1
|
Hoshino R, Nakamura N, Yamauchi T, Aoki Y, Miyabe M, Sasajima S, Ozaki R, Sekiya T, Sato T, Tabuchi M, Miyazawa K, Naruse K. Mechanical loading-induced alveolar bone remodeling is suppressed in the diabetic state via the impairment of the specificity protein 1/vascular endothelial growth factor (SP1/VEGF) axis. J Diabetes Investig 2025; 16:72-82. [PMID: 39460577 DOI: 10.1111/jdi.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS/INTRODUCTION Orthodontic treatment involves alveolar bone remodeling in response to mechanical loading, resulting in tooth movement through traction-side bone formation and compression-side bone resorption. However, there are conflicting reports regarding alveolar bone resorption during the orthodontic treatment of patients with diabetes. MATERIALS AND METHODS Diabetes was induced in 8-week-old C56BL/6J mice using streptozotocin (STZ). Four weeks after the injection of STZ, a mechanical load was applied between the first and second molars on the right side of the upper jaw using the Waldo method with orthodontic elastics in diabetic (DM) and normal (N) mice tooth movement, gene expression, osteoclast counts, alveolar bone residual volume, and bone beam structure were evaluated. RESULTS The duration until spontaneous elastic loss was significantly longer in the DM group, suggesting that tooth movement may be inhibited in the diabetic state. The number of osteoclasts at 7 days after mechanical loading and the alveolar bone resorption were both significantly lower in the DM group. The gene expression levels of vascular endothelial growth factor (VEGF), a protein related to alveolar bone remodeling, and specificity protein 1 (SP1), a transcription factor of the VEGF gene, were significantly lower in the DM group than in the N group on the compression side of mechanical loading. CONCLUSIONS Mechanical loading-induced alveolar bone remodeling is suppressed in the diabetic state. Our results suggest that VEGF is a key molecule involved in impaired bone remodeling under mechanical loading in the diabetic state.
Collapse
Affiliation(s)
- Rina Hoshino
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Taisuke Yamauchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yuki Aoki
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Sachiko Sasajima
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Reina Ozaki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Takeo Sekiya
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Masako Tabuchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain. FRONTIERS IN PAIN RESEARCH 2024; 5:1365194. [PMID: 38455874 PMCID: PMC10917994 DOI: 10.3389/fpain.2024.1365194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Orthodontic forces are strongly associated with pain, the primary complaint among patients wearing orthodontic braces. Compared to other side effects of orthodontic treatment, orthodontic pain is often overlooked, with limited clinical management. Orthodontic forces lead to inflammatory responses in the periodontium, which triggers bone remodeling and eventually induces tooth movement. Mechanical forces and subsequent inflammation in the periodontium activate and sensitize periodontal nociceptors and produce orthodontic pain. Nociceptive afferents expressing transient receptor potential vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive signals, leading to transcriptional changes in the trigeminal ganglia. Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to mediate orthodontic pain. Neuropeptides such as calcitonin gene-related peptides and substance P can also regulate orthodontic pain. While periodontal nociceptors transmit nociceptive signals to the brain, they are also known to modulate alveolar bone remodeling in periodontitis. Therefore, periodontal nociceptors and nociceptive molecules may contribute to the modulation of orthodontic tooth movement, which currently remains undetermined. Future studies are needed to better understand the fundamental mechanisms underlying neuroskeletal interactions in orthodontics to improve orthodontic treatment by developing novel methods to reduce pain and accelerate orthodontic tooth movement-thereby achieving "big gains with no pain" in clinical orthodontics.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
3
|
Fan DY, Zhai HY, Zhao Y, Qiao X, Zhu DC, Liu HJ, Liu C. The role of cannabinoid receptor 2 in bone remodeling during orthodontic tooth movement. BMC Oral Health 2024; 24:23. [PMID: 38178129 PMCID: PMC10768142 DOI: 10.1186/s12903-023-03810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The purpose of this study is to explore the effects of CB2 on bone regulation during orthodontic tooth movement. METHODS Thirty male mice were allocated into 2 groups (n = 15 in each group): wild type (WT) group and CB2 knockout (CB2-/-) group. Orthodontic tooth movement (OTM) was induced by applying a nickel-titanium coil spring between the maxillary first molar and the central incisors. There are three subgroups within the WT groups (0, 7 and 14 days) and the CB2-/- groups (0, 7 and 14 days). 0-day groups without force application. Tooth displacement, alveolar bone mass and alveolar bone volume were assessed by micro-CT on 0, 7 and 14 days, and the number of osteoclasts was quantified by tartrate-resistant acid phosphatase (TRAP) staining. Moreover, the expression levels of RANKL and OPG in the compression area were measured histomorphometrically. RESULTS The WT group exhibited the typical pattern of OTM, characterized by narrowed periodontal space and bone resorption on the compression area. In contrast, the accelerated tooth displacement, increased osteoclast number (P < 0.0001) and bone resorption on the compression area in CB2-/- group. Additionally, the expression of RANKL was significantly upregulated, while OPG showed low levels in the compression area of the CB2 - / - group (P < 0.0001). CONCLUSIONS CB2 modulated OTM and bone remodeling through regulating osteoclast activity and RANKL/OPG balance.
Collapse
Affiliation(s)
- Deng-Ying Fan
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, East 383 Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Hao-Yan Zhai
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, East 383 Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Yuan Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, East 383 Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Xing Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, East 383 Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - De-Chao Zhu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, East 383 Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China
| | - Hui-Juan Liu
- The Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, Clinical Research Center for Oral Diseases, East 383 Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China.
| | - Chunyan Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, East 383 Zhongshan Road, Shijiazhuang, Hebei Province, 050017, China.
| |
Collapse
|
4
|
Zhang X, Chang M, Wang B, Liu X, Zhang Z, Han G. YAP/WNT5A/FZD4 axis regulates osteogenic differentiation of human periodontal ligament cells under cyclic stretch. J Periodontal Res 2023; 58:907-918. [PMID: 37340863 DOI: 10.1111/jre.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE To verify the role of YAP/WNT5A/FZD4 axis in stretch-induced osteogenic differentiation of hPDLCs. BACKGROUND During orthodontic tooth movement, differentiation of human periodontal ligament cells (hPDLCs) at the tension side of the periodontal ligament mediates new bone formation. WNT5A promotes osteogenesis and its regulator Yes-associated protein (YAP) is responsive to mechanical stimulation in hPDLCs. However, the mechanisms of YAP and WNT5A in alveolar bone remodeling remain unclear. METHODS Cyclic stretch was applied to hPDLCs to mimic the orthodontic stretching force. Osteogenic differentiation was determined by alkaline phosphatase (ALP) activity, Alizarin Red staining, qRT-PCR and western blotting. To detect activation of YAP and expression of WNT5A and its receptor Frizzled-4 (FZD4), western blotting, immunofluorescence, qRT-PCR and ELISA were performed. Verteporfin, Lats-IN-1, small interfering RNAs and recombinant protein were used to explore the relationship of YAP, WNT5A and FZD4, and the effect of their relationship on stretch-induced osteogenesis of hPDLCs. RESULTS WNT5A, FZD4 and nuclear localization of YAP were upregulated by cyclic stretch. YAP positively regulated WNT5A and FZD4 expression and osteogenic differentiation of hPDLCs under cyclic stretch by YAP inhibition or activation assay. Knockdown of WNT5A and FZD4 attenuated YAP-induced and stretch-induced osteogenic differentiation. Recombinant WNT5A rescued the suppressed osteogenic differentiation by YAP inhibitor in hPDLCs, whereas knockdown of FZD4 weakened the effect of WNT5A and amplified the suppression. CONCLUSIONS WNT5A/FZD4 could be positively regulated by YAP and the YAP/WNT5A/FZD4 axis mediated osteogenic differentiation of hPDLCs under cyclic stretch. This study provided further insight into the biological mechanism of orthodontic tooth movement.
Collapse
Affiliation(s)
- Xiaocen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Maolin Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Beike Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyu Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangli Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Park SY, Choi SH, Yu HS, Kim SJ, Kim H, Kim KB, Cha JY. Comparison of translucency, thickness, and gap width of thermoformed and 3D-printed clear aligners using micro-CT and spectrophotometer. Sci Rep 2023; 13:10921. [PMID: 37407694 DOI: 10.1038/s41598-023-36851-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
The present study compared the thickness and gap width of thermoformed and 3D-printed clear aligners (CAs) using micro-computed tomography (micro-CT) and evaluated their translucency using spectrophotometer. Four groups of CAs were tested: thermoformed with polyethylene terephthalate glycol (TS) or copolyester-elastomer combination (TM), and 3D-printed TC-85 cleaned with alcohol (PA) or with centrifuge (PC). CIELab coordinates were measured (n = 10) to evaluate translucency. CAs (n = 10) were fitted onto respective models and micro-CT was performed to evaluate the thickness and gap width. Thickness and gap width were measured for different tooth type and location in sagittal sections on all sides. The PC group showed significantly higher translucency than the PA group, which was similar to the TS and TM groups (p < 0.01). After the manufacturing process, thickness reduction was observed in the thermoformed groups, whereas thickness increase was observed in the 3D printed-groups. The TM group showed the least gap width amongst the groups (p < 0.01). Thermoformed and 3D-printed CAs had significantly varied thicknesses and regions of best fit depending on the tooth type and location. Differences in the translucency and thickness of the 3D-printed CAs were observed depending on the cleaning methods.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Orthodontics, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Su-Jung Kim
- Department of Orthodontics, Kyung Hee University School of Dentistry, Seoul, South Korea
| | - Hoon Kim
- Laboratory of Adhesion & Bio-Composites, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Ki Beom Kim
- Department of Orthodontics, Saint Louis University, Saint Louis, MO, USA
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
6
|
Yamauchi T, Miyabe M, Nakamura N, Ito M, Sekiya T, Kanada S, Hoshino R, Matsubara T, Miyazawa K, Goto S, Naruse K. Impacts of Glucose-Dependent Insulinotropic Polypeptide on Orthodontic Tooth Movement-Induced Bone Remodeling. Int J Mol Sci 2022; 23:ijms23168922. [PMID: 36012183 PMCID: PMC9408871 DOI: 10.3390/ijms23168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) exerts extra-pancreatic effects via the GIP receptor (GIPR). Herein, we investigated the effects of GIP on force-induced bone remodeling by orthodontic tooth movement using a closed-coil spring in GIPR-lacking mice (GIPRKO) and wild-type mice (WT). Orthodontic tooth movements were performed by attaching a 10-gf nickel titanium closed-coil spring between the maxillary incisors and the left first molar. Two weeks after orthodontic tooth movement, the distance of tooth movement by coil load was significantly increased in GIPRKO by 2.0-fold compared with that in the WT. The alveolar bone in the inter-root septum from the root bifurcation to the apex of M1 decreased in both the GIPRKO and WT following orthodontic tooth movement, which was significantly lower in the GIPRKO than in the WT. The GIPRKO exhibited a significantly decreased number of trabeculae and increased trabecular separation by orthodontic tooth movement compared with the corresponding changes in the WT. Histological analyses revealed a decreased number of steady-state osteoblasts in the GIPRKO. The orthodontic tooth movement induced bone remodeling, which was demonstrated by an increase in osteoblasts and osteoclasts around the forced tooth in the WT. The GIPRKO exhibited no increase in the number of osteoblasts; however, the number of osteoclasts on the coil-loaded side was significantly increased in the GIPRKO compared with in the WT. In conclusion, our results demonstrate the impacts of GIP on the dynamics of bone remodeling. We revealed that GIP exhibits the formation of osteoblasts and the suppression of osteoclasts in force-induced bone remodeling.
Collapse
Affiliation(s)
- Taisuke Yamauchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Mizuho Ito
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Takeo Sekiya
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Saki Kanada
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Rina Hoshino
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Tatsuaki Matsubara
- The Graduate Center of Human Sciences, Aichi Mizuho College, Syunko-cho, Mizuho-ku, Nagoya 4670867, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Suemori-dori, Chikusa-ku, Nagoya 4648651, Japan
- Correspondence: ; Tel./Fax: +81-52-759-2168
| |
Collapse
|
7
|
Kako S, Tabuchi M, Miyazawa K, Tanaka M, Minamoto C, Asano Y, Kimura F, Aoki Y, Sato T, Kawatani M, Osada H, Maeda H, Goto S. Does local injection of reveromycin A inhibit tooth movement without causing systemic side effects? Eur J Orthod 2021; 43:658-664. [PMID: 33740062 DOI: 10.1093/ejo/cjaa067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine the feasibility of local inhibition of osteoclast activity and control of tooth movement with local intraoral reveromycin A (RMA) injection in model mice for experimental tooth movement. MATERIALS AND METHODS Eight-week-old wild-type mice (n = 6 per group) were divided into four groups consisting of two non-RMA groups that received normal saline for 14 (14-day non-RMA group) or 21 consecutive days (21-day non-RMA group) and 2 RMA groups that received RMA (1.0 mg/kg of weight) for 14 (14-day RMA group) or 21 consecutive days (21-day RMA group). RMA was injected locally into the buccal mucosa of the left first maxillary molar twice daily starting 3 days before placement of the 10-gf Ni-Ti closed coil spring. Tooth movement distance was analysed using micro-computed tomography. The effects on surrounding alveolar bone were evaluated by measuring the ratio of bone surface area to tissue surface area with haematoxylin-eosin-stained sections and counting the number of osteoclasts in periodontal tissue with TRAP-stained sections. Blood tests were performed and bone volume and trabecular separation at the tibial neck were measured to analyse systemic side effects. RESULTS Local RMA injection inhibited tooth movement by 40.6 per cent, promoted alveolar bone volume maintenance by 37.4 per cent, and inhibited osteoclast activity around the tooth root at 21 days by 40.8 per cent. Systemic effects on osteoclasts or osteoblasts were not observed. CONCLUSION Local injection of RMA enabled control of tooth movement without systemic side effects in a mouse model.
Collapse
Affiliation(s)
- Shunsuke Kako
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Masako Tabuchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Miyuki Tanaka
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Chisato Minamoto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yuichiro Asano
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Fumika Kimura
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yuki Aoki
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Luo H, Wu H, Tan X, Ye Y, Huang L, Dai H, Mei L. Osteopenic effects of high-fat diet-induced obesity on mechanically induced alveolar bone remodeling. Oral Dis 2020; 27:1243-1256. [PMID: 32989808 DOI: 10.1111/odi.13651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of the study was to investigate the effect of obesity on the tissue and molecular reactions of alveolar bone in response to orthodontic force and its underlying mechanisms. METHODS Sixty-four rats were randomly divided into normal diet (ND) and high-fat diet (HFD) groups for eight weeks of dietary treatment. OTM was induced using nickel-titanium springs between the upper left first molar and incisor. After 1, 3, 7, and 14 days of OTM, the maxillary alveolar bone and gingival tissues were harvested and analyzed. RESULTS Compared with the ND rats, the HFD rats had greater OTM distance, serum levels of tartrate-resistant acid phosphatase (TRAP), and tumor necrosis factor α (TNF-α), as well as significant alveolar bone loss and bone architecture deterioration on both the compression and tension sides (p < .05 for all). This response was linked to the increased osteoclast numbers and functional activity and decreased osteoblast activity in the periodontal ligament, gingival tissue, and alveolar bone. CONCLUSIONS HFD-induced obesity promoted mechanically induced alveolar bone remodeling and detrimental changes in alveolar bone microstructure by increasing osteoclastogenesis and regulating inflammatory cytokine expression. The increased alveolar bone remodeling in the obese rats lead to an accelerated OTM.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongyan Wu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xi Tan
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yusi Ye
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongwei Dai
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Ibrahimi Disha S, Furlani B, Drevensek G, Plut A, Yanagisawa M, Hudoklin S, Prodan Žitnik I, Marc J, Drevensek M. The role of endothelin B receptor in bone modelling during orthodontic tooth movement: a study on ET B knockout rats. Sci Rep 2020; 10:14226. [PMID: 32848199 PMCID: PMC7450079 DOI: 10.1038/s41598-020-71159-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin system has an important role in bone modelling during orthodontic tooth movement (OTM); however, little is known about the involvement of endothelin B receptors (ETB) in this process. The aim of this study was to evaluate the role of ETB in bone modelling during OTM using ETB knockout rats (ETB-KO). Thirty-two male rats were divided into 4 groups (n = 8 per group): the ETB-KO appliance group, ETB-KO control group, wild type (ETB-WT) appliance group, and ETB-WT control group. The appliance consisted of a super-elastic closed-coil spring placed between the first and second left maxillary molar and the incisors. Tooth movement was measured on days 0 and 35, and maxillary alveolar bone volume, osteoblast, and osteoclast volume were determined histomorphometrically on day 35 of OTM. Next, we determined the serum endothelin 1 (ET-1) level and gene expression levels of the osteoclast activity marker cathepsin K and osteoblast activity markers osteocalcin and dentin matrix acidic phosphoprotein 1 (DMP1) on day 35. The ETB-KO appliance group showed significantly lower osteoblast activity, diminished alveolar bone volume and less OTM than the ETB-WT appliance group. Our results showed that ETB is involved in bone modelling in the late stage of OTM.
Collapse
Affiliation(s)
- S Ibrahimi Disha
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia
| | - B Furlani
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - G Drevensek
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - A Plut
- Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - M Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - I Prodan Žitnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - J Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - M Drevensek
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia. .,Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Minamoto C, Miyazawa K, Tabuchi M, Hirano M, Mizuno M, Yoshizako M, Torii Y, Asano Y, Sato T, Kawatani M, Osada H, Maeda H, Goto S. Alteration of tooth movement by reveromycin A in osteoprotegerin-deficient mice. Am J Orthod Dentofacial Orthop 2020; 157:680-689. [PMID: 32354441 DOI: 10.1016/j.ajodo.2019.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Osteoprotegerin-deficient mice develop severe high-turnover osteoporosis with porous low-density trabecular bone from an age-related increase in osteoclast activity and are useful alveolar bone models of osteoporosis or frail periodontal tissue. Bisphosphonate (BP), a first-line drug for osteoporosis, is bone-avid, causing side effects such as brittle and fragile bones and jaw osteonecrosis after tooth extraction. In orthodontics, active movement is precisely controlled by temporarily suppressing and resuming movement. BP impedes such control because of its long half-life of several years in bone. Therefore, we investigated the novel osteoclast-specific inhibitor reveromycin A (RMA), which has a short half-life in bone. We hypothesized that tooth movement could be precisely controlled through temporary discontinuation and re-administration of RMA. METHODS Osteoprotegerin-deficient mice and wild-type mice were developed as tooth movement models under constant orthodontic force. A constant orthodontic force of 10 g was induced using a nickel-titanium closed coil spring to move the maxillary first molar for 14 days. We administered BP (1.25 mg/kg) or RMA (1.0 mg/kg) continuously and then discontinued it to reveal how the subsequent movement of teeth and surrounding alveolar bone was affected. RESULTS Continuous BP or RMA administration suppressed osteoclast activity and preserved alveolar bone around the roots, apparently normalizing bone metabolism. Tooth movement remained suppressed after BP discontinuation but resumed at a higher rate after discontinuation of RMA. CONCLUSIONS RMA appears useful for controlling orthodontic tooth movement because it can be suppressed and resumed through administration and discontinuation, respectively.
Collapse
Affiliation(s)
- Chisato Minamoto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Masako Tabuchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Miyuki Hirano
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Manami Mizuno
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mamoru Yoshizako
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yasuyoshi Torii
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yuichirou Asano
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | | | | | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
11
|
Kim K, Kang HE, Yook JI, Yu HS, Kim E, Cha JY, Choi YJ. Transcriptional Expression in Human Periodontal Ligament Cells Subjected to Orthodontic Force: An RNA-Sequencing Study. J Clin Med 2020; 9:jcm9020358. [PMID: 32012982 PMCID: PMC7073659 DOI: 10.3390/jcm9020358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
This study was performed to investigate the changes in gene expression in periodontal ligament (PDL) cells following mechanical stimulus through RNA sequencing. In this study, premolars extracted for orthodontic treatment were used. To stimulate the PDL cells, an orthodontic force of 100× g was applied to the premolar (experimental group; n = 11), whereas the tooth on the other side was left untreated (control group; n = 11). After the PDL cells were isolated from the extracted teeth, gene set enrichment analysis (GSEA), differentially expressed gene (DEG) analysis, and real-time PCR were performed to compare the two groups. GSEA demonstrated that gene sets related to the cell cycle pathway were upregulated in PDL. Thirteen upregulated and twenty downregulated genes were found through DEG analysis. Real-time PCR results confirmed that five upregulated genes (CC2D1B, CPNE3, OPHN1, TANGO2, and UAP-1) and six downregulated genes (MYOM2, PPM1F, PCDP1, ATP2A1, GPR171, and RP1-34H18.1-1) were consistent with RNA sequencing results. We suggest that, from among these eleven genes, two upregulated genes, CPNE3 and OPHN1, and one downregulated gene, PPM1F, play an important role in PDL regeneration in humans when orthodontic force is applied.
Collapse
Affiliation(s)
- Kyunam Kim
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.K.); (H.-S.Y.); (J.-Y.C.)
| | - Hee Eun Kang
- Vatech Co., Ltd. Hwaseong-si, Gyeonggi-do 18449, Korea;
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Hyung-Seog Yu
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.K.); (H.-S.Y.); (J.-Y.C.)
| | - Euiseong Kim
- Department of Conservative Dentistry, Oral Science Research Center, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Jung-Yul Cha
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.K.); (H.-S.Y.); (J.-Y.C.)
| | - Yoon Jeong Choi
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea; (K.K.); (H.-S.Y.); (J.-Y.C.)
- Correspondence: ; Tel.: +82-2-2228-3101; Fax: +82-2-363-3404
| |
Collapse
|
12
|
Gong X, Huang X, Yang Y, Zhou S, Dai Q, Jiang L. Local orthodontic force initiates widespread remodelling of the maxillary alveolar bone. AUSTRALASIAN ORTHODONTIC JOURNAL 2020. [DOI: 10.21307/aoj-2020-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Objectives
To clarify the effects of a local orthodontic force on alveolar bone by analysing bone remodelling in different regions of the maxilla during orthodontic tooth movement (OTM).
Methods
An OTM model was established in rats. Histological changes in the maxilla were analysed using TRAP staining, IHC staining for CTSK and haematoxylin and eosin (H and E) staining. The root bifurcation region of the alveolar bone of the first (M1), second (M2) and third (M3) molars were selected as the regions of interest (ROIs), which were further divided into a cervical and an apical level. Sequential fluorochrome labelling was performed to analyse bone deposition rates.
Results
The maxillary left first molars were moved mesially. TRAP staining and IHC staining for CTSK showed orthodontic force increased osteoclast numbers in all six ROIs at both the cervical and apical levels. H and E staining indicated elevated osteoblast numbers in the OTM group in all induced regions. Sequential fluorochrome labelling exhibited increased bone deposition rates around M1, M2 and M3 in the OTM group.
Conclusions
An orthodontic force applied to the first molar could initiate widespread remodelling of the maxillary alveolar bone, which was not restricted to the tension and pressure sites. This may revise the orthodontic biomechanical theory and provide new insights for clinical work.
Collapse
Affiliation(s)
- Xinyi Gong
- * Center of Craniofacial Orthodontics , Department of Oral and Cranio-maxillofacial Science , Ninth People’s Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
- † The Affiliated Hospital of Stomatology , School of Stomatology , Zhejiang University School of Medicine , and University Key Laboratory of Oral Biomedical Research of Zhejiang Province , Hangzhou , P.R. China
| | - Xiangru Huang
- * Center of Craniofacial Orthodontics , Department of Oral and Cranio-maxillofacial Science , Ninth People’s Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Yiling Yang
- * Center of Craniofacial Orthodontics , Department of Oral and Cranio-maxillofacial Science , Ninth People’s Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Siru Zhou
- * Center of Craniofacial Orthodontics , Department of Oral and Cranio-maxillofacial Science , Ninth People’s Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Qinggang Dai
- ± 2nd Dental Center , Ninth People’s Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Lingyong Jiang
- * Center of Craniofacial Orthodontics , Department of Oral and Cranio-maxillofacial Science , Ninth People’s Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| |
Collapse
|
13
|
Zaniboni E, Bagne L, Camargo T, do Amaral MEC, Felonato M, de Andrade TAM, Dos Santos GMT, Caetano GF, Esquisatto MAM, Santamaria M, Mendonça FAS. Do electrical current and laser therapies improve bone remodeling during an orthodontic treatment with corticotomy? Clin Oral Investig 2019; 23:4083-4097. [PMID: 30771000 DOI: 10.1007/s00784-019-02845-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Evaluate the bone remodeling during orthodontic movement with corticotomy when submitted to low-intensity electrical stimulation application (microcurrent-MC) and low-level laser therapy (LLLT). MATERIAL AND METHODS One hundred and fifty Wistar rats were divided into the following 5 groups: (C) submitted to tooth movement; (Cort) tooth movement/corticotomy; (Cort-L) tooth movement/corticotomy/laser AsGaAl 808 nm (4.96J/50s); (Cort-Mc) tooth movement/corticotomy/microcurrent (10 μA/5 min); (Cort-L-Mc) tooth movement/corticotomy and laser/microcurrent alternated. Inflammation, angiogenesis, and osteogenesis were evaluated in the periodontal ligament (PDL) and alveolar bone on the 7th, 14th, and 21st days of orthodontic movement. RESULTS The quantification of inflammatory infiltrate, angiogenesis and expression of TGF-β1, VEGF, and collagen type I were favorably modulated by the application of therapies such as low-level laser therapy (LLLT), MC, or both combined. However, electrical stimulation increased fibroblasts, osteoclasts and RANK numbers, birefringent collagen fiber organization, and BMP-7 and IL-6 expression. CONCLUSIONS Low-level laser therapy (LLLT) and MC application both improved the process of bone remodeling during orthodontic treatment with corticotomy. Still, electrical current therapy promoted a more effective tooth displacement but presented expected root resorption similar to all experimental treatments. CLINICAL RELEVANCE It is important to know the effects of minimally invasive therapies on cellular and molecular elements involved in the bone remodeling of orthodontic treatment associated with corticotomy surgery, in order to reduce the adverse effects in the use of this technique and to establish a safer clinical routine.
Collapse
Affiliation(s)
- Ewerton Zaniboni
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Leonardo Bagne
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Thaís Camargo
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Maria Esméria Corezola do Amaral
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Maira Felonato
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Thiago Antônio Moretti de Andrade
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Gláucia Maria Tech Dos Santos
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Guilherme Ferreira Caetano
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Marcelo Augusto Marreto Esquisatto
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| | - Milton Santamaria
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil. .,Graduate Program of Orthodontics, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil.
| | - Fernanda Aparecida Sampaio Mendonça
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP, 13607-339, Brazil
| |
Collapse
|
14
|
Al-Hamdany AK, Al-Khatib AR, Al-Sadi HI. Influence of olive oil on alveolar bone response during orthodontic retention period: rabbit model study. Acta Odontol Scand 2017; 75:413-422. [PMID: 28539096 DOI: 10.1080/00016357.2017.1328613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study attempted to evaluate clinically and histologically the effects of olive oil (Ol) consumption on orthodontic relapse after the retention period. DESIGN Thirty apparently healthy female albino rabbits, weight more than 1000 g each was used in this study. The animals were grouped randomly into six groups of five animals each: two control and four experimental groups. In control groups, the relapse was estimated either at zero day, or at the end of the fourth week after orthodontic retention period. In the experimental groups, the animals' groups received Ol, 7.7, or 15.4 ml/kg b.w. per day during the orthodontic retention period. The relapse was estimated either at zero day, or at the end of the fourth week after orthodontic retention period for each concentration. Modified fixed orthodontic appliances were attached to the rabbits' lower central incisors. Each rabbit received orthodontic intervention for one week, followed by six weeks retention period. At the end of the experiments, the clinical and histological investigations were conducted. Data analyses were performed at the level of p < .05 for the statistically significant difference. RESULTS Clinically, Ol high concentration four weeks group showed a significantly lower relapse tendency than control four weeks group. Histologically, Ol low concentration zero time group showed significantly higher osteoblasts numbers than control zero time group. Olive oil low and high concentrations four weeks group showed significantly lower fibroblasts count. Moreover, Ol high concentration four weeks group revealed significantly higher bone mineralization, osteoblasts and osteocytes counts than control four weeks study group. CONCLUSIONS Supplementation with Ol during an orthodontic retention period, especially at 15.4 ml/kg b.w. per day concentration, clinically reduced orthodontic relapse on rabbit model. Histologically, Ol increased osteoblasts and osteocytes counts and the relative amount of bone mineralization of connective tissue layer forming alveolar bone (AB) at the end of four weeks after the orthodontic retention period.
Collapse
Affiliation(s)
- Afrah K. Al-Hamdany
- Department of Pedodontics, Orthodontics and Preventive Dentistry/College of Dentistry/Mosul University, Mosul, Iraq
| | - Ali R. Al-Khatib
- Department of Pedodontics, Orthodontics and Preventive Dentistry/College of Dentistry/Mosul University, Mosul, Iraq
| | - Hafidh I. Al-Sadi
- Department of Oral Surgery, College of Dentistry/Mosul University, Mosul, Iraq
| |
Collapse
|
15
|
Abstract
As the number of elderly orthodontic patients increases, the impact of postmenopausal osteoporosis on orthodontic tooth movement (OTM) has attracted a great deal of attention because OTM relies on alveolar bone remodeling. The question of whether OTM causes subsequent alveolar bone loss and is harmful to alveolar bone health under osteoporotic conditions remains to be answered. The present study aimed to clarify the influences of OTM on alveolar bone in osteoporotic rats. OTM was accelerated in ovariectomized (OVX) rats as a result of increased bone resorption in the pressure area. At the same time, anabolic bone formation was promoted in the tension area during OTM in OVX rats. Micro-CT analysis of alveolar bone revealed a decrease in BMD, BV/TV and Tb.Th. in the OTM group compared with that in non-OTM rats on day 21 of OTM, suggesting that OTM caused alveolar bone loss in OVX rats during OTM. However, the OTM-induced bone loss could be recovered 3 months after OTM in OVX rats. Thus, our findings suggest that increased osteogenesis may compensate for the increased bone resorption during and after OTM and enable effective accelerated OTM in OVX rats.
Collapse
|
16
|
Zimbran A, Dudea D, Gasparik C, Dudea S. Ultrasonographic evaluation of periodontal changes during orthodontic tooth movement - work in progress. Med Pharm Rep 2017; 90:93-98. [PMID: 28246503 PMCID: PMC5305094 DOI: 10.15386/cjmed-663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background and aim Orthodontic tooth movement (OTM) is a process whereby the application of a force induces bone resorption on the pressure side and bone apposition on the tension side of the lamina dura. However, only limited data are available on the in vivo behavior of the periodontal tissues. The aim of this study was to assess the changes of periodontal tissues, induced by the orthodontic canine retraction, using 40 MHz ultrasonography. Methods Ultrasonographic evaluation of periodontal tissues was conducted in 5 patients with indication for orthodontic treatment. The upper first premolars were extracted bilaterally due to severe crowding, and the canines were distalized using elastomeric chain with a net force of 100 cN. Ultrasonographic scans (US scans) were performed before, during and after retraction, in three distinct areas of the canines buccal surface: mesial, middle and distal. The reference point was the bracket, which appeared hyperechoic on the US scan. Four different dimensions were obtained: D1 (depth of the sulcus), D2 (thickness of the gingiva), D3 (length of the supracrestal fibers), D4 (width of periodontal space). Results An increase of D1 was observed in all three areas of the periodontium, during orthodontic treatment. D3 was strongly correlated before and immediately after force delivery only for the mesial area (r=0.828, p<0.05). In total, 228 variables were statistically analyzed using Pearson’s correlation coefficients, in order to demonstrate the relationship between periodontal findings during orthodontic tooth movement. Conclusion High-resolution ultrasonography has the capability to obviate changes in periodontal ligament space and free gingiva during orthodontic tooth movement.
Collapse
Affiliation(s)
- Adela Zimbran
- Propaedeutics and Esthetic Dentistry Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Dudea
- Propaedeutics and Esthetic Dentistry Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Gasparik
- Propaedeutics and Esthetic Dentistry Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sorin Dudea
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines. PLoS One 2016; 11:e0167713. [PMID: 28030574 PMCID: PMC5193354 DOI: 10.1371/journal.pone.0167713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 11/18/2016] [Indexed: 01/26/2023] Open
Abstract
Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET) is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs). ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis-mediated periodontitis. Thus, endothelin antagonism may be a potential therapeutic approach for periodontitis treatment.
Collapse
|
18
|
Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension force-induced bone formation. J Mol Histol 2016; 47:455-66. [DOI: 10.1007/s10735-016-9687-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/16/2016] [Indexed: 02/06/2023]
|
19
|
Plut A, Sprogar Š, Drevenšek G, Hudoklin S, Zupan J, Marc J, Drevenšek M. Bone remodeling during orthodontic tooth movement in rats with type 2 diabetes. Am J Orthod Dentofacial Orthop 2016; 148:1017-25. [PMID: 26672708 DOI: 10.1016/j.ajodo.2015.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Type 2 diabetes is known to affect bone metabolism. In this study, we aimed to determine the effects of type 2 diabetes on bone remodeling during orthodontic tooth movement. METHODS The 48 rats were divided into 4 groups: Wistar control group (n = 8), Goto-Kakizaki (GK) control group (n = 8), Wistar appliance group (n = 16), and GK appliance group (n = 16). The distances between the teeth were measured weekly. On day 42, maxillary alveolar bone specimens were obtained for histologic evaluation and determination of the gene expression levels of the receptor activator of nuclear factor ҡB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG). RESULTS No significant difference was observed in the levels of tooth movement between the 2 appliance groups. After orthodontic force application, the alveolar bone volume and osteoblast surface in the GK rats were diminished compared with those in the Wistar rats. The increase in the osteoclast surface relative to the control groups was 2.4-fold greater in the GK rats than in the Wistar rats. Significant upregulations of the RANK and OPG gene expression levels in the Wistar appliance group were observed. The RANKL/OPG ratio was increased in the GK appliance group compared with the Wistar appliance group. CONCLUSIONS Diminished bone formation and slightly increased bone resorption were observed during orthodontic tooth movement in the rats with type 2 diabetes.
Collapse
Affiliation(s)
- Alja Plut
- Postgraduate student, Department of Orthodontics, University Medical Centre, Ljubljana, Slovenia.
| | - Špela Sprogar
- Researcher, Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gorazd Drevenšek
- Research assistant professor, Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; associate professor, Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Samo Hudoklin
- Assistant, Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Zupan
- Assistant, Division of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Marc
- Professor, Division of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Drevenšek
- Professor, Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Ruest LB, Ranjbaran H, Tong EJ, Svoboda KKH, Feng JQ. Activation of Receptor Activator of Nuclear Factor-κB Ligand and Matrix Metalloproteinase Production in Periodontal Fibroblasts by Endothelin Signaling. J Periodontol 2015; 87:e1-8. [PMID: 26376946 DOI: 10.1902/jop.2015.150397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontitis is a group of inflammatory diseases affecting the tissues supporting the teeth that will progressively cause the loss of alveolar bone and periodontal ligaments and eventually the dentition. Activation of osteoclast activity by receptor activator of nuclear factor-κB ligand (RANKL) and released enzymes such as matrix metalloproteinases (MMPs) are among the factors involved in the breakdown of the periodontium. However, the mechanisms regulating their production in periodontitis are poorly understood. Endothelin signaling via the activation of the endothelin-A receptor (EDNRA) by endothelin-1 may play a role in the disease because the expression of the receptor and ligand is elevated in the periodontal tissues of patients with periodontitis. METHODS Cultured primary human periodontal fibroblasts were treated with 20 and 100 nM endothelin-1 for 6 and 24 hours and then collected to assess MMP and RANKL production by immunoblotting. Inhibitors were used to identify the molecular pathways activated by EDNRA in these cells. RESULTS Endothelin-1 stimulated the production of MMP1, MMP8, and RANKL in a dose- and time-dependent manner; blocking EDNRA function with the antagonist TBC3214 inhibited the response, although EDNRA activation had no effects on osteoprotegerin production. These mechanistic studies indicate that EDNRA activates phospholipase C, which then 1) increases the MMP1 protein levels through activation of the extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway and 2) upregulates RANKL by a different pathway. CONCLUSION These results suggest that EDNRA may function in the breakdown of the periodontal tissues associated with periodontitis by promoting the protein expression of MMPs and RANKL via the phospholipase C pathway.
Collapse
Affiliation(s)
- L Bruno Ruest
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| | - Hamid Ranjbaran
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| | - Eric J Tong
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| |
Collapse
|
21
|
Lee S, Yoo H, Kim S. CCR5-CCL Axis in PDL during Orthodontic Biophysical Force Application. J Dent Res 2015; 94:1715-23. [DOI: 10.1177/0022034515603926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tooth movement by application of orthodontic biophysical force primarily reflects the role of soluble molecules released from the periodontal ligament (PDL). Thus far, many factors have been reported to be involved in orthodontic tooth movement (OTM), but key molecules that orchestrate responses of periodontal tissues to biophysical force are still enigmatic. In this in vivo study, in which the upper first molars in rats were moved, differential display–polymerase chain reaction revealed that CC chemokine receptor 5 (CCR5) level was differentially increased during OTM. Strong immunoreactivity for CCR5 was found in the PDL undergoing force application. Moreover, the in vitro compression or tension force application to primary cultured human PDL cells increased the expression of CCR5 and CCR5 ligands. In vitro tension force on human PDL cells did not induce RANKL, an osteoclastogenesis-inducing factor, but did induce the upregulation of IL12, an osteoclast inhibitory factor, and osteoblast differentiation factors, including Runx2, which was attenuated under tension by CCR5 gene silencing whereas augmented with CCR5 ligands. In contrast, in vitro compression force did not induce the expression of osteoprotegerin, a decoy receptor for RANKL and Runx2, but did induce the upregulation of RANKL, which was attenuated under compression by CCR5 gene silencing. These results suggest that the CCR5–CCR5 ligands axis in PDL cells may play a crucial role in the remodeling of periodontal tissues and can be a therapeutic target for achieving efficient OTM.
Collapse
Affiliation(s)
- S.Y. Lee
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - H.I. Yoo
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S.H. Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
22
|
Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces. ScientificWorldJournal 2015; 2015:876509. [PMID: 26421314 PMCID: PMC4572431 DOI: 10.1155/2015/876509] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
Orthodontic force-induced stresses cause dynamic alterations within the extracellular matrix and within the cytoskeleton of cells in the periodontal ligament and alveolar bone, mediating bone remodelling, ultimately enabling orthodontic tooth movement. In the periodontal ligament and alveolar bone, the mechanically induced tensile strains upregulate the expression of osteogenic genes resulting in bone formation, while mechanically induced compressive strains mediate predominantly catabolic tissue changes and bone resorption. In this review article we summarize some of the currently known biological events occurring in the periodontal ligament and in the alveolar bone in response to application of orthodontic forces and how these facilitate tooth movement.
Collapse
|
23
|
Periodontal Biological Events Associated with Orthodontic Tooth Movement: The Biomechanics of the Cytoskeleton and the Extracellular Matrix. ScientificWorldJournal 2015; 2015:894123. [PMID: 26351659 PMCID: PMC4550806 DOI: 10.1155/2015/894123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022] Open
Abstract
The mechanical stimuli generated by orthodontic forces cause deformation of extracellular matrices and cells, vascular changes, inflammation, and the release of active biological agents generating a complex multifactorial sequence of biological events culminating in bone remodelling enabling orthodontic tooth movement. Orthodontic forces on the teeth generate stresses in periodontal tissues according to a number of variables including the type (continuous, interrupted, or intermittent), magnitude, direction, and frequency of the applied load. Whether the strain is compressive or tensile determines whether bone deposition or bone resorption will occur. The mechanically induced strains mediate structural changes in extracellular matrices and in cells, consequently affecting cellular gene expression and function. In the extracellular matrix, mechanosensing molecules integrated into the structure of various proteins can be activated upon load-induced protein unfolding. These specialized molecules have the capacity to sense and then to convert microenvironmental biomechanical stimuli into intracellular biochemical signals that interact to generate a coordinated tissue response. It is also possible that the applied force may directly cause nuclear deformation with configurational changes in chromatin, thus influencing gene expression. In this review article we summarize the current general concepts of mechanotransduction influencing the remodelling of periodontal tissues thus enabling tooth movement in response to applied orthodontic loads.
Collapse
|
24
|
Sin A, Tang W, Wen CY, Chung SK, Chiu KY. The emerging role of endothelin-1 in the pathogenesis of subchondral bone disturbance and osteoarthritis. Osteoarthritis Cartilage 2015; 23:516-24. [PMID: 25463446 DOI: 10.1016/j.joca.2014.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 02/02/2023]
Abstract
Mounting evidence suggests reconceptualizing osteoarthritis (OA) as an inflammatory disorder. Trauma and obesity, the common risk factors of OA, could trigger the local or systemic inflammatory cytokines cascade. Inflammatory bone loss has been well documented; yet it remains largely unknown about the link between the inflammation and hypertrophic changes of subchondral bone seen in OA, such as osteophytosis and sclerosis. Amid a cohort of inflammatory cytokines, endothelin-1 (ET-1) could stimulate the osteoblast-mediated bone formation in both physiological (postnatal growth of trabecular bone) and pathological conditions (bone metastasis of prostate or breast cancer). Also, ET-1 is known as a mitogen and contributes to fibrosis in various organs, e.g., skin, liver, lung, kidney heart and etc., as a result of inflammatory or metabolic disorders. Subchondral bone sclerosis shared the similarity with fibrosis in terms of the overproduction of collagen type I. We postulated that ET-1 might have a hand in the subchondral bone sclerosis of OA. Meanwhile, ET-1 was also able to stimulate the production of matrix metalloproteinase (MMP)-1 and 13 by articular chondrocytes and synoviocytes, by which it might trigger the enzymatic degradation of articular cartilage. Taken together, ET-1 signaling may play a role in destruction of bone-cartilage unit in the pathogenesis of OA; it warrants further investigations to potentiate ET-1 as a novel diagnostic biomarker and therapeutic target for rescue of OA.
Collapse
Affiliation(s)
- A Sin
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong; Georgetown University Medical Center, Washington, DC 20057, USA
| | - W Tang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Y Wen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong.
| | - S K Chung
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong; Heart, Brain, Hormone and Healthy Aging Center, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory for Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - K Y Chiu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
25
|
Wang Y, Gao S, Jiang H, Lin P, Bao X, Zhang Z, Hu M. Lithium chloride attenuates root resorption during orthodontic tooth movement in rats. Exp Ther Med 2013; 7:468-472. [PMID: 24396427 PMCID: PMC3881062 DOI: 10.3892/etm.2013.1410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/05/2013] [Indexed: 01/22/2023] Open
Abstract
Root resorption is a common side effect of orthodontic treatment. In the current study, lithium chloride (LiCl), a Wnt signaling activator, was examined to determine its effect on root resorption. In total, 10 Sprague Dawley rats were randomly allocated into the experimental group (EG) and control group (CG). Each group consisted of five subjects. By using closed nickel-titanium coil springs, a 50-g force was applied between the upper incisors and the maxillary right first molars in order to mimic orthodontic biomechanics in the EG and CG for 14 days. During the 14 days, the EG rats were gavage-fed 200 mg/kg LiCl every 48 h. Next, digital radiographs were captured using a micro-computational tomography scanner. The movement of the maxillary first molars and the root resorption area ratio were measured electronically on the digital radiographs. The outcomes were analyzed using ANOVA. Following 14 days of experimental force application, all rats had spaces of varying sizes between the first and second right maxillary molars. The average distance measured in the CG was slightly higher than in the EG, however, the difference was not found to be statistically significant (P=0.224). Root resorption craters were observed in the groups following the experiment. Rough cementum areas were observed on the mesial surface of the distobuccal and distopalatal roots. The mean root resorption area ratio of CG was significantly greater than EG (P<0.05). Results of the present study indicate that LiCl can attenuate orthodontically induce root resorption during orthodontic tooth movement. The effect of LiCl on tooth movement is insignificant.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shang Gao
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huan Jiang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Peng Lin
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xingfu Bao
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhimin Zhang
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Hu
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
26
|
Yabumoto T, Miyazawa K, Tabuchi M, Shoji S, Tanaka M, Kadota M, Yoshizako M, Kawatani M, Osada H, Maeda H, Goto S. Stabilization of tooth movement by administration of reveromycin A to osteoprotegerin-deficient knockout mice. Am J Orthod Dentofacial Orthop 2013; 144:368-80. [DOI: 10.1016/j.ajodo.2013.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
|
27
|
Meeran NA. Cellular response within the periodontal ligament on application of orthodontic forces. J Indian Soc Periodontol 2013; 17:16-20. [PMID: 23633766 PMCID: PMC3636936 DOI: 10.4103/0972-124x.107468] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/17/2012] [Indexed: 11/14/2022] Open
Abstract
During application of controlled orthodontic force on teeth, remodeling of the periodontal ligament (PDL) and the alveolar bone takes place. Orthodontic forces induce a multifaceted bone remodeling response. Osteoclasts responsible for bone resorption are mainly derived from the macrophages and osteoblasts are produced by proliferations of the cells of the periodontal ligament. Orthodontic force produces local alterations in vascularity, as well as cellular and extracellular matrix reorganization, leading to the synthesis and release of various neurotransmitters, cytokines, growth factors, colony-stimulating factors, and metabolites of arachidonic acid. Although many studies have been reported in the orthodontic and related scientific literature, research is constantly being done in this field resulting in numerous current updates in the biology of tooth movement, in response to orthodontic force. Therefore, the aim of this review is to describe the mechanical and biological processes taking place at the cellular level during orthodontic tooth movement.
Collapse
Affiliation(s)
- Nazeer Ahmed Meeran
- Department of Orthodontics and Dentofacial Orthopedics, Priyadarshini Dental College and Hospital, Thiruvallur Taluk, Pandur, Tamilnadu, India
| |
Collapse
|
28
|
Tanaka M, Miyazawa K, Tabuchi M, Yabumoto T, Kadota M, Yoshizako M, Yamane C, Kawatani M, Osada H, Maeda H, Goto S. Effect of Reveromycin A on experimental tooth movement in OPG-/- mice. J Dent Res 2012; 91:771-6. [PMID: 22674934 DOI: 10.1177/0022034512451026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In osteoprotegerin-deficient (OPG-/-) mice, osteoclast activity causes bone resorption to outpace bone formation, leading to the development of severe osteoporosis. Such mice are therefore useful for investigating the alveolar bone of patients with osteoporosis. Reveromycin A (RM-A) was recently identified as the unique agent acting on osteoclast activation. This study aimed to analyze the effect of RM-A on the orthodontic treatment of OPG-/- mice (a model of osteoporosis patients with high levels of bone turnover). We examined alveolar bone remodeling in OPG-/- and wild-type (WT) mice during continuous tooth movement. The orthodontic force was induced by means of a Ni-Ti closed-coil spring to move the maxillary first molar for 14 days. RM-A sodium salt (1 mg/kg) was administered intraperitoneally twice daily. In OPG-/- mice, the tooth movement distance was longer, alveolar bone resorption was enhanced, the osteoclast count was greater, and serum alkaline phosphatase and tartrate-resistant acid phosphatase levels were higher relative to those in WT mice. However, the administration of RM-A in OPG-/- mice reduced these parameters. We conclude that RM-A normalizes bone metabolism and loss of alveolar bone during continuous tooth movement in OPG-/- mice.
Collapse
Affiliation(s)
- M Tanaka
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zainal Ariffin SH, Yamamoto Z, Zainol Abidin IZ, Megat Abdul Wahab R, Zainal Ariffin Z. Cellular and molecular changes in orthodontic tooth movement. ScientificWorldJournal 2011; 11:1788-803. [PMID: 22125437 PMCID: PMC3201678 DOI: 10.1100/2011/761768] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023] Open
Abstract
Tooth movement induced by orthodontic treatment can cause sequential reactions involving the periodontal tissue and alveolar bone, resulting in the release of numerous substances from the dental tissues and surrounding structures. To better understand the biological processes involved in orthodontic treatment, improve treatment, and reduce adverse side effects, several of these substances have been proposed as biomarkers. Potential biological markers can be collected from different tissue samples, and suitable sampling is important to accurately reflect biological processes. This paper covers the tissue changes that are involved during orthodontic tooth movement such as at compression region (involving osteoblasts), tension region (involving osteoclasts), dental root, and pulp tissues. Besides, the involvement of stem cells and their development towards osteoblasts and osteoclasts during orthodontic treatment have also been explained. Several possible biomarkers representing these biological changes during specific phenomenon, that is, bone remodelling (formation and resorption), inflammation, and root resorption have also been proposed. The knowledge of these biomarkers could be used in accelerating orthodontic treatment.
Collapse
Affiliation(s)
- Shahrul Hisham Zainal Ariffin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
30
|
Meh A, Sprogar Š, Vaupotic T, Cör A, Drevenšek G, Marc J, Drevenšek M. Effect of cetirizine, a histamine (H1) receptor antagonist, on bone modeling during orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2011; 139:e323-9. [DOI: 10.1016/j.ajodo.2009.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/01/2009] [Accepted: 11/01/2009] [Indexed: 01/19/2023]
|
31
|
Shoji S, Tabuchi M, Miyazawa K, Yabumoto T, Tanaka M, Kadota M, Maeda H, Goto S. Bisphosphonate inhibits bone turnover in OPG(-/-) mice via a depressive effect on both osteoclasts and osteoblasts. Calcif Tissue Int 2010; 87:181-92. [PMID: 20549197 DOI: 10.1007/s00223-010-9384-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
Osteoclast differentiation and functioning are strictly controlled by RANKL expressed on osteoblast membrane surfaces, but whether osteoclasts exert control over osteoblasts remains unclear. In the present study, we examined the effect of an osteoclast inhibitor, a bisphosphonate (BP), on the response of maxillary bone to mechanical stress in a high-turnover osteoporosis model (OPG(-/-) mice, a model of juvenile Paget disease). Mechanical stress was induced by use of orthodontic elastics to move the maxillary first molar. BP was administered once per day beginning 5 days before elastic insertion. Relative to wild type (WT), in the OPG(-/-) mice tooth movement distance was greater, resorption of the interradicular septum occurred to a greater extent, the osteoclast count was higher, and serum alkaline phosphatase (ALP) was higher. However, administration of BP to OPG(-/-) mice reduced tooth movement distance, increased bone volume at the interradicular septum, decreased the osteoclast count, and reduced serum ALP. BP administration also caused a temporal shift in peak Runx2 staining in OPG(-/-) mice, such that the overall staining time course was similar to that observed for WT mice. We conclude that BP administration not only inhibited osteoclast activity in OPG(-/-) mice but also systemically and locally inhibited osteoblast activity. It is possible that osteoclasts are able to exert some negative control over osteoblasts.
Collapse
Affiliation(s)
- Satsuki Shoji
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, 2-11, Suemori-Dori, Chikusa-Ku, Nagoya 464-8651, Japan.
| | | | | | | | | | | | | | | |
Collapse
|