1
|
Hansen KE, Johnson MG, Carter TC, Mayer J, Keuler NS, Blank RD. The -839(A/C) Polymorphism in the ECE1 Isoform b Promoter Associates With Osteoporosis and Fractures. J Endocr Soc 2019; 3:2041-2050. [PMID: 31637345 PMCID: PMC6795020 DOI: 10.1210/js.2019-00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/09/2019] [Indexed: 11/19/2022] Open
Abstract
Context We previously found that variation in a quantitative trait locus, including the gene-encoding endothelin-converting enzyme 1 (Ece1), accounted for 40% of the variance in bone biomechanics and bone mineral density (BMD) in an intercross of recombinant congenic mouse strains. Objective We hypothesized that single nucleotide polymorphisms (SNPs) within the human ECE1 isoform b promoters, at ECE1 b -338(G/T) and ECE1 b -839(A/C), would associate with osteoporosis in postmenopausal women. Design We genotyped DNA for the ECE1 -338(G/T) and -839(A/C) SNPs. Setting A community medical center. Participants Postmenopausal women (3564) with ≥1 dual-energy X-ray absorptiometry scan ≥60 years of age. Main Outcome Measures BMD, osteoporosis, and clinical fractures. Results In multivariate models controlling for age, weight, healthcare duration, and tobacco, the CC genotype reduced the odds of lifetime fracture (OR 0.33, 95% CI 0.12, 0.87) and fracture ≥50 years of age (OR 0.31, 95% CI 0.11, 0.87), whereas the AC genotype increased odds of osteoporosis (OR 1.34, 95% CI 1.02 1.78) relative to the AA genotype. However, when controlling the false-discovery rate, findings were no longer significant. We found no consistent relationship between the ECE1 b -338(G/T) and study outcomes. Conclusions The CC genotype was associated with fewer fractures, whereas the AC genotype was associated with osteoporosis. Our small sample size and few minorities are study limitations. Findings should be tested in another cohort to confirm a link between the ECE1 -839(A/C) SNPs and osteoporosis.
Collapse
Affiliation(s)
- Karen E Hansen
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | | | - Tonia C Carter
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - John Mayer
- Office of Research Computing and Analytics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Nicholas S Keuler
- Department of Statistics, University of Wisconsin, Madison, Wisconsin
| | - Robert D Blank
- Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Medicine Service, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Johnson MG, Konicke K, Kristianto J, Gustavson A, Garbo R, Wang X, Yuan B, Blank RD. Endothelin signaling regulates mineralization and posttranscriptionally regulates SOST in TMOb cells via miR 126-3p. Physiol Rep 2017; 5:5/4/e13088. [PMID: 28235973 PMCID: PMC5328763 DOI: 10.14814/phy2.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022] Open
Abstract
Previously, our laboratory identified ECE‐1, encoding endothelin‐converting enzyme‐1 (ECE‐1), as a positional candidate for a pleiotropic quantitative trait locus affecting femoral size, shape, and biomechanical performance. We hypothesized that endothelin‐1 (ET‐1) signaling promotes osteogenesis. Exposure of immortalized mouse osteoblast (TMOb) cells to big ET‐1 increased mineralization. Following big ET‐1 treatment, we measured the secretion of insulin‐like‐growth factor‐1 (IGF1), dickkopf‐homolog‐1 protein 1 (DKK1), and sclerostin (SOST). In each case, big ET‐1 signaling changed secretion in a manner that favored increased osteogenic activity. Treatment with ECE‐1, endothelin receptor A (EDNRA), or WNT receptor antagonists inhibited the big ET‐1‐mediated increase in mineralization. In the presence of big ET‐1, message levels of Runx2, Igf1, Dkk1, and Sost are uncoupled from protein production, suggesting posttranscriptional regulation. To evaluate the role of big ET‐1 in normal bone physiology, we inhibited EDNRA signaling during mineralization in the absence of exogenous ET‐1. EDNRA blockade reduced mineralization, decreased IGF1, and increased DKK1 and SOST secretion, responses opposite to those induced by exogenous big ET‐1. Pharmacological and siRNA knockdown to inhibit ECE‐1 reduced mineralization and IGF1 secretion with decreasing DKK1 and decreasing or stable SOST secretion, suggesting a further, unknown role of ECE‐1 in osteoblast maturation. Previously we identified miR 126‐3p as a potential ET‐1‐responsive regulator of SOST in murine cells. Overexpression of miR126‐3p increased mineralization in TMOb cells and decreased SOST secretion. Osteoblasts express the ET‐1 signaling pathway and ET‐1 signaling is necessary for normal osteoblast differentiation and mineralization, acting through regulation of miRs that target osteogenic molecules.
Collapse
Affiliation(s)
- Michael G Johnson
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin .,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathryn Konicke
- Medical Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jasmin Kristianto
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anne Gustavson
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel Garbo
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Xiaohu Wang
- Medical Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Baozhi Yuan
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Robert D Blank
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Medical Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
3
|
Abstract
The endothelin (ET) system includes 3 small peptide hormones and a pair of G-protein-coupled receptors. This review first outlines the ET signaling pathway and ET metabolism. Next, it summarizes the role of ET1 signaling in craniofacial development. Then, it discusses observations relating ET signaling to osteoblastic and other osteosclerotic processes in cancer. Finally, it describes recent work in our laboratory that points to endothelin signaling as an upstream mediator of WNT signaling, promoting bone matrix synthesis and mineralization. It concludes with a statement of some remaining gaps in knowledge and proposals for future research.
Collapse
Affiliation(s)
- Jasmin Kristianto
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Michael G Johnson
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Stadium Road, Karachi 74800, Pakistan
| | - Robert D Blank
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; Medical Service, Clement J. Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA.
| |
Collapse
|
4
|
Kristianto J, Johnson MG, Afzal R, Blank RD. WITHDRAWN: Endothelin signaling in bone. Transl Res 2016:S1931-5244(16)30366-8. [PMID: 27893988 DOI: 10.1016/j.trsl.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Jasmin Kristianto
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis
| | - Michael G Johnson
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Robert D Blank
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Medical Service, Clement J. Zablocki VAMC, Milwaukee, Wis
| |
Collapse
|
5
|
Sawin EA, Stroup BM, Murali SG, O’Neill LM, Ntambi JM, Ney DM. Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice. PLoS One 2016; 11:e0163234. [PMID: 27695036 PMCID: PMC5047596 DOI: 10.1371/journal.pone.0163234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/06/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. OBJECTIVE To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. METHODS Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. RESULTS Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat content, GMP increased total body bone mineral content and femur length. The prebiotic properties of GMP may mediate the beneficial effects of GMP on bone. CONCLUSIONS Female mice adapt to high-fat feeding by increasing oxidative capacity in muscle tissue and to a lesser extent brown adipose tissue. High-fat feeding in female mice leads to development of a bone phenotype where femora show increased BMD and are stronger, yet more brittle. The increased brittleness of bone was associated with increased body fat content due to high-fat feeding. In summary, high-fat feeding in female mice increases mineralization of bone, but negatively impacts bone quality resulting in brittle bones.
Collapse
Affiliation(s)
- Emily A. Sawin
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bridget M. Stroup
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sangita G. Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lucas M. O’Neill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Denise M. Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Meyer LA, Johnson MG, Cullen DM, Vivanco JF, Blank RD, Ploeg HL, Smith EL. Combined exposure to big endothelin-1 and mechanical loading in bovine sternal cores promotes osteogenesis. Bone 2016; 85:115-22. [PMID: 26855374 PMCID: PMC4792706 DOI: 10.1016/j.bone.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/08/2023]
Abstract
Increased bone formation resulting from mechanical loading is well documented; however, the interactions of the mechanotransduction pathways are less well understood. Endothelin-1, a ubiquitous autocrine/paracrine signaling molecule promotes osteogenesis in metastatic disease. In the present study, it was hypothesized that exposure to big endothelin-1 (big ET1) and/or mechanical loading would promote osteogenesis in ex vivo trabecular bone cores. In a 2×2 factorial trial of daily mechanical loading (-2000με, 120cycles daily, "jump" waveform) and big ET1 (25ng/mL), 48 bovine sternal trabecular bone cores were maintained in bioreactor chambers for 23days. The bone cores' response to the treatment stimuli was assessed with percent change in core apparent elastic modulus (ΔEapp), static and dynamic histomorphometry, and prostaglandin E2 (PGE2) secretion. Two-way ANOVA with a post hoc Fisher's LSD test found no significant treatment effects on ΔEapp (p=0.25 and 0.51 for load and big ET1, respectively). The ΔEapp in the "no load + big ET1" (CE, 13±12.2%, p=0.56), "load + no big ET1" (LC, 17±3.9%, p=0.14) and "load + big ET1" (LE, 19±4.2%, p=0.13) treatment groups were not statistically different than the control group (CC, 3.3%±8.6%). Mineralizing surface (MS/BS), mineral apposition (MAR) and bone formation rates (BFR/BS) were significantly greater in LE than CC (p=0.037, 0.0040 and 0.019, respectively). While the histological bone formation markers in LC trended to be greater than CC (p=0.055, 0.11 and 0.074, respectively) there was no difference between CE and CC (p=0.61, 0.50 and 0.72, respectively). Cores in LE and LC had more than 50% greater MS/BS (p=0.037, p=0.055 respectively) and MAR (p=0.0040, p=0.11 respectively) than CC. The BFR/BS was more than two times greater in LE (p=0.019) and LC (p=0.074) than CC. The PGE2 levels were elevated at 8days post-osteotomy in all groups and the treatment groups remained elevated compared to the CC group on days 15, 19 and 23. The data suggest that combined exposure to big ET1 and mechanical loading results in increased osteogenesis as measured in biomechanical, histomorphometric and biochemical responses.
Collapse
Affiliation(s)
- Luisa A Meyer
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Michael G Johnson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; GRECC William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| | - Diane M Cullen
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA.
| | - Juan F Vivanco
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert D Blank
- GRECC William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Endocrinology, The Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA.
| | - Heidi-Lynn Ploeg
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Everett L Smith
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Kristianto J, Litscher SJ, Johnson MG, Patel F, Patel M, Fisher J, Zastrow RK, Radcliff AB, Blank RD. Congenic Strains Confirm the Pleiotropic Effect of Chromosome 4 QTL on Mouse Femoral Geometry and Biomechanical Performance. PLoS One 2016; 11:e0148571. [PMID: 26849124 PMCID: PMC4743951 DOI: 10.1371/journal.pone.0148571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022] Open
Abstract
A pleiotropic quantitative trait locus (QTL) for bone geometry and mechanical performance in mice was mapped to distal chromosome 4 via an intercross of recombinant congenic mice HcB-8 and HcB-23. To study the QTL in isolation, we have generated C3H.B10-(rs6355453-rs13478087) (C.B.4.3) and C3H.B10-(rs6369860-D4Mit170) (C.B.4.2) congenic strains that harbor ~20 Mb and ~3 Mb, respectively, of chromosome 4 overlapping segments from C57BL/10ScSnA (B10) within the locus on a C3H/DiSnA (C3H) background. Using 3-point bend testing and standard beam equations, we phenotyped these mice for femoral mid-diaphyseal geometry and biomechanical performance. We analyzed the results via 2-way ANOVA, using sex and genotype as factors. In the C.B.4.3 strain, we found that homozygous B10/B10 male mice had smaller cross sectional area (CSA) and reduced total displacement than homozygous C3H/C3H mice. Sex by genotype interaction was also observed for maximum load and stiffness for C3H/C3H and B10/B10 mice, respectively. In C.B.4.2 strain, we found that homozygous B10/B10 mice had lower total displacement, post-yield displacement (PYD), stiffness, yield load and maximum load than mice harboring C3H allele. Sex by genotype interaction was observed in B10/B10 mice for perimeter, outer minor axis (OMA) and CSA. There were no significant differences in tissue level mechanical performance, which suggest that the QTL acts primarily on circumferential bone size. These data confirm the prior QTL mapping data and support other work demonstrating the importance of chromosome 4 QTL on bone modeling and bone responses to mechanical loading.
Collapse
Affiliation(s)
- Jasmin Kristianto
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Suzanne J. Litscher
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael G. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Forum Patel
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mital Patel
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jacqueline Fisher
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryley K. Zastrow
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail B. Radcliff
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert D. Blank
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
- Milwaukee VA Medical Center, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
8
|
Smith LM, Bigelow EMR, Nolan BT, Faillace ME, Nadeau JH, Jepsen KJ. Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice. Bone 2014; 67:130-8. [PMID: 25003813 PMCID: PMC4413452 DOI: 10.1016/j.bone.2014.06.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/19/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J-Chr(A/J)/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i=the substituted chromosome) showed changes in mechanical function on the order of -26.6 to +11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function.
Collapse
Affiliation(s)
- Lauren M Smith
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | - Bonnie T Nolan
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | | | | | - Karl J Jepsen
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA.
| |
Collapse
|
9
|
Ozcivici E, Zhang W, Donahue LR, Judex S. Quantitative trait loci that modulate trabecular bone's risk of failure during unloading and reloading. Bone 2014; 64:25-32. [PMID: 24698783 DOI: 10.1016/j.bone.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/01/2014] [Accepted: 03/22/2014] [Indexed: 01/23/2023]
Abstract
Genetic makeup of an individual is a strong determinant of the morphologic and mechanical properties of bone. Here, in an effort to identify quantitative trait loci (QTLs) for changes in the simulated mechanical parameters of trabecular bone during altered mechanical demand, we subjected 352 second generation female adult (16 weeks old) BALBxC3H mice to 3 weeks of hindlimb unloading followed by 3 weeks of reambulation. Longitudinal in vivo microcomputed tomography (μCT) scans tracked trabecular changes in the distal femur. Tomographies were directly translated into finite element (FE) models and subjected to a uniaxial compression test. Apparent trabecular stiffness and components of the Von Mises (VM) stress distributions were computed for the distal metaphysis and associated with QTLs. At baseline, five QTLs explained 20% of the variation in trabecular peak stresses across the mouse population. During unloading, three QTLs accounted for 14% of the variability in peak stresses. During reambulation, one QTL accounted for 5% of the variability in peak stresses. QTLs were also identified for mechanically induced changes in stiffness, median stress values and skewness of stress distributions. There was little overlap between QTLs identified for baseline and QTLs for longitudinal changes in mechanical properties, suggesting that distinct genes may be responsible for the mechanical response of trabecular bone. Unloading related QTLs were also different from reambulation related QTLs. Further, QTLs identified here for mechanical properties differed from previously identified QTLs for trabecular morphology, perhaps revealing novel gene targets for reducing fracture risk in individuals exposed to unloading and for maximizing the recovery of trabecular bone's mechanical properties during reambulation.
Collapse
Affiliation(s)
- Engin Ozcivici
- Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey.
| | | | | | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
10
|
Abstract
The etiology of skeletal disease is driven by genetic and environmental factors. Genome-wide association studies (GWAS) of osteoporotic phenotypes have identified novel candidate genes, but have only uncovered a small proportion of the trait variance explained. This "missing heritability" is caused by several factors, including the failure to consider gene-by-environmental (G*E) interactions. Some G*E interactions have been investigated, but new approaches to integrate environmental data into genomic studies are needed. Advances in genotyping and meta-analysis techniques now allow combining genotype data from multiple studies, but the measurement of key environmental factors in large human cohorts still lags behind, as do the statistical tools needed to incorporate these measures in genome-wide association meta-studies. This review focuses on discussing ways to enhance G*E interaction studies in humans and how the use of rodent models can inform genetic studies. Understanding G*E interactions will provide opportunities to effectively target intervention strategies for individualized therapy.
Collapse
|
11
|
Wang Z, Kristianto J, Yen Ooi C, Johnson MG, Litscher SJ, Pugh TD, Sandhu G, Chesler NC, Blank RD. Blood pressure, artery size, and artery compliance parallel bone size and strength in mice with differing ece1 expression. J Biomech Eng 2013; 135:61003-9. [PMID: 23699715 DOI: 10.1115/1.4024161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 04/08/2013] [Indexed: 12/25/2022]
Abstract
The recombinant congenic mouse strains HcB-8 and HcB-23 differ in femoral shape, size, and strength, with HcB-8 femora being more gracile, more cylindrical, weaker, and having higher Young's modulus. In previous work, we mapped a robust, pleiotropic quantitative trait locus for these bone traits. Ece1, encoding endothelin converting enzyme 1, is a positional candidate gene for this locus, and was less expressed in HcB-8 bone. We hypothesized that the same genetic factors would impose analogous developmental trajectories on arteries to those in bones. Cardiovascular hemodynamics and biomechanics of carotids were measured in adult HcB-8 and HcB-23 mice. Biological differences in heart and arteries were examined at mRNA and protein levels. As in bone, Ece1 expression was higher in HcB-23 heart and arteries (p < 0.05), and its expression was correlated with that of the endothelin B type receptor target Nos3, encoding endothelial nitric oxide synthase. HcB-8 mice had higher ambulatory blood pressure (p < 0.005) than HcB-23 mice. Ex vivo, at identical pressures, HcB-8 carotid arteries had smaller diameters and lower compliance (p < 0.05), but the same elastic modulus compared to HcB-23 carotid arteries. HcB-8 hearts were heavier than HcB-23 hearts (p < 0.01). HcB-8 has both small, stiff bones and small, stiff arteries, lower expression of Ece1 and Nos3, associated in each case with less favorable function. These findings suggest that endothelin signaling could serve as a nexus for the convergence of skeletal and vascular modeling, providing a potential mechanism for the epidemiologic association between skeletal fragility and atherosclerosis.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin, 2146 ECB, 1550 Engineering Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Low bone strength is a manifestation of phenylketonuria in mice and is attenuated by a glycomacropeptide diet. PLoS One 2012; 7:e45165. [PMID: 23028819 PMCID: PMC3445501 DOI: 10.1371/journal.pone.0045165] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/14/2012] [Indexed: 12/03/2022] Open
Abstract
Purpose Phenylketonuria (PKU), caused by phenylalanine (phe) hydroxylase loss of function mutations, requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP), a low-phe whey protein, provides a palatable alternative to AA formula. Skeletal fragility is a poorly understood chronic complication of PKU. We sought to characterize the impact of the PKU genotype and dietary protein source on bone biomechanics. Procedures Wild type (WT; Pah+/+) and PKU (Pahenu2/enu2) mice on a C57BL/6J background were fed high-phe casein, low-phe AA, and low-phe GMP diets between 3 to 23 weeks of age. Following euthanasia, femur biomechanics were assessed by 3-point bending and femoral diaphyseal structure was determined. Femoral ex vivo bone mineral density (BMD) was assessed by dual-enengy x-ray absorptiometry. Whole bone parameters were used in prinicipal component analysis. Data were analyzed by 3-way ANCOVA with genotype, sex, and diet as the main factors. Findings Regardless of diet and sex, PKU femora were more brittle, as manifested by lower post-yield displacement, weaker, as manifested by lower energy and yield and maximal loads, and showed reduced BMD compared with WT femora. Four principal components accounted for 87% of the variance and all differed significantly by genotype. Regardless of genotype and sex, the AA diet reduced femoral cross-sectional area and consequent maximal load compared with the GMP diet. Conclusions Skeletal fragility, as reflected in brittle and weak femora, is an inherent feature of PKU. This PKU bone phenotype is attenuated by a GMP diet compared with an AA diet.
Collapse
|
13
|
Karasik D, Cheung CL, Zhou Y, Cupples LA, Kiel DP, Demissie S. Genome-wide association of an integrated osteoporosis-related phenotype: is there evidence for pleiotropic genes? J Bone Miner Res 2012; 27:319-30. [PMID: 22072498 PMCID: PMC3290743 DOI: 10.1002/jbmr.563] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple musculoskeletal traits assessed by various methods at different skeletal sites serve as surrogates for osteoporosis risk. However, it is a challenge to select the most relevant phenotypes for genetic study of fractures. Principal component analyses (PCA) were conducted in participants of the Framingham Osteoporosis Study on 17 measures including bond mineral density (BMD) (hip and spine), heel ultrasound, leg lean mass (LLM), and hip geometric indices, adjusting for covariates (age, height, body mass index [BMI]), in a combined sample of 1180 men and 1758 women, as well as in each sex. Four principal components (PCs) jointly explained ~69% of the total variability of musculoskeletal traits. PC1, explaining ~33% of the total variance, was referred to as the component of "Bone strength," because it included the hip and spine BMD as well as several hip cross-sectional properties. PC2 (20.5% variance) was labeled as "Femoral cross-sectional geometry;" PC3 (~8% variance) captured only ultrasound measures; PC4, explaining ~7% variance, was correlated with LLM and hip geometry. We then evaluated ~2.5 mil SNPs for association with PCs 1, 2, and 4. There were genome-wide significant associations (p < 5 × 10⁻⁸) between PC2 and HTR1E (that codes for one of the serotonin receptors) and PC4 with COL4A2 in women. In the sexes-combined sample, AKAP6 was associated with PC2 (p = 1.40 × 10⁻⁷). A single nucleotide polymorphism (SNP) in HTR1E was also associated with the risk of nonvertebral fractures in women (p = 0.005). Functions of top associated genes were enriched for the skeletal and muscular system development (p < 0.05). In conclusion, multivariate combination provides genetic associations not identified in the analysis of primary phenotypes. Genome-wide screening for the linear combinations of multiple osteoporosis-related phenotypes suggests that there are variants with potentially pleiotropic effects in established and novel pathways to be followed up to provide further evidence of their functions.
Collapse
Affiliation(s)
- David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA 02131, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Saless N, Litscher SJ, Houlihan MJ, Han IK, Wilson D, Demant P, Blank RD. Comprehensive skeletal phenotyping and linkage mapping in an intercross of recombinant congenic mouse strains HcB-8 and HcB-23. Cells Tissues Organs 2011; 194:244-8. [PMID: 21625064 DOI: 10.1159/000324774] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bone biomechanical performance is a complex trait or, more properly, an ensemble of complex traits. Biomechanical performance incorporates flexibility under loading, yield and failure load, and energy to failure; all are important measures of bone function. To date, the vast majority of work has focused on yield and failure load and its surrogate, bone mineral density. We performed a reciprocal intercross of the mouse strains HcB-8 and HcB-23 to map and ultimately identify genes that contribute to differences in biomechanical performance. Mechanical testing was performed by 3-point bending of the femora. We measured femoral diaphysis cross-sectional anatomy from photographs of the fracture surfaces. We used beam equations to calculate material level mechanical properties. We performed a principal component (PC) analysis of normalized whole bone phenotypes (17 input traits). We measured distances separating mandibular landmarks from calibrated digital photographs and performed linkage analysis. Experiment-wide α = 0.05 significance thresholds were established by permutation testing. Three quantitative trait loci (QTLs) identified in these studies illustrate the advantages of the comprehensive phenotyping approach. A pleiotropic QTL on chromosome 4 affected multiple whole bone phenotypes with LOD scores as large as 17.5, encompassing size, cross-sectional ellipticity, stiffness, yield and failure load, and bone mineral density. This locus was linked to 3 of the PCs but unlinked to any of the tissue level phenotypes. From this pattern, we infer that the QTL operates by modulating the proliferative response to mechanical loading. On this basis, we successfully predicted that this locus also affects the length of a specific region of the mandible. A pleiotropic locus on chromosome 10 with LOD scores displays opposite effects on failure load and toughness with LOD scores of 4.5 and 5.5, respectively, so that the allele that increases failure load decreases toughness. A chromosome 19 QTL for PC2 with an LOD score of 4.8 was not detected with either the whole bone or tissue level phenotypes. We conclude that first, comprehensive, system-oriented phenotyping provides much information that could not be obtained by focusing on bone mineral density alone. Second, mechanical performance includes inherent trade-offs between strength and brittleness. Third, considering the aggregate phenotypic data allows prediction of novel QTLs.
Collapse
Affiliation(s)
- Neema Saless
- Department of Medicine, University of Wisconsin, Madison, Wisc., USA
| | | | | | | | | | | | | |
Collapse
|