1
|
Marini F, Giusti F, Palmini G, Brandi ML. Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int 2023; 34:213-238. [PMID: 35982318 DOI: 10.1007/s00198-022-06523-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
UNLABELLED Wnt signaling and its bone tissue-specific inhibitor sclerostin are key regulators of bone homeostasis. The therapeutic potential of anti-sclerostin antibodies (Scl-Abs), for bone mass recovery and fragility fracture prevention in low bone mass phenotypes, has been supported by animal studies. The Scl-Ab romosozumab is currently used for osteoporosis treatment. INTRODUCTION Wnt signaling is a key regulator of skeletal development and homeostasis; germinal mutations affecting genes encoding components, inhibitors, and enhancers of the Wnt pathways were shown to be responsible for the development of rare congenital metabolic bone disorders. Sclerostin is a bone tissue-specific inhibitor of the Wnt/β-catenin pathway, secreted by osteocytes, negatively regulating osteogenic differentiation and bone formation, and promoting osteoclastogenesis and bone resorption. PURPOSE AND METHODS Here, we reviewed current knowledge on the role of sclerostin and Wnt pathways in bone metabolism and skeletal disorders, and on the state of the art of therapy with sclerostin-neutralizing antibodies in low-bone-mass diseases. RESULTS Various in vivo studies on animal models of human low-bone-mass diseases showed that targeting sclerostin to recover bone mass, restore bone strength, and prevent fragility fracture was safe and effective in osteoporosis, osteogenesis imperfecta, and osteoporosis pseudoglioma. Currently, only treatment with romosozumab, a humanized monoclonal anti-sclerostin antibody, has been approved in human clinical practice for the treatment of osteoporosis, showing a valuable capability to increase BMD at various skeletal sites and reduce the occurrence of new vertebral, non-vertebral, and hip fragility fractures in treated male and female osteoporotic patients. CONCLUSIONS Preclinical studies demonstrated safety and efficacy of therapy with anti-sclerostin monoclonal antibodies in the preservation/restoration of bone mass and prevention of fragility fractures in low-bone-mass clinical phenotypes, other than osteoporosis, to be validated by clinical studies for their approved translation into prevalent clinical practice.
Collapse
Affiliation(s)
- Francesca Marini
- Fondazione FIRMO Onlus, Italian Foundation for the Research on Bone Diseases, Via San Gallo 123, 50129, Florence, Italy
| | - Francesca Giusti
- Donatello Bone Clinic, Villa Donatello Hospital, Sesto Fiorentino, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione FIRMO Onlus, Italian Foundation for the Research on Bone Diseases, Via San Gallo 123, 50129, Florence, Italy.
- Donatello Bone Clinic, Villa Donatello Hospital, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
2
|
Lee YJ, Pak H, Hwang CJ, Choi YJ, Lee JH, Lee JH, Cha JY. Targeted next-generation sequencing for comprehensive genetic analysis of external apical root resorption during orthodontic treatment with premolar extraction in the Korean population. Am J Orthod Dentofacial Orthop 2022; 162:668-679.e5. [PMID: 35965166 DOI: 10.1016/j.ajodo.2021.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION External apical root resorption (EARR) is one of the most common unfavorable consequences of orthodontic treatment and causes loss of tooth structure. The present study aimed to investigate the genetics of EARR using next-generation sequencing comprehensively. METHODS Targeted next-generation sequencing was performed for comprehensive genetic analysis of 118 Korean orthodontic patients. The patients were divided into 2 groups on the basis of their EARR value. The association of clinical and genetic parameters with EARR was assessed using the χ2 test or t test for matched pairs, followed by Bonferroni correction and linear regression analysis. In addition, haplotype analysis and in silico prediction were conducted to evaluate functional effects. RESULTS No statistically significant difference was observed between clinical and treatment-related parameters and EARR. The single nucleotide polymorphisms SPP1 rs9138 (P = 0.001) and SFRP2 rs3810765 (P = 0.04) showed only nominal significance between EARR groups. However, these 2 SNPs were not significant after Bonferroni correction for multiple testing (cutoff P = 0.05/142 = 3.52 × 10-4). Variations in SPP1 rs9138 and SFRP2 rs3810765 may be related to EARR during orthodontic treatment. In summary, not only genes related to inflammatory reactions but also those related to Wnt signaling to affect the degree of EARR during orthodontic teeth movement.
Collapse
Affiliation(s)
- Yun-Ju Lee
- Department of Orthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea
| | - Hayeon Pak
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Dongdaemoon-gu, Seoul, South Korea
| | - Chung-Ju Hwang
- Department of Orthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea
| | - Yoon Jeong Choi
- Department of Orthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea
| | - Jae-Hoon Lee
- Department of Prosthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, and Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, South Korea.
| | - Jung-Yul Cha
- Department of Orthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea.
| |
Collapse
|
3
|
Farrell M, Fairfield H, Costa S, D'Amico A, Falank C, Brooks DJ, Reagan MR. Sclerostin-Neutralizing Antibody Treatment Rescues Negative Effects of Rosiglitazone on Mouse Bone Parameters. J Bone Miner Res 2021; 36:158-169. [PMID: 32845528 PMCID: PMC8080259 DOI: 10.1002/jbmr.4170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Obesity, a growing pandemic, is a risk factor for many cancers and causes increased bone marrow adipose tissue (BMAT). in vitro studies and obese animal models suggest that BMAT contributes to cancer progression, but there is a lack of preclinical models to directly test BMAT's role in cancer. Overactivation of peroxisome-proliferator-activated receptor-γ (PPARγ) can skew bone formation and resorption rates, resulting in increased BMAT and trabecular bone loss. Thiazolidinediones (eg, rosiglitazone) are anti-diabetic therapies that promote adipogenesis through PPARγ activation. We investigated if rosiglitazone increases BMAT in an immunocompromised model, commonly used in cancer research, and if these effects could be reversed by co-administering a bone anabolic agent (sclerostin-neutralizing antibody [Scl-Ab]), which has been shown to inhibit adipogenesis, using DXA, μCT, OsO4 μCT, and dynamic histomorphometry. Four weeks of rosiglitazone in female SCID Beige mice (cohort 1) significantly decreased trabecular bone volume (BV/TV) by about one-half, through increased osteoclast and suppressed osteoblast activity, and significantly increased BMAT. In cohort 2, mice were administered rosiglitazone ± Scl-Ab for 4 weeks, and then rosiglitazone was discontinued and Scl-Ab or vehicle were continued for 6 weeks. Scl-Ab significantly increased bone parameters (eg, BV/TV, N.Ob/B.Pm, and MS/BS) in both groups. Scl-Ab also overcame many negative effects of rosiglitazone (eg, effects on trabecular bone parameters, increased mineralization lag time [MLT], and decreased bone formation rate [BFR]). Interestingly, Scl-Ab significantly decreased rosiglitazone-induced BMAT in the femur, mostly due to a reduction in adipocyte size, but had a much weaker effect on tibial BMAT. These data suggest targeting sclerostin can prevent rosiglitazone-induced bone loss and reduce BM adiposity, in some, but not all BMAT locations. Collectively, our data demonstrate that rosiglitazone increases BMAT in SCID Beige mice, but concomitant changes in bone may confound its use to specifically determine BMAT's role in tumor models. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mariah Farrell
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA.,Biology Department, University of Southern Maine, Portland, ME, USA
| | - Heather Fairfield
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA.,Tufts University School of Medicine, Boston, MA, USA
| | - Samantha Costa
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anastasia D'Amico
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA.,Biology Department, University of Southern Maine, Portland, ME, USA
| | - Carolyne Falank
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Daniel J Brooks
- Center for Skeletal Research, Massachusetts General Hospital, Boston, MA, USA
| | - Michaela R Reagan
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA.,Biology Department, University of Southern Maine, Portland, ME, USA.,Tufts University School of Medicine, Boston, MA, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
4
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
5
|
Qi L, Xiang S, Li L, He J, Fu W, Liu Y, Hu Y, Zhang Z. Association of SOST gene polymorphisms with peak bone mineral density in Chinese nuclear families with male-offspring. Acta Biochim Biophys Sin (Shanghai) 2019; 51:341-343. [PMID: 30883645 DOI: 10.1093/abbs/gmy175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/25/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Luyue Qi
- The Third Affiliated Hospital of Soochow University, Changzhou, China
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shoukui Xiang
- Department of Endocrinology, the Third Affiliated Hospital of Soochow University, Changzhou, China
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Li Li
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinwei He
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenzhen Fu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yujuan Liu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yunqiu Hu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhenlin Zhang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
6
|
Ye W, Wang Y, Mei B, Hou S, Liu X, Wu G, Qin L, Zhao K, Huang Q. Computational and functional characterization of four SNPs in the SOST locus associated with osteoporosis. Bone 2018; 108:132-144. [PMID: 29307778 DOI: 10.1016/j.bone.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 01/19/2023]
Abstract
The SOST gene encodes sclerostin, a C-terminal cysteine knot-like domain containing key negative regulator of osteoblastic bone formation that inhibits LRP5/6-mediated canonical Wnt signaling. Numerous single nucleotide polymorphisms (SNPs) in the SOST locus are firmly associated with bone mineral density (BMD) and fracture in genome-wide association studies (GWAS) and candidate gene association studies. However, the validation and mechanistic elucidation of causal genetic variants, especially for SNPs located beyond the promoter-proximal region, remain largely unresolved. By employing computational and experimental approaches, here we identify four SNPs rs1230399, rs7220711, rs1107748 and rs75901553 as functional variants which display allelic variation in SOST gene expression. The osteoporosis associated SNP rs1230399 in the SOST distal upstream regulatory region shows FOXA1 binding activity with subsequent transinactivation in a T allele-specific manner. The BMD GWAS lead SNPs rs7220711 and rs1107748 both reside in the 52-kb regulatory element deletion 35-kb downstream of the SOST gene which leads to Van Buchem disease. The rs7220711-A has a higher affinity for the transcriptional repressors MAFF or MAFK homodimers than rs7220711-G, while rs1107748 confers C allele specific transcriptional enhancer activity via a CTCF binding element. The variant rs75901553 C>T located in a conserved site of the SOST 3' UTR abolishes a target binding site for miR-98-5p which is negatively responsive to parathyroid hormone or 17β-estradiol in osteoblastic cell lines. Our findings uncover the biological consequences of four independent genetic variants in the SOST region and their important roles in SOST expression via diverse mechanisms, providing new insights into the genetics and molecular pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Weiyuan Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ya Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Bing Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Sasa Hou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xinhong Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Guiju Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Longjuan Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Kehui Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Qingyang Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
7
|
Lu S, Sun C, Miao C, Zhao Z. ERβ compensates for the absence of ERα function to promote osteoblast viability by inhibition of SOST signaling. Exp Ther Med 2017; 14:3387-3392. [PMID: 29042923 PMCID: PMC5639354 DOI: 10.3892/etm.2017.5014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/26/2017] [Indexed: 01/01/2023] Open
Abstract
Estrogen receptors α and β (ERα and ERβ) serve key functions in bone development and maintenance, and in the metabolism of bone mineral. ERβ and ERα form heterodimers, and ERβ negatively regulates the transactivation of ERα. ERβ also inhibits recruitment of ERα to the estrogen-responsive promoters. However, the relationship of ERα and ERβ in the regulation of osteoblast viability and differentiation remains unclear. The present study aimed to investigate whether ERβ plays a role in balancing ERα activity in osteoblast cells. Downregulation of ERα by short hairpin RNA (shRNA) was found to significantly increase cell cycle arrest at G1 phase (P<0.01). In addition, this effect was found to be significantly enhanced by downregulation of ERβ (P<0.05). Inversely, ERα-knocked down osteoblasts were treated with ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) to activate ERβ. It was found that activation of ERβ significantly rescued the arrest of cell cycle induced by the downregulation of ERα (P<0.05). Furthermore, downregulation of ERα was found to significantly inhibit cell viability (P<0.01), and knockdown of ERβ was found to have a significant synergic effect with ERα downregulation on the inhibition of cell viability (P<0.01). Treatment with ERβ agonist DPN significantly rescued the effects of downregulation of ERα on cell viability (P<0.01). It was also demonstrated that the synergic effects of ERα and ERβ deletion was via upregulation of SOST gene expression, and the subsequent inhibition of OPG and Runx2 gene expression. Thus, ERβ may serve a function in balancing osteoblast viability and differentiation induced by ERα.
Collapse
Affiliation(s)
- Shijin Lu
- Department of Orthopedics, The Affiliated Peace Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Changying Sun
- Department of Orthopedics, The Affiliated Peace Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Congxiu Miao
- Department of Orthopedics, The Affiliated Peace Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhongfu Zhao
- Department of Orthopedics, The Affiliated Peace Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
8
|
Cheung CL, Tan KCB, Kung AWC. Cohort Profile: The Hong Kong Osteoporosis Study and the follow-up study. Int J Epidemiol 2017; 47:397-398f. [DOI: 10.1093/ije/dyx172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ching-Lung Cheung
- Department of Pharmacology and Pharmacy
- Department of Medicine
- State Key Laboratory of Pharmaceutical Biotechnology
- Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
9
|
Fairfield H, Rosen CJ, Reagan MR. Connecting Bone and Fat: The Potential Role for Sclerostin. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:114-121. [PMID: 28580233 PMCID: PMC5448707 DOI: 10.1007/s40610-017-0057-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sclerostin (SOST), a protein secreted from mature osteocytes in response to mechanical unloading and other stimuli, inhibits the osteogenic Wnt/β-catenin pathway in mesenchymal stem cells (MSCs) impeding their ability to differentiate into mineralizing osteoblasts. PURPOSE This review summarizes the crosstalk between adipose tissue and bone. It also reviews the origin, regulation, and role of SOST in osteogenesis and brings attention to an emerging role of this protein in the regulation of adipogenesis. RECENT FINDINGS Bone-derived molecules that drive MSC adipogenesis have not previously been identified, but recent findings suggest that SOST signaling may induce adipogenesis. In vivo SOST acts locally to induce changes in bone and, in vitro, increases adipogenesis in 3T3-L1 preadipocytes. SUMMARY SOST is able to induce adipogenesis in certain preadipocytes, however bone-specific studies are needed to determine the effect of local SOST concentrations in healthy and disease models on bone marrow adipose tissue.
Collapse
Affiliation(s)
- Heather Fairfield
- Maine Medical Research Institute, Scarborough, ME, USA
- University of Maine, Orono, ME, USA
| | - Clifford J. Rosen
- Maine Medical Research Institute, Scarborough, ME, USA
- University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| | - Michaela R. Reagan
- Maine Medical Research Institute, Scarborough, ME, USA
- University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
10
|
Di Nisio A, De Toni L, Speltra E, Rocca MS, Taglialavoro G, Ferlin A, Foresta C. Regulation of Sclerostin Production in Human Male Osteocytes by Androgens: Experimental and Clinical Evidence. Endocrinology 2015; 156:4534-44. [PMID: 26393301 DOI: 10.1210/en.2015-1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study we aimed to elucidate a possible role of T in the regulation of sclerostin, a glycoprotein secreted by osteocytes known to regulate bone mass. To this end, we evaluated the effect of T stimulation on sclerostin production and gene expression in human cultured osteocytes. In addition, we evaluated serum sclerostin levels in a cohort of 20 hypogonadal male patients, compared with 20 age-matched eugonadal controls. Stimulation with DHT decreased sclerostin expression in cultured osteocytes in a time- and dose-dependent manner. Confirming a direct androgen receptor-mediated effect on sclerostin production, flutamide coincubation and silencing of androgen receptor gene in osteocytes abolished the DHT effects. In addition, hypogonadal patients showed higher serum sclerostin levels with respect to controls (145.87 ± 50.83 pg/mL vs 84.02 ± 32.15 pg/mL; P < .001) and in both probands and controls, serum T levels were negatively correlated with sclerostin (R = -0.664, P = 0.007, and R = -0.447, P = .045, respectively). Finally, multiple stepwise regression analysis showed that T represented the only independent predictor of sclerostin levels. In conclusion, by showing a direct correlation between T and sclerostin, both in vivo and in vitro, this study adds further support to the emerging clinical and experimental studies focusing on sclerostin as a therapeutic target for osteoporosis treatment.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine (A.D.N., L.D.T., E.S., M.S.R., A.F., C.F.), Operative Unit of Andrology and Medicine of Human Reproduction, and Department of Surgical, Oncological, and Gastroenterological Sciences (G.T.), University of Padova, 35128 Padova, Italy
| | - Luca De Toni
- Department of Medicine (A.D.N., L.D.T., E.S., M.S.R., A.F., C.F.), Operative Unit of Andrology and Medicine of Human Reproduction, and Department of Surgical, Oncological, and Gastroenterological Sciences (G.T.), University of Padova, 35128 Padova, Italy
| | - Elena Speltra
- Department of Medicine (A.D.N., L.D.T., E.S., M.S.R., A.F., C.F.), Operative Unit of Andrology and Medicine of Human Reproduction, and Department of Surgical, Oncological, and Gastroenterological Sciences (G.T.), University of Padova, 35128 Padova, Italy
| | - Maria Santa Rocca
- Department of Medicine (A.D.N., L.D.T., E.S., M.S.R., A.F., C.F.), Operative Unit of Andrology and Medicine of Human Reproduction, and Department of Surgical, Oncological, and Gastroenterological Sciences (G.T.), University of Padova, 35128 Padova, Italy
| | - Giuseppe Taglialavoro
- Department of Medicine (A.D.N., L.D.T., E.S., M.S.R., A.F., C.F.), Operative Unit of Andrology and Medicine of Human Reproduction, and Department of Surgical, Oncological, and Gastroenterological Sciences (G.T.), University of Padova, 35128 Padova, Italy
| | - Alberto Ferlin
- Department of Medicine (A.D.N., L.D.T., E.S., M.S.R., A.F., C.F.), Operative Unit of Andrology and Medicine of Human Reproduction, and Department of Surgical, Oncological, and Gastroenterological Sciences (G.T.), University of Padova, 35128 Padova, Italy
| | - Carlo Foresta
- Department of Medicine (A.D.N., L.D.T., E.S., M.S.R., A.F., C.F.), Operative Unit of Andrology and Medicine of Human Reproduction, and Department of Surgical, Oncological, and Gastroenterological Sciences (G.T.), University of Padova, 35128 Padova, Italy
| |
Collapse
|
11
|
Morales-Santana S, Díez-Pérez A, Olmos JM, Nogués X, Sosa M, Díaz-Curiel M, Pérez-Castrillón JL, Pérez-Cano R, Torrijos A, Jodar E, Rio LD, Caeiro-Rey JR, Reyes-García R, García-Fontana B, González-Macías J, Muñoz-Torres M. Circulating sclerostin and estradiol levels are associated with inadequate response to bisphosphonates in postmenopausal women with osteoporosis. Maturitas 2015; 82:402-10. [PMID: 26358930 DOI: 10.1016/j.maturitas.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/24/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The biological mechanisms associated with an inadequate response to treatment with bisphosphonates are not well known. This study investigates the association between circulating levels of sclerostin and estradiol with an inadequate clinical outcome to bisphosphonate therapy in women with postmenopausal osteoporosis. METHODS This case-control study is based on 120 Spanish women with postmenopausal osteoporosis being treated with oral bisphosphonates. Patients were classified as adequate responders (ARs, n=66, mean age 68.2±8 years) without incident fractures during 5 years of treatment, or inadequate responders (IRs, n=54, mean age 67±9 years), with incident fractures between 1 and 5 years of treatment. Bone mineral density (DXA), structural analysis of the proximal femur and structural/fractal analysis of the distal radius were assessed. Sclerostin concentrations were measured by ELISA and 17β-estradiol levels by radioimmunoassay based on ultrasensitive methods. RESULTS In the ARs group, sclerostin serum levels were significantly lower (p=0.02) and estradiol concentrations significantly higher (p=0.023) than in the IRs group. A logistic regression analysis was performed, including as independent variables in the original model femoral fracture load, 25 hydroxyvitamin D, previus history of fragility fracture, sclerostin and estradiol. Only previous history of fragility fracture (OR 14.04, 95% CI 2.38-82.79, p=0.004) and sclerostin levels (OR 1.11, 95% CI 1.02-1.20, p=0.011), both adjusted by estradiol levels remained associated with IRs. Also, sclerostin concentrations were associated with the index of resistance to compression (IRC) in the fractal analysis of the distal radius, a parameter on bone microstructure. CONCLUSIONS Sclerostin and estradiol levels are associated with the response to bisphosphonate therapy in women with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sonia Morales-Santana
- Metabolic Bone Unit, Endocrinology Division (RETICEF), Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; RETICEF, Instituto de Salud Carlos III, Spain; Proteomic Research Service, Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Adolfo Díez-Pérez
- RETICEF, Instituto de Salud Carlos III, Spain; Hospital del Mar-IMIM-UAB, Department of Internal Medicine, Barcelona, Spain
| | - José M Olmos
- RETICEF, Instituto de Salud Carlos III, Spain; Hospital Universitario Marqués Valdecilla, Department of Internal Medicine, Santander, Spain
| | - Xavier Nogués
- RETICEF, Instituto de Salud Carlos III, Spain; Hospital del Mar-IMIM-UAB, Department of Internal Medicine, Barcelona, Spain
| | - Manuel Sosa
- Osteoporosis Research Group. Universidad de Las Palmas de Gran Canaria. Las Palmas de Gran Canaria, Spain
| | - Manuel Díaz-Curiel
- RETICEF, Instituto de Salud Carlos III, Spain; Fundación Jiménez Díaz, Department of Internal Medicine, Madrid, Spain
| | - José L Pérez-Castrillón
- RETICEF, Instituto de Salud Carlos III, Spain; Hospital Universitario Río Ortega, Department of Internal Medicine, Valladolid, Spain
| | - Ramón Pérez-Cano
- RETICEF, Instituto de Salud Carlos III, Spain; Hospital Virgen Macarena. Department of Internal Medicine, Sevilla, Spain
| | - Antonio Torrijos
- RETICEF, Instituto de Salud Carlos III, Spain; Hospital La Paz, Department of Rheumatology, Madrid, Spain
| | - Esteban Jodar
- RETICEF, Instituto de Salud Carlos III, Spain; Hospital Universitario Quirón, Department of Endocrinology, Madrid, Spain
| | - Luis Del Rio
- RETICEF, Instituto de Salud Carlos III, Spain; CETIR Medical Centre, Barcelona, Spain
| | - José R Caeiro-Rey
- RETICEF, Instituto de Salud Carlos III, Spain; Trabeculae, Ourense, Spain
| | - Rebeca Reyes-García
- Metabolic Bone Unit, Endocrinology Division (RETICEF), Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; RETICEF, Instituto de Salud Carlos III, Spain
| | - Beatriz García-Fontana
- Metabolic Bone Unit, Endocrinology Division (RETICEF), Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; RETICEF, Instituto de Salud Carlos III, Spain
| | - Jesús González-Macías
- RETICEF, Instituto de Salud Carlos III, Spain; Hospital Universitario Marqués Valdecilla, Department of Internal Medicine, Santander, Spain
| | - Manuel Muñoz-Torres
- Metabolic Bone Unit, Endocrinology Division (RETICEF), Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain; RETICEF, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
12
|
Genetic polymorphism in extracellular regulators of Wnt signaling pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:847529. [PMID: 25945348 PMCID: PMC4402192 DOI: 10.1155/2015/847529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/05/2015] [Indexed: 11/18/2022]
Abstract
The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.
Collapse
|
13
|
Reppe S, Noer A, Grimholt RM, Halldórsson BV, Medina-Gomez C, Gautvik VT, Olstad OK, Berg JP, Datta H, Estrada K, Hofman A, Uitterlinden AG, Rivadeneira F, Lyle R, Collas P, Gautvik KM. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res 2015; 30:249-56. [PMID: 25155887 DOI: 10.1002/jbmr.2342] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/27/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022]
Abstract
Inhibition of sclerostin, a glycoprotein secreted by osteocytes, offers a new therapeutic paradigm for treatment of osteoporosis (OP) through its critical role as Wnt/catenin signaling regulator. This study describes the epigenetic regulation of SOST expression in bone biopsies of postmenopausal women. We correlated serum sclerostin to bone mineral density (BMD), fractures, and bone remodeling parameters, and related these findings to epigenetic and genetic disease mechanisms. Serum sclerostin and bone remodeling biomarkers were measured in two postmenopausal groups: healthy (BMD T-score > -1) and established OP (BMD T-score < -2.5, with at least one low-energy fracture). Bone specimens were used to analyze SOST mRNAs, single nucleotide polymorphisms (SNPs), and DNA methylation changes. The SOST gene promoter region showed increased CpG methylation in OP patients (n = 4) compared to age and body mass index (BMI) balanced controls (n = 4) (80.5% versus 63.2%, p = 0.0001) with replication in independent cohorts (n = 27 and n = 36, respectively). Serum sclerostin and bone SOST mRNA expression correlated positively with age-adjusted and BMI-adjusted total hip BMD (r = 0.47 and r = 0.43, respectively; both p < 0.0005), and inversely to serum bone turnover markers. Five SNPs, one of which replicates in an independent population-based genomewide association study (GWAS), showed association with serum sclerostin or SOST mRNA levels under an additive model (p = 0.0016 to 0.0079). Genetic and epigenetic changes in SOST influence its bone mRNA expression and serum sclerostin levels in postmenopausal women. The observations suggest that increased SOST promoter methylation seen in OP is a compensatory counteracting mechanism, which lowers serum sclerostin concentrations and reduces inhibition of Wnt signaling in an attempt to promote bone formation.
Collapse
Affiliation(s)
- Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Lovisenberg Diakonale Hospital, Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang H, He JW, Wang C, Zhang Z, Yue H, Hu WW, Gu JM, Hu YQ, Li M, Fu WZ, Zhang ZL. Associations of polymorphisms in the SOST gene and bone mineral density in postmenopausal Chinese Women. Osteoporos Int 2014; 25:2797-803. [PMID: 25103216 DOI: 10.1007/s00198-014-2832-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/29/2014] [Indexed: 01/08/2023]
Abstract
UNLABELLED The bone mineral density (BMD) of a total of 1,379 healthy postmenopausal Chinese women was measured. Ten tagging SNPs of the sclerostin (SOST) gene were genotyped. Our results suggest that the polymorphisms of the rs2023794 and rs74252774 in the SOST gene were associated with BMD of the lumbar spine in postmenopausal Chinese women. INTRODUCTION The purpose of the study was to determine the associations between polymorphisms of SOST gene and BMD in postmenopausal Chinese women. METHODS A total of 1,379 independent healthy postmenopausal Chinese women including 703 in our previous study were recruited. The BMD of the lumbar spine 1-4 (L1-4) and left proximal femur including total hip and femoral neck were measured by dual-energy X-ray absorptiometry. Ten tagging SNPs (rs1234612, rs1513670, rs1634330, rs1708635, rs2023794, rs7220711, rs74252774, rs851057, rs851058, and rs865429) of the SOST gene were genotyped. RESULTS The rs2023794 and rs74252774 and the haplotype ACCATTCT of SOST gene were associated with age and body mass index (BMI) adjusted L1-4 BMD (P values were 0.010, 0.007, and 0.007, respectively) even after performing the Bonferroni multiple-significance-test correction. There was a clear trend in these regions that the CC genotype of the rs2023794 and the TT genotype of the rs74252774 have higher BMD values than other genotypes. The contributions of the rs2023794 and rs74252774 to the phenotypic variation of L1-4 BMD were 0.6 and 0.7 %, respectively. We failed to find any association between the 10 SNPs and 6 haplotypes of the SOST gene and BMD at the hip site in this study. CONCLUSIONS Our results suggest that the polymorphisms of the rs2023794 and rs74252774 in the SOST gene were associated with BMD of the lumbar spine in a large sample of postmenopausal Chinese women.
Collapse
Affiliation(s)
- H Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetic Research Unit, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kyvernitakis I, Rachner TD, Urbschat A, Hars O, Hofbauer LC, Hadji P. Effect of aromatase inhibition on serum levels of sclerostin and dickkopf-1, bone turnover markers and bone mineral density in women with breast cancer. J Cancer Res Clin Oncol 2014; 140:1671-80. [PMID: 24903965 DOI: 10.1007/s00432-014-1726-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE While their negative impact on bone health is well established, the effects of aromatase inhibition (AI) on Wnt inhibitors and osteoprotegerin (OPG) are unknown. The aim of the study was to investigate the effects of AI on serum levels of sclerostin, DKK-1 and OPG, as well as their associations with PINP and CTX as markers of bone turnover and bone mineral density (BMD) assessed by DXA. METHODS We conducted a prospective longitudinal analysis of 70 postmenopausal women with hormone receptor-positive early breast cancer (BC) treated with anastrozole. All measurements were performed at baseline, 12 and 24 months of treatment. We measured the association of the investigated variables with circulating bone turnover markers, as well as with the BMD. RESULTS After 24 months of AI therapy, sclerostin and OPG concentrations increased from 29.5 pmol/l (SD = 15.1) and 6.8 pmol/l (SD = 2.2) at baseline to 43.2 pmol/l (SD = 20.6) (p < 0.001) and 7.4 pmol/l (SD = 2.2) (p = 0.028), respectively. DKK-1 levels decreased from 34.3 pmol/l (SD = 13.5) at baseline to 29.7 pmol/l (SD = 12.3) at the 24-month visit (p = 0.005). Sclerostin levels significantly correlated with PTH, OPG and BMD of the lumbar spine, while DKK-1 correlated with the BMD of the femoral neck and of the total hip. CONCLUSIONS The observed increase in sclerostin levels indicates a central role of osteocytes in bone turnover in women with BC.
Collapse
Affiliation(s)
- Ioannis Kyvernitakis
- Department of Gynecological Endocrinology, Reproductive Medicine and Osteoporosis, Philipps-University of Marburg, Baldingerstr. 1, 35041, Marburg, Germany,
| | | | | | | | | | | |
Collapse
|
16
|
Lee DO, Kim H, Ku SY, Kim SH, Kim JG. Association between polymorphisms in sclerostin, dickkopfs and secreted frizzled-related protein genes and bone mineral density in postmenopausal Korean women. Gynecol Obstet Invest 2014; 77:186-193. [PMID: 24662300 DOI: 10.1159/000358389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The purpose of this study was to investigate the association between single nucleotide polymorphisms (SNPs) in sclerostin (SOST), dickkopf (DKK), secreted frizzled-related protein (sFRP) genes and bone mineral density (BMD) in postmenopausal Korean women. METHODS The SOST, Wnt inhibitory factor 1 (WIF1), sFRP1,sFRP2,sFRP3, sFRP4, sFRP5, DKK1, DKK2 and DKK3 polymorphisms were analyzed in 399 postmenopausal Korean women. Serum levels of bone turnover markers were measured, and BMDs at the lumbar spine and femoral neck were also examined. RESULTS No significant differences in adjusted BMD at the lumbar spine and femoral neck were noted according to any single and combined polymorphisms measured in SOST, DKKs and sFRPs. However, osteoporosis at the femoral neck was 2.35 times more frequently observed in the AA genotype of the sFRP4 c.958C>A polymorphism compared to the non-AA genotype (95% CI 1.09-5.08, p = 0.03). Also, the CC genotype of the sFRP3 c.970C>G polymorphism had a higher rate of osteoporosis at the femoral neck compared to the GC genotype (OR 8.47, 95% CI 1.37-52.63, p = 0.049). CONCLUSIONS Our results suggest that the sFRP3 c.970C>G and sFRP4 c.958C>A polymorphisms may be genetic factors associated with the prevalence of osteoporosis at the femoral neck in postmenopausal Korean women.
Collapse
Affiliation(s)
- Dong Ock Lee
- Department of Obstetrics and Gynecology, National Cancer Center, Koyang, Korea
| | | | | | | | | |
Collapse
|
17
|
Kuipers AL, Zhang Y, Yu S, Kammerer CM, Nestlerode CS, Chu Y, Bunker CH, Patrick AL, Wheeler VW, Miljkovic I, Zmuda JM. Relative influence of heritability, environment and genetics on serum sclerostin. Osteoporos Int 2014; 25:905-12. [PMID: 24136102 PMCID: PMC3948173 DOI: 10.1007/s00198-013-2517-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 09/16/2013] [Indexed: 01/28/2023]
Abstract
SUMMARY We determined factors associated with serum sclerostin in 446 Afro-Caribbean family members. Age, weight, sex, diabetes and kidney function were associated with sclerostin. Sclerostin was heritable, and nine SNPs in the SOST gene region were associated with sclerostin. Variation in serum sclerostin is a heritable factor that is determined by both genetic and environmental factors. INTRODUCTION Sclerostin, encoded by the SOST gene, is a Wnt inhibitor that regulates bone mineralization and is a candidate gene locus for osteoporosis. However, little is known about the genetic and non-genetic sources of inter-individual variation in serum sclerostin levels. METHODS Serum sclerostin was measured in 446 Afro-Caribbean men and women aged 18+ from seven large, multigenerational families (mean family size, 64; 3,840 relative pairs). Thirty-six common single nucleotide polymorphisms (SNP) were genotyped within a 100 kb region encompassing the gene encoding sclerostin (SOST). Genetic and non-genetic factors were tested for association with serum sclerostin. RESULTS Mean serum sclerostin was 41.3 pmol/l and was greater in men than in women (P < 0.05). Factors associated with higher serum sclerostin were increased age and body weight, male sex, diabetes and decreased glomerular filtration rate, which collectively accounted for 25.4 % of its variation. Residual genetic heritability of serum sclerostin was 0.393 (P < 0.0001). Nine SNPs reached nominal significance with sclerostin. Three of those nine SNPs represented independent association signals (rs851056, rs41455049 and rs9909172), which accounted for 7.8 % of the phenotypic variation in sclerostin, although none of these SNPs surpassed a Bonferroni correction for multiple comparisons. CONCLUSIONS Serum sclerostin is a heritable trait that is also determined by environmental factors including age, sex, adiposity, diabetes and kidney function. Three independent common SNPs within the SOST region may collectively account for a significant proportion of the variation in serum sclerostin.
Collapse
Affiliation(s)
- A L Kuipers
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boschert V, van Dinther M, Weidauer S, van Pee K, Muth EM, ten Dijke P, Mueller TD. Mutational analysis of sclerostin shows importance of the flexible loop and the cystine-knot for Wnt-signaling inhibition. PLoS One 2013; 8:e81710. [PMID: 24312339 PMCID: PMC3843708 DOI: 10.1371/journal.pone.0081710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
The cystine-knot containing protein Sclerostin is an important negative regulator of bone growth and therefore represents a promising therapeutic target. It exerts its biological task by inhibiting the Wnt (wingless and int1) signaling pathway, which participates in bone formation by promoting the differentiation of mesenchymal stem cells to osteoblasts. The core structure of Sclerostin consists of three loops with the first and third loop (Finger 1 and Finger 2) forming a structured β-sheet and the second loop being unstructured and highly flexible. Biochemical data showed that the flexible loop is important for binding of Sclerostin to Wnt co-receptors of the low-density lipoprotein related-protein family (LRP), by interacting with the Wnt co-receptors LRP5 or -6 it inhibits Wnt signaling. To further examine the structural requirements for Wnt inhibition, we performed an extensive mutational study within all three loops of the Sclerostin core domain involving single and multiple mutations as well as truncation of important regions. By this approach we could confirm the importance of the second loop and especially of amino acids Asn92 and Ile94 for binding to LRP6. Based on a Sclerostin variant found in a Turkish family suffering from Sclerosteosis we generated a Sclerostin mutant with cysteines 84 and 142 exchanged thereby removing the third disulfide bond of the cystine-knot. This mutant binds to LRP6 with reduced binding affinity and also exhibits a strongly reduced inhibitory activity against Wnt1 thereby showing that also elements outside the flexible loop are important for inhibition of Wnt by Sclerostin. Additionally, we examined the effect of the mutations on the inhibition of two different Wnt proteins, Wnt3a and Wnt1. We could detect clear differences in the inhibition of these proteins, suggesting that the mechanism by which Sclerostin antagonizes Wnt1 and Wnt3a is fundamentally different.
Collapse
Affiliation(s)
- Verena Boschert
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany
| | - Maarten van Dinther
- Department of Molecular Cell Biology, Cancer Genomics Center Netherlands and Center for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stella Weidauer
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany
| | - Katharina van Pee
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany
| | - Eva-Maria Muth
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany
| | - Peter ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Center Netherlands and Center for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas D. Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
20
|
Sapir-Koren R, Livshits G. Is interaction between age-dependent decline in mechanical stimulation and osteocyte-estrogen receptor levels the culprit for postmenopausal-impaired bone formation? Osteoporos Int 2013; 24:1771-89. [PMID: 23229466 DOI: 10.1007/s00198-012-2208-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
Declining estrogen levels during menopause are widely considered to be a major cause of age-dependent bone loss, which is primarily manifested by increased bone resorption by osteoclasts. We present accumulating evidence supporting another aspect of metabolic bone loss, suggesting that the combined interaction between age-dependent factors, namely, estrogen deficiency and reduced day-by-day activity/mechanical stimulation, directly leads to a reduction in anabolic processes. Such decreased bone formation results in diminished bone strength and failure to maintain the load-bearing competence of a healthy skeleton and to postmenopausal osteoporosis disorder. Estrogen receptors (ERs), as mediators of estrogenic actions, are essential components of bone osteocyte and osteoblast mechano-adaptive responses. ER expression appears to be upregulated by adequate circulating estrogen levels. ERα signaling pathways participate in the mechanotransduction response through obligatory "non-genomic" actions that occur independently of estrogen binding to ER and by a potentially "genomic", estrogen-dependent mode. The experimental data indicate that cross talk between the ERα-"non-genomic" and Wnt/β-catenin signaling pathways constitutes the major regulatory mechanism. This interaction uses mechanically and ER-induced prostaglandin E2 as a mediator for the downregulation of osteocyte production of sclerostin. Sclerostin suppression, in turn, is a central prerequisite for load-induced formation and mineralization of the bone matrix. It is therefore plausible that future strategies for preventing and treating postmenopausal osteoporosis may use estrogenic compounds (such as selective estrogen receptor modulators or phytoestrogens) with physical activity, to complement antiresorptive therapy, aimed at stopping further bone loss and possibly even reversing it by stimulation of bone gain.
Collapse
Affiliation(s)
- R Sapir-Koren
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
21
|
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 2013; 5:13-31. [PMID: 23514963 DOI: 10.1177/1759720x12466608] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19:179-92. [PMID: 23389618 DOI: 10.1038/nm.3074] [Citation(s) in RCA: 1520] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
Abstract
Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
Collapse
|
23
|
Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 2012; 33:747-83. [PMID: 22723594 DOI: 10.1210/er.2011-1060] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The processes of bone growth, modeling, and remodeling determine the structure, mass, and biomechanical properties of the skeleton. Dysregulated bone resorption or bone formation may lead to metabolic bone diseases. The Wnt pathway plays an important role in bone formation and regeneration, and expression of two Wnt pathway inhibitors, sclerostin and Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of sclerostin leads to substantially increased bone mass in humans and in genetically manipulated animals. Studies in various animal models of bone disease have shown that inhibition of sclerostin using a monoclonal antibody (Scl-Ab) increases bone formation, density, and strength. Additional studies show that Scl-Ab improves bone healing in models of bone repair. Inhibition of DKK1 by monoclonal antibody (DKK1-Ab) stimulates bone formation in younger animals and to a lesser extent in adult animals and enhances fracture healing. Thus, sclerostin and DKK1 are emerging as the leading new targets for anabolic therapies to treat bone diseases such as osteoporosis and for bone repair. Clinical trials are ongoing to evaluate the effects of Scl-Ab and DKK1-Ab in humans for the treatment of bone loss and for bone repair.
Collapse
Affiliation(s)
- Hua Zhu Ke
- Metabolic Disorders Research, Amgen Inc., One Amgen Center Drive, MS 29-M-B, Thousand Oaks, California 91320, USA.
| | | | | | | |
Collapse
|
24
|
Faje AT, Fazeli PK, Katzman DK, Miller KK, Breggia A, Rosen CJ, Mendes N, Klibanski A, Misra M. Sclerostin levels and bone turnover markers in adolescents with anorexia nervosa and healthy adolescent girls. Bone 2012; 51:474-9. [PMID: 22728230 PMCID: PMC3412913 DOI: 10.1016/j.bone.2012.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/12/2012] [Accepted: 06/06/2012] [Indexed: 11/15/2022]
Abstract
Sclerostin, product of the SOST gene, is an important determinant of bone formation and resorption. Adolescents with anorexia nervosa (AN) have low bone density and decreased levels of bone turnover markers. However, sclerostin has not been examined in AN as a potential mediator of impaired bone metabolism. Our study objectives were to (i) assess associations of sclerostin with surrogate bone turnover markers in girls with AN and controls and (ii) examine effects of transdermal estradiol on sclerostin in AN. 69 girls (44 with AN and 25 normal-weight controls) 13-18 years old were studied at baseline. 22 AN girls were randomized to transdermal estradiol (plus cyclic medroxyprogesterone) or placebo in a double-blind study for 12 months. Sclerostin correlated positively with P1NP and CTX in controls (r=0.67 and 0.53, p=0.0002 and 0.005, respectively) but not in AN despite comparable levels at baseline. Changes in sclerostin over twelve months did not differ in girls randomized to estradiol or placebo. The relationship between sclerostin and bone turnover markers is disrupted in adolescent girls with AN. Despite an increase in BMD with estradiol administration in AN, estrogen does not impact sclerostin levels in this group.
Collapse
Affiliation(s)
- Alexander T. Faje
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Pouneh K. Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Debra K. Katzman
- Division of Adolescent Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Anne Breggia
- Maine Medical Center Research Institute, Portland, ME 04074
| | | | - Nara Mendes
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Pediatric Endocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
25
|
Xiao SM, Gao Y, Cheung CL, Bow CH, Lau KS, Sham PC, Tan KCB, Kung AWC. Association of CDX1 binding site of periostin gene with bone mineral density and vertebral fracture risk. Osteoporos Int 2012; 23:1877-87. [PMID: 22215184 PMCID: PMC3368110 DOI: 10.1007/s00198-011-1861-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 09/12/2011] [Indexed: 12/03/2022]
Abstract
SUMMARY Periostin (POSTN) as a regulator of osteoblast differentiation and bone formation may affect susceptibility to osteoporosis. This study suggests POSTN as a candidate gene for bone mineral density (BMD) variation and vertebral fracture risk, which could better our understanding about the genetic pathogenesis of osteoporosis and will be useful in clinic in the future. INTRODUCTION The genetic determination of osteoporosis is complex and ill-defined. Periostin (POSTN), an extracellular matrix secreted by osteoblasts and a regulator of osteoblast differentiation and bone formation, may affect susceptibility to osteoporosis. METHODS We adopted a tag-single nucleotide polymorphism (SNP) based association method followed by imputation-based verification and identification of a causal variant. The association was investigated in 1,572 subjects with extreme-BMD and replicated in an independent population of 2,509 subjects. BMD was measured by dual X-ray absorptiometry. Vertebral fractures were identified by assessing vertebral height from X-rays of the thoracolumbar spine. Association analyses were performed with PLINK toolset and imputation analyses with MACH software. The top imputation finding was subsequently validated by genotyping. Interactions between POSTN and another BMD-related candidate gene sclerostin (SOST) were analyzed using MDR program and validated by logistical regression analyses. The putative transcription factor binding with target sequence was confirmed by electrophoretic mobility shift assay (EMSA). RESULTS Several SNPs of POSTN were associated with BMD or vertebral fractures. The most significant polymorphism was rs9547970, located at the -2,327 bp upstream (P = 6.8 × 10(-4)) of POSTN. Carriers of the minor allele G per copy of rs9547970 had 1.33 higher risk of vertebral fracture (P = 0.007). An interactive effect between POSTN and SOST upon BMD variation was suggested (P < 0.01). A specific binding of CDX1 to the sequence of POSTN with the major allele A of rs9547970 but not the variant G allele was confirmed by EMSA. CONCLUSIONS Our results suggest POSTN as a candidate gene for BMD variation and vertebral fracture risk.
Collapse
Affiliation(s)
- S-M Xiao
- Department of Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Piters E, de Freitas F, Nielsen TL, Andersen M, Brixen K, Van Hul W. Association study of polymorphisms in the SOST gene region and parameters of bone strength and body composition in both young and elderly men: data from the Odense Androgen Study. Calcif Tissue Int 2012; 90:30-9. [PMID: 22076526 DOI: 10.1007/s00223-011-9546-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/17/2011] [Indexed: 10/15/2022]
Abstract
By means of different genetic association studies the SOST gene, encoding sclerostin, has repeatedly been suggested to regulate bone mineral density (BMD) and osteoporosis susceptibility. This study aimed at a further understanding of the importance of two previously studied single-nucleotide polymorphisms in the SOST gene, rs10534024 (SRP3) and rs9902563 (SRP9), in the Odense Androgen Study (OAS) cohort. This cohort includes a total of 1,383 Danish men from two different age groups, 20-29 years (n = 783) and 60-74 years (n = 600), and is well characterized. Subjects were phenotyped for BMD at several sites and additionally for body composition and hip geometric parameters. In a combined analysis of the young and the elderly OAS, no associations were found for SRP3 either with BMD or with hip geometry. Instead, we found that this polymorphism had a relatively large effect on weight (-1.149 kg) and body mass index (-0.389 kg/m(2)) (P = 0.021 and 0.006 under a codominant model). For SRP9, a significant association was found for femoral neck BMD (+0.020 g/cm(2), P = 0.020) and a trend toward significance for hip geometry (buckling ratio of the narrow neck) but only when considering a recessive effect of the minor allele (C). No age-specific effects were found for either of the two SNPs. In summary, we are the first to find interesting associations between SRP3 and body composition. For SRP9, we replicated a site-specific association with femoral neck BMD. In addition, we report a novel association for this polymorphism with hip geometry.
Collapse
Affiliation(s)
- Elke Piters
- Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Yu L, van der Valk M, Cao J, Han CYE, Juan T, Bass MB, Deshpande C, Damore MA, Stanton R, Babij P. Sclerostin expression is induced by BMPs in human Saos-2 osteosarcoma cells but not via direct effects on the sclerostin gene promoter or ECR5 element. Bone 2011; 49:1131-40. [PMID: 21890009 DOI: 10.1016/j.bone.2011.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/09/2011] [Accepted: 08/14/2011] [Indexed: 12/15/2022]
Abstract
Sclerostin is a secreted inhibitor of Wnt signaling and plays an essential role in the regulation of bone mass. The expression of sclerostin is largely restricted to osteocytes although its mode of transcriptional regulation is not well understood. We observed regulated expression of sclerostin mRNA and protein that was directly correlated with the mineralization response in cultured human Saos-2 osteosarcoma cells and rat primary calvarial cells. Sclerostin mRNA and protein levels were increased following treatment of cells with BMP2, BMP4 and BMP7. Analysis of deletion mutants from the -7.4 kb upstream region of the human sclerostin promoter did not reveal any specific regions that were responsive to BMPs, Wnt3a, PTH, TGFβ1 or Activin A in Saos-2 cells. The downstream ECR5 element did not show enhancer activity in Saos-2 cells and also was not affected when Saos-2 cells were treated with BMPs or PTH. Genome-wide microarray analysis of Saos-2 cells treated with BMP2 showed significant changes in expression of several transcription factors with putative consensus DNA binding sites in the region of the sclerostin promoter. However, whereas most factors tested showed either a range of inhibitory activity (DLX family, MSX2, HEY1, SMAD6/7) or lack of activity on the sclerostin promoter including SMAD9, only MEF2B showed a positive effect on both the promoter and ECR5 element. These results suggest that the dramatic induction of sclerostin gene expression by BMPs in Saos-2 cells occurs indirectly and is associated with late stage differentiation of osteoblasts and the mineralization process.
Collapse
MESH Headings
- Activins/pharmacology
- Adaptor Proteins, Signal Transducing
- Animals
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/pharmacology
- Calcification, Physiologic/drug effects
- Calcification, Physiologic/genetics
- Cell Line, Tumor
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Genetic Markers/genetics
- Humans
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Osteosarcoma/genetics
- Osteosarcoma/pathology
- Parathyroid Hormone/pharmacology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transforming Growth Factor beta1/pharmacology
- Wnt3A Protein/pharmacology
Collapse
Affiliation(s)
- Longchuan Yu
- Department of Metabolic Disorders, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Relationship of sclerostin and secreted frizzled protein polymorphisms with bone mineral density. Menopause 2011; 18:802-7. [DOI: 10.1097/gme.0b013e3182091664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Mödder UIL, Clowes JA, Hoey K, Peterson JM, McCready L, Oursler MJ, Riggs BL, Khosla S. Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res 2011; 26:27-34. [PMID: 20499362 PMCID: PMC3132405 DOI: 10.1002/jbmr.128] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/14/2010] [Accepted: 05/05/2010] [Indexed: 12/21/2022]
Abstract
Sex steroids are important regulators of bone turnover, but the mechanisms of their effects on bone remain unclear. Sclerostin is an inhibitor of Wnt signaling, and circulating estrogen (E) levels are inversely associated with sclerostin levels in postmenopausal women. To directly test for sex steroid regulation of sclerostin levels, we examined effects of E treatment of postmenopausal women or selective withdrawal of E versus testosterone (T) in elderly men on circulating sclerostin levels. E treatment of postmenopausal women (n = 17) for 4 weeks led to a 27% decrease in serum sclerostin levels [versus +1% in controls (n = 18), p < .001]. Similarly, in 59 elderly men, we eliminated endogenous E and T production and studied them under conditions of physiologic T and E replacement, and then following withdrawal of T or E, we found that E, but not T, prevented increases in sclerostin levels following induction of sex steroid deficiency. In both sexes, changes in sclerostin levels correlated with changes in bone-resorption, but not bone-formation, markers (r = 0.62, p < .001, and r = 0.33, p = .009, for correlations with changes in serum C-terminal telopeptide of type 1 collagen in the women and men, respectively). Our studies thus establish that in humans, circulating sclerostin levels are reduced by E but not by T. Moreover, consistent with recent data indicating important effects of Wnts on osteoclastic cells, our findings suggest that in humans, changes in sclerostin production may contribute to effects of E on bone resorption.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sundeep Khosla
- Endocrine Research Unit, College of Medicine, Mayo ClinicRochester, MN, USA
| |
Collapse
|
30
|
Qin W, Bauman WA, Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci 2010; 1211:66-84. [PMID: 21062296 DOI: 10.1111/j.1749-6632.2010.05806.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) results in paralysis and marked loss of skeletal muscle and bone below the level of injury. Modest muscle activity prevents atrophy, whereas much larger--and as yet poorly defined--bone loading seems necessary to prevent bone loss. Once established, bone loss may be irreversible. SCI is associated with reductions in growth hormone, IGF-1, and testosterone, deficiencies likely to exacerbate further loss of muscle and bone. Reduced muscle mass and inactivity are assumed to be contributors to the high prevalence of insulin resistance and diabetes in this population. Alterations in muscle gene expression after SCI share common features with other muscle loss states, but even so, show distinct profiles, possibly reflecting influences of neuromuscular activity due to spasticity. Changes in bone cells and markers after SCI have similarities with other conditions of unloading, although after SCI these changes are much more dramatic, perhaps reflecting the much greater magnitude of unloading. Adiposity and marrow fat are increased after SCI with intriguing, though poorly understood, implications for the function of skeletal muscle and bone cells.
Collapse
Affiliation(s)
- Weiping Qin
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| | | | | |
Collapse
|
31
|
Li WF, Hou SX, Yu B, Jin D, Férec C, Chen JM. Genetics of osteoporosis: perspectives for personalized medicine. Per Med 2010; 7:655-668. [PMID: 29788568 DOI: 10.2217/pme.10.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoporosis is the most common metabolic bone disorder worldwide. At least 15 genes (e.g., ESR1, LRP5, SOST, OPG, RANK and RANKL) have been confirmed as osteoporosis susceptibility genes, and another 30 have been highlighted as promising susceptibility genes. Notably, these genes are clustered in three biological pathways: the estrogen endocrine pathway, the Wnt/β-catenin signaling pathway and the RANK/RANKL/osteoprotegerin (OPG) pathway. In this article, using data pertaining to these three biological pathways as examples, we illustrate possible principles of personalized therapy for osteoporosis. In particular, we propose to use inhibitors (e.g., denosumab) of the RANK/RANKL/OPG signaling pathway to circumvent resistance to estrogen-replacement therapy: a novel idea resulting from the consideration of a mechanistic link between the estrogen endocrine pathway and the RANK/RANKL/OPG signaling pathway. In addition, we call for more attention to be focused on rare variants of major effects in future studies.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People’s Liberation Army, Beijing, China
| | - Shu-Xun Hou
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People’s Liberation Army, Beijing, China
| | - Bin Yu
- Department of Orthopaedic Trauma, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Jin
- Department of Orthopaedic Trauma, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U613, Brest, France; INSERM, U613 and EFS – Bretagne, 46 rue Félix Le Dantec, 29218 Brest, France
- Etablissement Français du Sang (EFS) – Bretagne, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | | |
Collapse
|
32
|
Abstract
Osteoporosis is an important and complex disorder that is highly prevalent worldwide. This disease poses a major challenge to modern medicine and its treatment is associated with high costs. Numerous studies have endeavored to decipher the pathogenesis of this disease. The clinical assessment of patients often incorporates information about a family history of osteoporotic fractures. Indeed, the observation of an increased risk of fracture in an individual with a positive parental history of hip fracture provides strong evidence for the heritability of osteoporosis. The onset and progression of osteoporosis are generally controlled by multiple genetic and environmental factors, as well as interactions between them, with rare cases determined by a single gene. In an attempt to identify the genetic markers of complex diseases such as osteoporosis, there has been a move away from traditional linkage mapping studies and candidate gene association studies to higher-density genome-wide association studies. The advent of high-throughput technology enables genotyping of millions of DNA markers in the human genome, and consequently the identification and characterization of causal variants and loci that underlie osteoporosis. This Review presents an overview of the major findings since 2007 and clinical applications of these genome-wide linkage and association studies.
Collapse
|
33
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li GHY, Kung AWC, Huang QY. Common variants in FLNB/CRTAP, not ARHGEF3 at 3p, are associated with osteoporosis in southern Chinese women. Osteoporos Int 2010; 21:1009-20. [PMID: 19727905 PMCID: PMC2946578 DOI: 10.1007/s00198-009-1043-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/27/2009] [Indexed: 01/30/2023]
Abstract
SUMMARY We performed an association study of five candidate genes within chromosome 3p14-25 in 1,080 Chinese female subjects. Polymorphisms in FLNB/CRTAP are associated with bone mineral density (BMD) in Chinese. INTRODUCTION Chromosomal region 3p14-25 has shown strong evidence of linkage to BMD in genome-wide linkage scans. The variants responsible for this linkage signal, nonetheless, remain obscure. METHODS Thirty SNPs in five positional and functional candidate genes within 3p14-25 (PPARG, CRTAP, TDGF1, PTHR1, and FLNB) and rs7646054 in the ARHGEF3 gene were genotyped in a case-control cohort of 1,080 Chinese females. Allelic and haplotypic association were tested using logistic regression analysis implemented in PLINK software. Potential transcription factor binding sites were predicted with MatInspector. RESULTS Multiple SNPs and haplotypes in FLNB were significantly associated with BMDs, with the strongest association between lumbar spine BMD and rs9828717 (p = 0.005). SNP rs7623768 and the haplotype G-C of rs4076086-rs7623768 in CRTAP were associated with femoral neck BMD (p = 0.009 and p = 0.003, respectively). PTHR1 showed haplotypic associations with lumbar spine and femoral neck BMD (p = 0.02 and p = 0.044, respectively). Nevertheless, the association between rs7646054 in ARHGEF3 and BMD observed in Caucasians was not replicated in our samples. Comparative genomics analysis indicated that rs9828717 is located within a highly conserved region. The minor T allele at rs9828717 may lead to loss of binding site for nuclear factor of activated T cells which binds and triggers the transcriptional program of osteoblasts. CONCLUSIONS Our data suggest that variants in FLNB and CRTAP at 3p are involved in BMD regulation in southern Chinese.
Collapse
Affiliation(s)
- G H Y Li
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
35
|
Abstract
Mechanical loading is of pivotal importance in the maintenance of skeletal homeostasis, but the players involved in the transduction of mechanical stimuli to promote bone maintenance have long remained elusive. Osteocytes, the most abundant cells in bone, possess mechanosensing appendices stretching through a system of bone canaliculi. Mechanical stimulation plays an important role in osteocyte survival and hence in the preservation of bone mechanical properties, through the maintenance of bone hydratation. Osteocytes can also control the osteoblastic differentiation of mesenchymal precursors in response to mechanical loading by modulating WNT signaling pathways, essential regulators of cell fate and commitment, through the protein sclerostin. Mutations of Sost, the sclerostin-encoding gene, have dramatic effects on the skeleton, indicating that osteocytes may act as master regulators of bone formation and localized bone remodeling. Moreover, the development of sclerostin inhibitors is opening new possibilities for bone regeneration in orthopedics and the dental field.
Collapse
|
36
|
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
37
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|