1
|
Ustriyana P, He R, Srirangapatanam S, Chang J, Arman ST, Sidhu S, Wang B, Kang M, Ho SP. Food hardness can regulate orthodontic tooth movement in mice. J Periodontal Res 2021; 57:269-283. [PMID: 34894155 DOI: 10.1111/jre.12945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 10/13/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Orthodontic treatment is often accompanied with prescription of softer foods to patients. The question to ask is, is this prescribed load regimen congruent with Wolff's law, and does it provide an adequate mechanical stimulus to maintain the functional health of periodontal complex? This question was answered by studying the effects of mice chewing on soft food (SF) and hard food (HF) while undergoing experimental tooth movement (ETM). METHODS Three-week-old C57BL/6 mice (n = 18) were fed either hard pellet (HF; n = 9) or soft-chow food (SF; n = 9). ETM was performed on mice at 8 weeks of age, and mice were euthanized at 1 min, 2 weeks, and 4 weeks (8, 10, and 12 weeks old, respectively). A logistic regression model was applied to the experimental data to extrapolate the prolonged effects of ETM on the physical features of the dentoalveolar joint (DAJ). RESULTS By 12 weeks, mice that chewed on SF expressed wider periodontal ligament space than those that chewed on HF. Mice that chewed on SF demonstrated increased alveolar socket roughness with larger alveoli and decreased bone volume fraction but with significantly lower bone mineral density and reduced overall tooth movement. CONCLUSIONS These altered physical features when contextualized within the DAJ illustrated that (a) the regions farther away from the "site of insult" also undergo significant adaptation, and (b) these adaptations vary between mesial and distal sides of the periodontal complex and topographically differentiate in the direction of the ETM. These insights underpin the main conclusion, in that there is a need to "regulate chewing loads" as a therapeutic dose following ETM to encourage regeneration of periodontal complex as an effective clinical outcome. The discussed multiscale image analyses also can be used on patient cone beam computed tomography data to identify the effectiveness of orthodontic treatment within the realm of masticatory function.
Collapse
Affiliation(s)
- Putu Ustriyana
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California, USA
| | - Rui He
- Hangzhou Normal University, Yuhang District, China
| | - Sudarshan Srirangapatanam
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California, USA.,Department of Urology, University of California, San Francisco, California, USA
| | - Jasper Chang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California, USA
| | - Sheeler T Arman
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California, USA
| | - Sukhmandeep Sidhu
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California, USA
| | - Bo Wang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California, USA
| | - Misun Kang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California, USA
| | - Sunita P Ho
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California, USA.,Department of Urology, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Jiang F, Jalali A, Deguchi C, Chen A, Liu S, Kondo R, Minami K, Horiuchi T, Li BY, Robling AG, Chen J, Yokota H. Finite-element analysis of the mouse proximal ulna in response to elbow loading. J Bone Miner Metab 2019; 37:419-429. [PMID: 30062431 PMCID: PMC6353704 DOI: 10.1007/s00774-018-0943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Bone is a mechano-sensitive tissue that alters its structure and properties in response to mechanical loading. We have previously shown that application of lateral dynamic loads to a synovial joint, such as the knee and elbow, suppresses degradation of cartilage and prevents bone loss in arthritis and postmenopausal mouse models, respectively. While loading effects on pathophysiology have been reported, mechanical effects on the loaded joint are not fully understood. Because the direction of joint loading is non-axial, not commonly observed in daily activities, strain distributions in the laterally loaded joint are of great interest. Using elbow loading, we herein characterized mechanical responses in the loaded ulna focusing on the distribution of compressive strain. In response to 1-N peak-to-peak loads, which elevate bone mineral density and bone volume in the proximal ulna in vivo, we conducted finite-element analysis and evaluated strain magnitude in three loading conditions. The results revealed that strain of ~ 1000 μstrain (equivalent to 0.1% compression) or above was observed in the limited region near the loading site, indicating that the minimum effective strain for bone formation is smaller with elbow loading than axial loading. Calcein staining indicated that elbow loading increased bone formation in the regions predicted to undergo higher strain.
Collapse
Affiliation(s)
- Feifei Jiang
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Chie Deguchi
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Graduate School of Engineering, Mie University, Mie, 514, Japan
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Rika Kondo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Osaka University Graduate School of Medicine, Suita, Osaka, 565, Japan
| | - Kazumasa Minami
- Osaka University Graduate School of Medicine, Suita, Osaka, 565, Japan
| | | | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hiroki Yokota
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA.
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Wang L, Aghvami M, Brunski J, Helms J. Biophysical regulation of osteotomy healing: An animal study. Clin Implant Dent Relat Res 2017; 19:590-599. [PMID: 28608504 DOI: 10.1111/cid.12499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Osteotomies have been performed for centuries yet there remains a remarkable lack of consensus on optimal methods for cutting bone. There is universal agreement, however, that preserving cell viability is critical. PURPOSE To identify mechanobiological parameters influencing bone formation after osteotomy site preparation. MATERIALS AND METHODS A murine maxillary osteotomy model was used to evaluate healing. Computational modeling characterized stress and strain distributions in the osteotomy, as well as the magnitude and distribution of heat generated by drilling. The impact of osteocyte death and bone composition were assessed using molecular and cellular assays. RESULTS The phases of osteotomy healing in mice align closely with results in large animals; in addition, molecular analyses extended our understanding of osteoprogenitor cell proliferation, differentiation, and mineralization. Computational analyses provided insights into temperature changes caused by drilling and the mechanobiological state in the healing osteotomies, while concomitant cellular assays correlate drill speed with osteocyte apoptosis and bone resorption. Even when drilling was controlled, trabeculated, spongy (Type III) bone healed faster than densely lamellar (Type I) bone because of the abundance of Wnt responsive osteoprogenitor cells in the former. CONCLUSIONS These data provide a mechanobiological framework for evaluating tools and technologies designed to improve osteotomy site preparation.
Collapse
Affiliation(s)
- Liao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, 94305
| | - Maziar Aghvami
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, 94305
| | - John Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, 94305
| | - Jill Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, 94305
| |
Collapse
|
4
|
Resonance in the mouse tibia as a predictor of frequencies and locations of loading-induced bone formation. Biomech Model Mechanobiol 2013; 13:141-51. [PMID: 23575747 DOI: 10.1007/s10237-013-0491-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 04/01/2013] [Indexed: 01/15/2023]
Abstract
To enhance new bone formation for the treating of patients with osteopenia and osteoporosis, various mechanical loading regimens have been developed. Although a wide spectrum of loading frequencies is proposed in those regimens, a potential linkage between loading frequencies and locations of loading-induced bone formation is not well understood. In this study, we addressed a question: Does mechanical resonance play a role in frequency-dependent bone formation? If so, can the locations of enhanced bone formation be predicted through the modes of vibration? Our hypothesis is that mechanical loads applied at a frequency near the resonant frequencies enhance bone formation, specifically in areas that experience high principal strains. To test the hypothesis, we conducted axial tibia loading using low, medium, or high frequency to the mouse tibia, as well as finite element analysis. The experimental data demonstrated dependence of the maximum bone formation on location and frequency of loading. Samples loaded with the low-frequency waveform exhibited peak enhancement of bone formation in the proximal tibia, while the high-frequency waveform offered the greatest enhancement in the midshaft and distal sections. Furthermore, the observed dependence on loading frequencies was correlated to the principal strains in the first five resonance modes at 8.0-42.9 Hz. Collectively, the results suggest that resonance is a contributor to the frequencies and locations of maximum bone formation. Further investigation of the observed effects of resonance may lead to the prescribing of personalized mechanical loading treatments.
Collapse
|
5
|
Dodge T, Wanis M, Ayoub R, Zhao L, Watts NB, Bhattacharya A, Akkus O, Robling A, Yokota H. Mechanical loading, damping, and load-driven bone formation in mouse tibiae. Bone 2012; 51:810-8. [PMID: 22878153 PMCID: PMC3580058 DOI: 10.1016/j.bone.2012.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022]
Abstract
Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect bone remodeling and bone quality.
Collapse
Affiliation(s)
- Todd Dodge
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Mina Wanis
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Ramez Ayoub
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Liming Zhao
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Nelson B. Watts
- Mercy Health Osteoporosis and Bone Health Services, Cincinnati, OH 45236, USA
| | - Amit Bhattacharya
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ozan Akkus
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alexander Robling
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Bhatia A, Albazzaz M, Espinoza Orías AA, Inoue N, Miller LM, Acerbo A, George A, Sumner DR. Overexpression of DMP1 accelerates mineralization and alters cortical bone biomechanical properties in vivo. J Mech Behav Biomed Mater 2011; 5:1-8. [PMID: 22100074 DOI: 10.1016/j.jmbbm.2011.08.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 11/26/2022]
Abstract
Dentin matrix protein-1 (DMP1) is a key regulator of biomineralization. Here, we examine changes in structural, geometric, and material properties of cortical bone in a transgenic mouse model overexpressing DMP1. Micro-computed tomography and three-point bending were performed on 90 femora of wild type and transgenic mice at 1, 2, 4, and 6 months. Fourier transform infrared imaging was performed at 2 months. We found that the transgenic femurs were longer (p<0.01), more robust in cross-section (p<0.05), stronger (p<0.05), but had less post-yield strain and displacement (p<0.01), and higher tissue mineral density (p<0.01) than the wild type femurs at 1 and 2 months. At 2 months, the transgenic femurs also had a higher mineral-to-matrix ratio (p<0.05) and lower carbonate substitution (p<0.05) compared to wild type femurs. These findings indicate that increased mineralization caused by overexpressing DMP1 led to increased structural cortical bone properties associated with decreased ductility during the early post-natal period.
Collapse
Affiliation(s)
- Ankush Bhatia
- Department of Anatomy and Cell Biology, Rush Medical College, 600 S Paulina St., Rm 507, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dooley C, Tisbo P, Lee TC, Taylor D. Rupture of osteocyte processes across microcracks: the effect of crack length and stress. Biomech Model Mechanobiol 2011; 11:759-66. [DOI: 10.1007/s10237-011-0349-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 09/03/2011] [Indexed: 11/30/2022]
|