolic acid (PGA)-binding peptide sequence. Remarkable immobilization efficacy of WKYMVm and YIGSR peptides and their sustained release (over 14 days) from scaffolds were observed. In vivo and in vitro studies showed robust recruitment of EPCs, which subsequently contributed to early vasculogenesis and ultimate bone regeneration. The dual-peptide-functionalized nanofibrous scaffolds proposed in this study provide a promising therapeutic strategy for vasculogenesis in bone defect repair.
Collapse
Affiliation(s)
- Li Li
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
- Orthopedic Department , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450001 , P.R. China
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , P.R. China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Yulan Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Pingping Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Shenfang Zha
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Peixin Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Hongwei Lu
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Xiaorui Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Shuang Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Jiangming Luo
- Center of Joint Surgery, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Qijie Dai
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Junxian Hu
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Yohanes Kristo Sugiarto Utomo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Xinyun Han
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , P.R. China
| | - Zhengwei Yang
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing 400044 , China
| | - Qingyi He
- Orthopedic Department, Southwest Hospital , The First Hospital Affiliated to Army Medical University (Southwest Hospital) , Chongqing 400038 , P.R. China
- Orthopedic Department , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450001 , P.R. China
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , P.R. China
| |
Collapse
|
22
|
Alcaraz MJ, Compañ A, Guillén MI. Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases. Cells 2019; 9:cells9010098. [PMID: 31906087 PMCID: PMC7017209 DOI: 10.3390/cells9010098] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising therapy for musculoskeletal diseases. There is compelling evidence indicating that MSC effects are mainly mediated by paracrine mechanisms and in particular by the secretion of extracellular vesicles (EVs). Many studies have thus suggested that EVs may be an alternative to cell therapy with MSCs in tissue repair. In this review, we summarize the current understanding of MSC EVs actions in preclinical studies of (1) immune regulation and rheumatoid arthritis, (2) bone repair and bone diseases, (3) cartilage repair and osteoarthritis, (4) intervertebral disk degeneration and (5) skeletal muscle and tendon repair. We also discuss the mechanisms underlying these actions and the perspectives of MSC EVs-based strategies for future treatments of musculoskeletal disorders.
Collapse
Affiliation(s)
- María José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
- Correspondence:
| | - Alvaro Compañ
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
| | - María Isabel Guillén
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
- Department of Pharmacy, Cardenal Herrera-CEU University, Ed. Ciencias de la Salud, 46115 Alfara, Valencia, Spain
| |
Collapse
|
23
|
Liang SX, Wang HL, Zhang PP, Shen J, Yang K, Meng L, Liu H, Yan YB. Differential regulation of blood vessel formation between traumatic temporomandibular joint fibrous ankylosis and bony ankylosis in a sheep model. J Craniomaxillofac Surg 2019; 47:1739-1751. [PMID: 31439411 DOI: 10.1016/j.jcms.2019.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Clinical and experimental studies show that the etiology of traumatic temporomandibular joint (TMJ) fibrous ankylosis and bony ankylosis are associated with the severity of trauma. However, how the injury severity affects the tissue differentiation is not clear. We tested the hypothesis that angiogenesis affects the outcomes of TMJ trauma, and that enhanced neovascularization after severe TMJ trauma would promote the development of bony ankylosis. METHODS Bilateral condylar sagittal fracture and discectomy were performed for each sheep, with the glenoid fossa receiving either severe trauma to induce bony ankylosis or minor trauma to induce fibrous ankylosis. At days 7, 14, 28, and 56 after surgery, total RNA was extracted from the ankylosed callus. Temporal gene expressions of several molecules functionally important for blood vessel formation were studied by real-time PCR. RESULTS Histological examination revealed a prolonged hematoma phase and a lack of cartilage formation in fibrous ankylosis. mRNA expression levels of HIF-1α, VEGF, VEGFR2, SDF1, Ang1, Tie2, vWF, CYR61, FGF2, TIMP1, MMP2, and MMP9 were distinctly lower in fibrous ankylosis compared with bony ankylosis at several time points. CONCLUSIONS Our study indicates that inhibition of angiogenesis after TMJ trauma might be a promising strategy for preventing bony ankylosis in the future.
Collapse
Affiliation(s)
- Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Hua-Lun Wang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Pei-Pei Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Jun Shen
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Li Meng
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Hao Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China.
| |
Collapse
|
24
|
Wagner DR, Karnik S, Gunderson ZJ, Nielsen JJ, Fennimore A, Promer HJ, Lowery JW, Loghmani MT, Low PS, McKinley TO, Kacena MA, Clauss M, Li J. Dysfunctional stem and progenitor cells impair fracture healing with age. World J Stem Cells 2019; 11:281-296. [PMID: 31293713 PMCID: PMC6600851 DOI: 10.4252/wjsc.v11.i6.281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.
Collapse
Affiliation(s)
- Diane R Wagner
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alanna Fennimore
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Hunter J Promer
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - M Terry Loghmani
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, United States
| | - Matthias Clauss
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| |
Collapse
|
25
|
Mu S, Hua Q, Jia Y, Chen MW, Tang Y, Deng D, He Y, Zuo C, Dai F, Hu H. Effect of negative-pressure wound therapy on the circulating number of peripheral endothelial progenitor cells in diabetic patients with mild to moderate degrees of ischaemic foot ulcer. Vascular 2019; 27:381-389. [PMID: 30841790 DOI: 10.1177/1708538119836360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective To investigate the effect of negative-pressure wound therapy (NPWT) on the circulating number of endothelial progenitor cells (EPCs) in diabetic patients with mild to moderate degrees of ischemic foot ulcer. Methods We selected 84 diabetic patients who had a foot ulcer with a duration of at least four weeks and who had an ankle-brachial index of 0.5–0.9. Patients were assigned to one two groups according to 2:1 randomization: NPWT group ( n = 56) and non-NPWT (patients who did not receive NPWT) group ( n = 28). The control group (NC group) was composed of 18 patients who had normal glucose tolerance and lower extremity ulcer without arteriovenous disease. NPWT was performed on the ulcer after debridement for one week for patients in both the NPWT group and the NC group, and the patients in the non-NPWT group received conventional treatment process. The circulating number of EPCs was measured before and after various treatments, and the factors influencing their changes were analysed. Results After NPWT, the circulating number of EPCs significantly increased in both the NPWT group and the NC group ((85.3 ± 18.1) vs. (34.1 ± 12.5)/106 cells; (119.9 ± 14.4) vs. (66.1 ± 10.6)/106 cells, both P < 0.05). In contrast, the circulating number of EPCs had no significant change in the non-NPWT group ((45.2 ± 19.4) vs. (34.7 ± 16.8)/106 cells, P > 0.05). In addition, the circulating levels of vascular endothelial growth factor (VEGF) and the protein expressions of VEGF and stromal cell-derived factor-1α (SDF-1α) in the granulation tissue significantly increased after NPWT in both the NPWT and the NC group, but there was no significant change in the non-NPWT group. Compared with the non-NPWT group, the changes in VEGF and SDF-1α levels in the sera and granulation tissue were all significantly higher in both the NPWT and NC groups ( P < 0.05, P < 0.01, respectively). There was no significant difference in changes in the circulating number of EPCs in the peripheral blood and levels of VEGF and SDF-1α in the sera and granulation tissue between the NPWT and NC groups. Correlation analysis showed that the change in the circulating number of EPCs was correlated with the changes of VEGF and SDF-1α levels in the sera and granulation of the NPWT and NC groups ( P < 0.05). Conclusion NPWT may increase the circulating number of EPCs in diabetic patients with mild to moderate ischaemic foot ulcer as in non-diabetic controls, which may be attributed to the upregulation of systemic and local VEGF and SDF-1α levels.
Collapse
Affiliation(s)
- Shichang Mu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiaoqiao Hua
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangyang Jia
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Wei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Diabetes Prevention and Control, Academy of Traditional Chinese Medicine, Hefei, China
| | - Yizhong Tang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong He
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunlin Zuo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honglin Hu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Veeriah V, Paone R, Chatterjee S, Teti A, Capulli M. Osteoblasts Regulate Angiogenesis in Response to Mechanical Unloading. Calcif Tissue Int 2019; 104:344-354. [PMID: 30465120 DOI: 10.1007/s00223-018-0496-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022]
Abstract
During mechanical unloading, endothelial cells reduce osteogenesis and increase bone resorption. Here we describe the feedback response of endothelial cells to unloaded osteoblasts. Primary endothelial cells, ex vivo mouse aortic rings and chicken egg yolk membranes were incubated with conditioned medium from mouse primary osteoblasts (OB-CM) subjected to unit gravity or simulated microgravity, to assess its effect on angiogenesis. In vivo injection of botulin toxin A (Botox) in the quadriceps and calf muscles of C57BL/6J mice was performed to mimic disuse osteoporosis. Unloaded osteoblasts showed strong upregulation of the pro-angiogenic factor, VEGF, and their conditioned medium increased in vitro endothelial cell viability, Cyclin D1 expression, migration and tube formation, ex vivo endothelial cell sprouting from aortic rings, and in ovo angiogenesis. Treatment with the VEGF blocker, avastin, prevented unloaded OB-CM-mediated in vitro and ex vivo enhancement of angiogenesis. Bone mechanical unloading by Botox treatment, known to reduce bone mass, prompted the overexpression of VEGF in osteoblasts. The cross talk between osteoblasts and endothelial cells plays a pathophysiologic role in the response of the endothelium to unloading during disuse osteoporosis. In this context, VEGF represents a prominent osteoblast factor stimulating angiogenesis.
Collapse
Affiliation(s)
- Vimal Veeriah
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| | - Riccardo Paone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| | - Suvro Chatterjee
- Anna University K.B.Chandrashekar Research Centre, Chennai, India
- Department of Biotechnology, Anna University, Chennai, India
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy.
| | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| |
Collapse
|
27
|
Jia Y, Zhu Y, Qiu S, Xu J, Chai Y. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther 2019; 10:12. [PMID: 30635031 PMCID: PMC6329174 DOI: 10.1186/s13287-018-1115-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023] Open
Abstract
Background Distraction osteogenesis (DO) is an effective but lengthy procedure to fully induce bone regeneration in large bone defects. Accumulating evidence supports the role of exosomes secreted by endothelial progenitor cells (EPC-Exos) in stimulating angiogenesis, which is closely coupled with osteogenesis. This study aimed to investigate whether EPC-Exos promote bone regeneration during DO in rats. Methods Exosomes were isolated from the supernatants of rat bone marrow EPCs via ultracentrifugation and characterized via transmission electron microscopy, tunable resistive pulse sensing analysis, and western blot analysis. Unilateral tibial DO models were generated using 68 Sprague-Dawley rats with a distraction rate of 0.5 mm per day for 10 days. After local injection of EPC-Exos into the distraction gaps after distraction, the therapeutic effects of EPC-Exos on bone regeneration and angiogenesis were assessed via X-ray, micro-computed tomography (micro-CT), and biomechanical and histological analyses. Pro-angiogenic effects and the potential mechanism underlying the effects of EPC-Exos on human umbilical vein endothelial cells were subsequently evaluated via in vitro assays including Cell Counting Kit-8, wound healing, tube formation, and western blot assays. Results EPC-Exos were spherical or cup-shaped vesicles ranging from 50 to 150 nm in diameter and expressed markers including CD9, Alix, and TSG101. X-ray, micro-CT, and histological analyses revealed that bone regeneration was markedly accelerated in rats treated with EPC-Exos. The distracted tibias from the Exos group also displayed enhanced mechanical properties. Moreover, vessel density was higher in the Exos group than in the control group. In addition, in vitro analyses revealed that EPC-Exos enhanced the proliferation, migration, and angiogenic capacity of endothelial cells in an miR-126-dependent manner. Further, EPC-Exos downregulated SPRED1 and activated Raf/ERK signaling. Conclusions The present results show that EPC-Exos accelerate bone regeneration during DO by stimulating angiogenesis, suggesting their use as a novel method to shorten the treatment duration of DO.
Collapse
Affiliation(s)
- Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Shuo Qiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
28
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Asiedu KO, Ferdousi M, Ton PT, Adler SS, Choyke PL, Sato N. Bone marrow cell homing to sites of acute tibial fracture: 89Zr-oxine cell labeling with positron emission tomographic imaging in a mouse model. EJNMMI Res 2018; 8:109. [PMID: 30547233 PMCID: PMC6292830 DOI: 10.1186/s13550-018-0463-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Bone fracture healing is dependent upon the rapid migration and engraftment of bone marrow (BM) progenitor and stem cells to the site of injury. Stromal cell-derived factor-1 plays a crucial role in recruiting BM cells expressing its receptor CXCR4. Recently, a CXCR4 antagonist, plerixafor, has been used to mobilize BM cells into the blood in efforts to enhance cell migration to sites of injury presumably improving healing. In this study, we employed zirconium-89 (89Zr)-oxine-labeled BM cells imaged with positron emission tomography (PET)/computed tomography (CT) to visualize and quantitate BM cell trafficking following acute bone injury and to investigate the effect of plerixafor on BM cell homing. Unilateral 1-mm incisions were created in the distal tibia of mice either on the same day (d0) or 24 h (d1) after 89Zr-oxine-labeled BM cell transfer (n = 4–6, 2–2.3 × 107 cells at 9.65–15.7 kBq/106 cells). Serial microPET/CT imaging was performed and migration of 89Zr-labeled cells to the bone injury was quantified. The effects of three daily doses of plerixafor on cell trafficking were evaluated beginning on the day of fracture generation (n = 4–6). The labeled cells localizing to the fracture were analyzed by flow cytometry and immunohistochemistry. Results In d0- and d1-fracture groups, 0.7% and 1.7% of administered BM cells accumulated within the fracture, respectively. Plerixafor treatment reduced BM cell migration to the fracture by approximately one-third (p < 0.05 for both fracture groups). Flow cytometry analysis of donor cells collected from the injured site revealed a predominance of CD45+ stem/progenitor cell populations and subsequent histological analysis demonstrated the presence of donor cells engrafted within sites of fracture repair. Conclusion 89Zr-oxine labeling enabled visualization and quantitation of BM cell recruitment to acute fractures and further demonstrated that plerixafor plays an inhibitory role in this recruitment. Electronic supplementary material The online version of this article (10.1186/s13550-018-0463-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kingsley O Asiedu
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA
| | - Munira Ferdousi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA
| | - Phuongnga T Ton
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA
| | - Stephen S Adler
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA
| | - Noriko Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA.
| |
Collapse
|
30
|
Wu J, Liu S, Wang Z, Ma S, Meng H, Hu J. Calcitonin gene-related peptide promotes proliferation and inhibits apoptosis in endothelial progenitor cells via inhibiting MAPK signaling. Proteome Sci 2018; 16:18. [PMID: 30473635 PMCID: PMC6236989 DOI: 10.1186/s12953-018-0146-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) contributes to bone formation by stimulating bone marrow stromal cell (BMSC) proliferation and differentiation. However, the proliferative and apoptotic effects of CGRP on bone marrow-derived endothelial progenitor cells (EPCs) have not been investigated. Methods We tested the effects of CGRP on EPC proliferation and apoptosis by Cell Counting Kit-8, flow cytometry, and studied the effects of CGRP on the expression of proliferation- and apoptosis-related markers in EPCs and the underlying mitogen-activated protein kinase (MAPK) signalling pathway by quantitative polymerase chain reaction and western blotting. Results We detected EPC markers (CD34, CD133 and VEGFR-2) in 7-day cultures and found that CGRP (10− 10–10− 12 M) promoted the proliferation of cultured EPCs, with a peak increase of 30% at 10− 10 M CGRP. CGRP also upregulated the expression of proliferation-associated genes, including cyclin D1 and cyclin E, and increased the percentages of G2/M-phase and S-phase cells after incubation 72 h. CGRP inhibited serum deprivation (SD)-induced apoptosis in EPCs after 24 and 48 h and downregulated the expression of apoptosis-related genes, including caspase-3, caspase-8, caspase-9 and Bax. Phosphorylated (p-)ERK1/2, p-p38 and p-JNK protein levels in EPCs treated with CGRP were significantly lower than those in untreated EPCs. Pre-treatment with the calcitonin receptor-like receptor (CRLR) antagonist CGRP8–37 or a MAPK pathway inhibitor (PD98059, SB203580 or SP600125) completely or partially reversed the pro-proliferative and anti-apoptotic effects and the reduced p-ERK1/2, p-p38 and p-JNK expression induced by CGRP. Conclusion Our results show that CGRP exerts pro-proliferative and anti-apoptotic effects on EPCs and may act by inhibiting MAPK pathways. Electronic supplementary material The online version of this article (10.1186/s12953-018-0146-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianqun Wu
- Department of Spine Surgery, Huadu District People's Hospital, Guangzhou, Guangzhou, 510800 Guangdong Province China
| | - Song Liu
- 2Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, 510150 Guangdong Province China.,3Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515 Guangdong Province China
| | - Zhao Wang
- 2Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, 510150 Guangdong Province China
| | - Shenghui Ma
- 3Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515 Guangdong Province China
| | - Huan Meng
- 3Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515 Guangdong Province China
| | - Jijie Hu
- 3Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515 Guangdong Province China
| |
Collapse
|
31
|
Moukoko D, Pourquier D, Genovesio C, Thezenas S, Chabrand P, Roffino S, Pithioux M. Granulocyte-colony stimulating factor enhances bone fracture healing. Clin Biomech (Bristol, Avon) 2018; 58:62-68. [PMID: 30036852 DOI: 10.1016/j.clinbiomech.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/27/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circulating mesenchymal stem cells contribute to bone repair. Their incorporation in fracture callus is correlated to their bioavailability. In addition, Granulocyte-colony stimulating factor induces the release of vascular and mesenchymal progenitors. We hypothesized that this glycoprotein stimulates fracture healing, and analyzed the effects of its administration at low doses on bone healing. METHODS 27 adult male Sprague-Dawley rats underwent mid-femur osteotomy stabilized by centromedullar pinning. In a post (pre) operative group, rats were subcutaneously injected with 5 μg/kg per day of Granulocyte-colony stimulating factor for 5 days after (before) surgery. In a control group, rats were injected with saline solution for 5 days immediately after surgery. A radiographic consolidation score was calculated. At day 35, femurs were studied histologically and underwent biomechanical tests. FINDINGS 5 weeks after surgery, mean radiographic scores were significantly higher in the Preop group 7.75 (SD 0.42) and in the Postop group 7.67 (SD 0.52) than in the control group 6.75 (SD 0.69). Biomechanical tests showed femur stiffness to be more than three times higher in both the Preop 109.24 N/mm (SD 51.86) and Postop groups 100.05 N/mm (SD 60.24) than in control 32.01 N/mm (SD 15.78). Mean maximal failure force was twice as high in the Preop group 68.66 N (SD 27.78) as in the control group 34.21 N (SD 11.79). Histological results indicated a later consolidation process in control than in treated groups. INTERPRETATION Granulocyte-colony stimulating factor injections strongly stimulated early femur fracture healing, indicating its potential utility in human clinical situations such as programmed osteotomy and fracture.
Collapse
Affiliation(s)
- Didier Moukoko
- Département de Chirurgie Orthopédique Pédiatrique, CHU Angers, 4 rue Larrey, 49100 Angers, France
| | - Didier Pourquier
- Institut régional du Cancer de Montpellier (ICM)- Val d'Aurelle, Montpellier, France
| | - Cécile Genovesio
- Laboratoire de Biochimie, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Simon Thezenas
- Institut régional du Cancer de Montpellier (ICM)- Val d'Aurelle, Montpellier, France
| | - Patrick Chabrand
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Sainte Marguerite, IML, Marseille, France
| | - Sandrine Roffino
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; Université Côte d'Azur, Univ Nice Sophia Antipolis, France
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Sainte Marguerite, IML, Marseille, France.
| |
Collapse
|
32
|
Wang GS, Shen YS, Chou WY, Tang CH, Yeh HI, Wang LY, Yen JY, Huang TY, Liu SC, Yang CY, Lin TY, Chen C, Wang SW. Senescence Induces Dysfunctions in Endothelial Progenitor Cells and Osteoblasts by Interfering Translational Machinery and Bioenergetic Homeostasis. Int J Mol Sci 2018; 19:ijms19071997. [PMID: 29987212 PMCID: PMC6073720 DOI: 10.3390/ijms19071997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
Abstract
Age-related bone diseases are partly caused by impaired bone integrity, which are closely related to osteoblasts’ activity and angiogenesis. Endothelial progenitor cells (EPCs) are the initiators of angiogenesis and found to have senescent-induced dysfunctions. The aim of this study is to investigate the effects of senescence in EPCs on osteogenesis and angiogenesis. Human primary EPCs and a murine osteoblast cell line (MC3T3-E1) are utilized in this study. The senescence of EPCs are induced by serial passages. When co-cultured with senescent EPCs, the osteoblasts demonstrate weakened alkaline phosphatase (ALP) activity and mineral deposition. On the other hand, osteoblast-induced migration decreases in senescent EPCs. As for the intracellular alterations of senescent EPCs, the activation of Akt/mTOR/p70S6K pathway, MnSOD and catalase are diminished. In contrast, the level of reactive oxygen species are significantly higher in senescent EPCs. Furthermore, senescent EPCs has decreased level intracellular ATP level and coupling efficiency for oxidative phosphorylation while the non-mitochondrial respiration and glycolysis are elevated. The senescence of EPCs impairs the functions of both osteoblasts and EPCs, suggesting EPCs’ role in the pathophysiology of age-related bone diseases. Targeting the alterations found in this study could be potential treatments.
Collapse
Affiliation(s)
- Guo-Shou Wang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Yung-Shuen Shen
- Holistic Education Center, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Wen-Yi Chou
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital Medical Center, Kaohsiung 833, Taiwan.
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan.
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Juei-Yu Yen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Te-Yang Huang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Shih-Chia Liu
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Chen-Yu Yang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
| | - Ting-Yi Lin
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10491, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Chi Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Department of Education and Research, Taipei City Hospital Renai Branch, Taipei 106, Taiwan.
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
33
|
Cengiz IF, Pereira H, de Girolamo L, Cucchiarini M, Espregueira-Mendes J, Reis RL, Oliveira JM. Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room. J Exp Orthop 2018; 5:14. [PMID: 29790042 PMCID: PMC5964057 DOI: 10.1186/s40634-018-0133-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Orthopaedic disorders are very frequent, globally found and often partially unresolved despite the substantial advances in science and medicine. Their surgical intervention is multifarious and the most favourable treatment is chosen by the orthopaedic surgeon on a case-by-case basis depending on a number of factors related with the patient and the lesion. Numerous regenerative tissue engineering strategies have been developed and studied extensively in laboratory through in vitro experiments and preclinical in vivo trials with various established animal models, while a small proportion of them reached the operating room. However, based on the available literature, the current strategies have not yet achieved to fully solve the clinical problems. Thus, the gold standards, if existing, remain unchanged in the clinics, notwithstanding the known limitations and drawbacks. Herein, the involvement of regenerative tissue engineering in the clinical orthopaedics is reviewed. The current challenges are indicated and discussed in order to describe the current disequilibrium between the needs and solutions made available in the operating room. Regenerative tissue engineering is a very dynamic field that has a high growth rate and a great openness and ability to incorporate new technologies with passion to edge towards the Holy Grail that is functional tissue regeneration. Thus, the future of clinical solutions making use of regenerative tissue engineering principles for the management of orthopaedic disorders is firmly supported by the clinical need.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Hélder Pereira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Ripoll y De Prado Sports Clinic: Murcia-Madrid FIFA Medical Centre of Excellence, Madrid, Spain.,Orthopedic Department Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal
| | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr Bldg 37, D-66421, Homburg/Saar, Germany
| | - João Espregueira-Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Orthopedic Department, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
34
|
Li Z, Yang A, Yin X, Dong S, Luo F, Dou C, Lan X, Xie Z, Hou T, Xu J, Xing J. Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue‐engineered constructs
via
activating CXCR2‐Src‐PKL/Vav2‐Rac1. FASEB J 2018; 32:2197-2211. [DOI: 10.1096/fj.201700895r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhilin Li
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
- Department of SpineLanzhou General Hospital, Lanzhou Command of the Chinese People's Liberation Army (CPLA)LanzhouChina
| | - Aijun Yang
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Xiaolong Yin
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Shiwu Dong
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Department of Biomedical Materials ScienceCollege of Biomedical Engineering, Third Military Medical UniversityChongqingChina
| | - Fei Luo
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Ce Dou
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Xu Lan
- Department of SpineLanzhou General Hospital, Lanzhou Command of the Chinese People's Liberation Army (CPLA)LanzhouChina
| | - Zhao Xie
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Tianyong Hou
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Jianzhong Xu
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Junchao Xing
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| |
Collapse
|
35
|
Zhao B, Zhao Z, Sun X, Zhang Y, Guo Y, Tian P, Ma J, Ma X. Effect of micro strain stress on proliferation of endothelial progenitor cells in vitro by the MAPK-ERK1/2 signaling pathway. Biochem Biophys Res Commun 2017; 492:206-211. [DOI: 10.1016/j.bbrc.2017.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
|
36
|
Andrade VB, Sá MA, Mendes RM, Martins-Júnior PA, Silva GA, Sousa BR, Caliari MV, Ávila ES, Ladeira LO, Resende RR, Ferreira AJ. Enhancement of Bone Healing by Local Administration of Carbon Nanotubes Functionalized with Sodium Hyaluronate in Rat Tibiae. Cells Tissues Organs 2017; 204:137-149. [DOI: 10.1159/000453030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 11/19/2022] Open
Abstract
It has been reported that carbon nanotubes (CNTs) serve as nucleation sites for the deposition of bone matrix and cell proliferation. Here, we evaluated the effects of multi-walled CNTs (MWCNTs) on bone repair of rat tibiae. Furthermore, because sodium hyaluronate (HY) accelerates bone restoration, we associated CNTs with HY (HY-MWCNTs) in an attempt to boost bone repair. The bone defect was created by a 1.6-mm-diameter drill. After 7 and 14 days, tibiae were processed for histological and morphometric analyses. Immunohistochemistry was used to evaluate the expression of vascular endothelial growth factor (VEGF) in bone defects. Expression of osteocalcin (OCN), bone morphogenetic protein-2 (BMP-2), and collagen I (Col I) was assessed by real-time PCR. Histomorphometric analysis showed a similar increase in the percentage of bone trabeculae in tibia bone defects treated with HY and HY-MWCNTs, and both groups presented more organized and thicker bone trabeculae than nontreated defects. Tibiae treated with MWCNTs or HY- MWCNTs showed a higher expression of VEGF. Treatment with MWCNTs or HY-MWCNTs increased the expression of molecules involved in the bone repair process, such as OCN and BMP-2. Also, HY- and MWCNT-treated tibiae had an increased expression of Col I. Thus, it is tempting to conclude that CNTs associated or not with other materials such as HY emerged as a promising biomaterial for bone tissue engineering.
Collapse
|
37
|
Zigdon-Giladi H, Elimelech R, Michaeli-Geller G, Rudich U, Machtei EE. Safety profile and long-term engraftment of human CD31 + blood progenitors in bone tissue engineering. Cytotherapy 2017; 19:895-908. [PMID: 28495397 DOI: 10.1016/j.jcyt.2017.03.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) participate in angiogenesis and induce favorable micro-environments for tissue regeneration. The efficacy of EPCs in regenerative medicine is extensively studied; however, their safety profile remains unknown. Therefore, our aims were to evaluate the safety profile of human peripheral blood-derived EPCs (hEPCs) and to assess the long-term efficacy of hEPCs in bone tissue engineering. METHODS hEPCs were isolated from peripheral blood, cultured and characterized. β tricalcium phosphate scaffold (βTCP, control) or 106 hEPCs loaded onto βTCP were transplanted in a nude rat calvaria model. New bone formation and blood vessel density were analyzed using histomorphometry and micro-computed tomography (CT). Safety of hEPCs using karyotype analysis, tumorigenecity and biodistribution to target organs was evaluated. RESULTS On the cellular level, hEPCs retained their karyotype during cell expansion (seven passages). Five months following local hEPC transplantation, on the tissue and organ level, no inflammatory reaction or dysplastic change was evident at the transplanted site or in distant organs. Direct engraftment was evident as CD31 human antigens were detected lining vessel walls in the transplanted site. In distant organs human antigens were absent, negating biodistribution. Bone area fraction and bone height were doubled by hEPC transplantation without affecting mineral density and bone architecture. Additionally, local transplantation of hEPCs increased blood vessel density by nine-fold. CONCLUSIONS Local transplantation of hEPCs showed a positive safety profile. Furthermore, enhanced angiogenesis and osteogenesis without mineral density change was found. These results bring us one step closer to first-in-human trials using hEPCs for bone regeneration.
Collapse
Affiliation(s)
- Hadar Zigdon-Giladi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel; Research Institute for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Rappaport Family Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Rina Elimelech
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel; Research Institute for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Gal Michaeli-Geller
- Research Institute for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Utai Rudich
- Orthopedic Department, Rambam Health Care Campus, Haifa, Israel
| | - Eli E Machtei
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel; Research Institute for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Rappaport Family Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
38
|
The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues. Stem Cells Int 2017; 2017:1960804. [PMID: 28458693 PMCID: PMC5387841 DOI: 10.1155/2017/1960804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/12/2017] [Indexed: 12/18/2022] Open
Abstract
Endothelial progenitor cells (EPCs) derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+) cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.
Collapse
|
39
|
The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017; 20:291-302. [PMID: 28194536 PMCID: PMC5511612 DOI: 10.1007/s10456-017-9541-1] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022]
Abstract
Bone is a richly vascularized connective tissue. As the main source of oxygen, nutrients, hormones, neurotransmitters and growth factors delivered to the bone cells, vasculature is indispensable for appropriate bone development, regeneration and remodeling. Bone vasculature also orchestrates the process of hematopoiesis. Blood supply to the skeletal system is provided by the networks of arteries and arterioles, having distinct molecular characteristics and localizations within the bone structures. Blood vessels of the bone develop through the process of angiogenesis, taking place through different, bone-specific mechanisms. Impaired functioning of the bone blood vessels may be associated with the occurrence of some skeletal and systemic diseases, i.e., osteonecrosis, osteoporosis, atherosclerosis or diabetes mellitus. When a disease or trauma-related large bone defects appear, bone grafting or bone tissue engineering-based strategies are required. However, a successful bone regeneration in both approaches largely depends on a proper blood supply. In this paper, we review the most recent data on the functions, molecular characteristics and significance of the bone blood vessels, with a particular emphasis on the role of angiogenesis and blood vessel functioning in bone development and regeneration, as well as the consequences of its impairment in the course of different skeletal and systemic diseases.
Collapse
|
40
|
Comparison of Effects of Pulsed Electromagnetic Field Stimulation on Platelet-Rich Plasma and Bone Marrow Stromal Stem Cell Using Rat Zygomatic Bone Defect Model. Ann Plast Surg 2016; 75:565-71. [PMID: 26461101 DOI: 10.1097/sap.0000000000000160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reconstruction of bone defects that occur because of certain reasons has an important place in plastic and reconstructive surgery. The objective of the treatments of these defects was to reinstate the continuity of tissues placed in the area in which the defect has occurred. In this experimental study, the effect of pulsed electromagnetic field stimulation on platelet-rich plasma (PRP) and bone marrow stromal cell, which propounded that they have positive impact on bone regeneration, was evaluated with the bone healing rate in the zygomatic bone defect model enwrapped with superficial temporal fascia. METHODS After creating a 4-mm defect on the zygomatic bone of the experiments, the defect was encompassed with a superficial temporal fascial flap and a nonunion model was created. After surgery, different combinations of the PRP, bone marrow stromal cell, and electromagnetic field applications were implemented on the defective area. All the experiments were subjected to bone density measurement. RESULTS The result revealed that the PRP and pulsed electromagnetic field implementation were rather a beneficial and an effective combination in terms of bone regeneration. CONCLUSIONS It was observed that the superficial temporal fascial flap used in the experiment was a good scaffold choice, providing an ideal bone regeneration area because of its autogenous, vascular, and 3-dimensional structures. As a result, it is presumed that this combination in the nonhealing bone defects is a rather useful treatment choice and can be used in a reliable way in clinical applications.
Collapse
|
41
|
McDonald SJ, Sun M, Agoston DV, Shultz SR. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. J Neuroinflammation 2016; 13:90. [PMID: 27117191 PMCID: PMC4847339 DOI: 10.1186/s12974-016-0555-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Traumatic injuries are physical insults to the body that are prevalent worldwide. Many individuals involved in accidents suffer injuries affecting a number of extremities and organs, otherwise known as multitrauma or polytrauma. Traumatic brain injury is one of the most serious forms of the trauma-induced injuries and is a leading cause of death and long-term disability. Despite over dozens of phase III clinical trials, there are currently no specific treatments known to improve traumatic brain injury outcomes. These failures are in part due to our still poor understanding of the heterogeneous and evolving pathophysiology of traumatic brain injury and how factors such as concomitant extracranial injuries can impact these processes. Main body Here, we review the available clinical and pre-clinical studies that have investigated the possible impact of concomitant injuries on traumatic brain injury pathobiology and outcomes. We then list the pathophysiological processes that may interact and affect outcomes and discuss promising areas for future research. Taken together, many of the clinical multitrauma/polytrauma studies discussed in this review suggest that concomitant peripheral injuries may increase the risk of mortality and functional deficits following traumatic brain injury, particularly when severe extracranial injuries are combined with mild to moderate brain injury. In addition, recent animal studies have provided strong evidence that concomitant injuries may increase both peripheral and central inflammatory responses and that structural and functional deficits associated with traumatic brain injury may be exacerbated in multiply injured animals. Conclusions The findings of this review suggest that concomitant extracranial injuries are capable of modifying the outcomes and pathobiology of traumatic brain injury, in particular neuroinflammation. Though additional studies are needed to further identify the factors and mechanisms involved in central and peripheral injury interactions following multitrauma and polytrauma, concomitant injuries should be recognized and accounted for in future pre-clinical and clinical traumatic brain injury studies.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.
| | - Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
42
|
Chong MSK, Ng WK, Chan JKY. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Transl Med 2016; 5:530-8. [PMID: 26956207 DOI: 10.5966/sctm.2015-0227] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Significant advances have been made in understanding the biology of EPCs, and preclinical studies have demonstrated the vasculogenic, angiogenic, and beneficial paracrine effects of transplanted EPCs in the treatment of ischemic diseases. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The present study provides a concise summary of the different EPC populations being studied for ischemic therapies and their known roles in the healing of ischemic tissues. The challenges and issues surrounding the use of EPCs and the current strategies being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. SIGNIFICANCE Endothelial progenitor cells (EPCs) have immense clinical value for cardiovascular therapies. The present study provides a concise description of the EPC subpopulations being evaluated for clinical applications. The current major lines of investigation involving preclinical and clinical evaluations of EPCs are discussed, and significant gaps limiting the translation of EPCs are highlighted. The present report could be useful for clinicians and clinical researchers with interests in ischemic therapy and for basic scientists working in the related fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mark Seow Khoon Chong
- School of Chemical and Biochemical Engineering, Nanyang Technological University, Singapore
| | - Wei Kai Ng
- School of Chemical and Biochemical Engineering, Nanyang Technological University, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| |
Collapse
|
43
|
Machtei EE, Kim DM, Karimbux N, Zigdon-Giladi H. The use of endothelial progenitor cells combined with barrier membrane for the reconstruction of peri-implant osseous defects: an animal experimental study. J Clin Periodontol 2016; 43:289-97. [DOI: 10.1111/jcpe.12511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Eli E. Machtei
- Department of Periodontology; School of Graduate Dentistry and Laboratory for Bone Repair; Rambam Medical Center and Faculty of Medicine - Technion (Israeli Institute of Technology); Haifa Israel
- Division of Periodontology; Department of Oral Medicine, Infection and Immunity; Harvard School of Dental Medicine; Boston Massachusetts USA
| | - David M. Kim
- Division of Periodontology; Department of Oral Medicine, Infection and Immunity; Harvard School of Dental Medicine; Boston Massachusetts USA
| | - Nadeem Karimbux
- Department of Periodontology; School of Dental Medicine; Tufts University; Boston Massachusetts USA
| | - Hadar Zigdon-Giladi
- Department of Periodontology; School of Graduate Dentistry and Laboratory for Bone Repair; Rambam Medical Center and Faculty of Medicine - Technion (Israeli Institute of Technology); Haifa Israel
| |
Collapse
|
44
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
45
|
Kolind M, Bobyn JD, Matthews BG, Mikulec K, Aiken A, Little DG, Kalajzic I, Schindeler A. Lineage tracking of mesenchymal and endothelial progenitors in BMP-induced bone formation. Bone 2015; 81:53-59. [PMID: 26141839 PMCID: PMC4844190 DOI: 10.1016/j.bone.2015.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
To better understand the relative contributions of mesenchymal and endothelial progenitor cells to rhBMP-2 induced bone formation, we examined the distribution of lineage-labeled cells in Tie2-Cre:Ai9 and αSMA-creERT2:Col2.3-GFP:Ai9 reporter mice. Established orthopedic models of ectopic bone formation in the hind limb and spine fusion were employed. Tie2-lineage cells were found extensively in the ectopic bone and spine fusion masses, but co-staining was only seen with tartrate-resistant acid phosphatase (TRAP) activity (osteoclasts) and CD31 immunohistochemistry (vascular endothelial cells), and not alkaline phosphatase (AP) activity (osteoblasts). To further confirm the lack of a functional contribution of Tie2-lineage cells to BMP-induced bone, we developed conditional knockout mice where Tie2-lineage cells are rendered null for key bone transcription factor osterix (Tie2-cre:Osx(fx/fx) mice). Conditional knockout mice showed no difference in BMP-induced bone formation compared to littermate controls. Pulse labeling of mesenchymal cells with Tamoxifen in mice undergoing spine fusion revealed that αSMA-lineage cells contributed to the osteoblastic lineage (Col2.3-GFP), but not to endothelial cells or osteoclast populations. These data indicate that the αSMA+ and Tie2+ progenitor lineages make distinct cellular contributions to bone formation, angiogenesis, and resorption/remodeling.
Collapse
Affiliation(s)
- Mille Kolind
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Justin D Bobyn
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Brya G Matthews
- Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Kathy Mikulec
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Alastair Aiken
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David G Little
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Aaron Schindeler
- Centre for Children's Bone Health, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
46
|
Abstract
BACKGROUND Although bone repair is often a relatively rapid and efficient process, many bone defects do not heal. Because an adequate blood supply is essential for new bone formation, we hypothesized that augmenting new blood vessel formation by increasing the number of circulating vasculogenic progenitor cells (PCs) with AMD3100 and enhancing their trafficking to the site of injury with recombinant human parathyroid hormone (rhPTH) will improve healing. METHODS Critical-sized 3-mm cranial defects were trephined into the right parietal bone of C57BLKS/J 6 mice (N = 120). The mice were divided into 4 equal groups (n = 30 for each). The first group received daily subcutaneous injections of AMD3100 (5 mg/kg). The second group received daily subcutaneous injections of rhPTH (5 mg/kg). The third group received both AMD3100 and rhPTH. The fourth group received subcutaneous injections of saline. Circulating vasculogenic PC numbers, new blood vessel formation, and bony regeneration were assessed. Progenitor cell adhesion, migration, and tubule formation were assessed in the presence of rhPTH and AMD3100. RESULTS Flow cytometry demonstrated that combination therapy significantly increased the number of circulating PCs compared with all other groups. In vitro, AMD3100-treated PCs had significantly increased adhesion migration, and tubule formation was assessed in the presence of rhPTH. Combination therapy significantly improved new blood vessel formation in those with cranial defect compared with all other groups. Finally, bony regeneration was significantly increased in the combination therapy group compared with all other groups. CONCLUSIONS The combination of a PC-mobilizing and traffic-enhancing agent improved bony regeneration of calvarial defects in mice.
Collapse
|
47
|
Circulating endothelial cells in coronary artery disease and acute coronary syndrome. Trends Cardiovasc Med 2015; 25:578-87. [DOI: 10.1016/j.tcm.2015.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 01/27/2023]
|
48
|
Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:842975. [PMID: 26448947 PMCID: PMC4584039 DOI: 10.1155/2015/842975] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Bone is one of the most dynamic tissues in the human body that can heal following injury without leaving a scar. However, in instances of extensive bone loss, this intrinsic capacity of bone to heal may not be sufficient and external intervention becomes necessary. Several techniques are available to address this problem, including autogenous bone grafts and allografts. However, all these techniques have their own limitations. An alternative method is the technique of distraction osteogenesis, where gradual and controlled distraction of two bony segments after osteotomy leads to induction of new bone formation. Although distraction osteogenesis usually gives satisfactory results, its major limitation is the prolonged duration of time required before the external fixator is removed, which may lead to numerous complications. Numerous methods to accelerate bone formation in the context of distraction osteogenesis have been reported. A viable alternative to autogenous bone grafts for a source of osteogenic cells is mesenchymal stem cells from bone marrow. However, there are certain problems with bone marrow aspirate. Hence, scientists have investigated other sources for mesenchymal stem cells, specifically adipose tissue, which has been shown to be an excellent source of mesenchymal stem cells. In this paper, the potential use of adipose stem cells to stimulate bone formation is discussed.
Collapse
|
49
|
Particle Radiation-Induced Nontargeted Effects in Bone-Marrow-Derived Endothelial Progenitor Cells. Stem Cells Int 2015; 2015:496512. [PMID: 26074973 PMCID: PMC4436457 DOI: 10.1155/2015/496512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/17/2023] Open
Abstract
Bone-marrow- (BM-) derived endothelial progenitor cells (EPCs) are critical for endothelial cell maintenance and repair. During future space exploration missions astronauts will be exposed to space irradiation (IR) composed of a spectrum of low-fluence protons ((1)H) and high charge and energy (HZE) nuclei (e.g., iron-(56)Fe) for extended time. How the space-type IR affects BM-EPCs is limited. In media transfer experiments in vitro we studied nontargeted effects induced by (1)H- and (56)Fe-IR conditioned medium (CM), which showed significant increase in the number of p-H2AX foci in nonirradiated EPCs between 2 and 24 h. A 2-15-fold increase in the levels of various cytokines and chemokines was observed in both types of IR-CM at 24 h. Ex vivo analysis of BM-EPCs from single, low-dose, full-body (1)H- and (56)Fe-IR mice demonstrated a cyclical (early 5-24 h and delayed 28 days) increase in apoptosis. This early increase in BM-EPC apoptosis may be the effect of direct IR exposure, whereas late increase in apoptosis could be a result of nontargeted effects (NTE) in the cells that were not traversed by IR directly. Identifying the role of specific cytokines responsible for IR-induced NTE and inhibiting such NTE may prevent long-term and cyclical loss of stem and progenitors cells in the BM milieu.
Collapse
|
50
|
Zigdon-Giladi H, Rudich U, Michaeli Geller G, Evron A. Recent advances in bone regeneration using adult stem cells. World J Stem Cells 2015; 7:630-640. [PMID: 25914769 PMCID: PMC4404397 DOI: 10.4252/wjsc.v7.i3.630] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34+ blood progenitors) for bone regeneration.
Collapse
|