1
|
Wei B, Wang C, Teng T, Guo P, Chen M, Xia F, Liu H, Xie J, Feng J, Huang H. Chemotherapeutic efficacy of cucurmosin for pancreatic cancer as an alternative of gemcitabine: a comparative metabolomic study. Gland Surg 2020; 9:1428-1442. [PMID: 33224818 DOI: 10.21037/gs-20-202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background As the preferred drug for single chemotherapeutic application in pancreatic cancer, gemcitabine often demonstrated low sensitivity and strong chemotherapy resistance in patients. Therefore, the search for other drugs with high efficiency and low side effects has become of high importance. The aim of this study was to assess the therapeutic effects of cucurmosin on pancreatic cancer as an alternative of gemcitabine and explore its underlying biochemical mechanism. Methods The subcutaneous xenograft mice with pancreatic cancer were treated by high- and low-dose cucurmosin and gemcitabine, respectively. A comparative metabolomic analysis was performed on the serum samples from the different groups by 1H nuclear magnetic resonance (NMR) techniques and then subjected to univariate and multivariate statistical analysis. Results Cucurmosin demonstrated a dose-dependent inhibition to the pancreatic tumors. High-dose cucurmosin provided similar chemotherapeutic efficacy with gemcitabine by positively regulating pyruvate metabolism, glycolysis or gluconeogenesis, and cysteine and methionine metabolism. Inactivating GFR signaling pathway and further inducing apoptosis of tumor cells are the important mechanism of anti-tumor function of cucurmosin. Conclusions Cucurmosin is a promising chemotherapeutic drug for pancreatic cancer. However, the dose selection and surface modification should be optimized according to the stage of pancreatic cancer, and an expanded study in both laboratory and clinical regimes needs to be performed.
Collapse
Affiliation(s)
- Binbin Wei
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Congfei Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Minghuang Chen
- State Structural Chemistry Key Laboratory of Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Feng Xia
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jieming Xie
- Department of Pharmacology, Fujian Medical University, Fuzhou, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
2
|
Chen YJ, Zhu JQ, Fu XQ, Su T, Li T, Guo H, Zhu PL, Lee SKW, Yu H, Tse AKW, Yu ZL. Ribosome-Inactivating Protein α-Momorcharin Derived from Edible Plant Momordica charantia Induces Inflammatory Responses by Activating the NF-kappaB and JNK Pathways. Toxins (Basel) 2019; 11:toxins11120694. [PMID: 31779275 PMCID: PMC6949964 DOI: 10.3390/toxins11120694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/25/2023] Open
Abstract
Alpha-momorcharin (α-MMC), a member of the ribosome-inactivating protein (RIP) family, has been found in the seeds of Momordica charantia (bitter melon). α-MMC contributes a number of pharmacological activities; however, its inflammatory properties have not been well studied. Here, we aim to determine the inflammatory responses induced by recombinant α-MMC and identify the underlying mechanisms using cell culture and animal models. Recombinant α-MMC was generated in Rosetta™(DE3)pLysS and purified by the way of nitrilotriacetic acid (NTA) chromatography. Treatment of recombinant α-MMC at 40 μg/mL exerted sub-lethal cytotoxic effect on THP-1 monocytic cells. Transcriptional profiling revealed that various genes coding for cytokines and other proinflammatory proteins were upregulated upon recombinant α-MMC treatment in THP-1 cells, including MCP-1, IL-8, IL-1β, and TNF-α. Recombinant α-MMC was shown to activate IKK/NF-κB and JNK pathways and the α-MMC-induced inflammatory gene expression could be blocked by IKKβ and JNK inhibitors. Furthermore, murine inflammatory models further demonstrated that α-MMC induced inflammatory responses in vivo. We conclude that α-MMC stimulates inflammatory responses in human monocytes by activating of IKK/NF-κB and JNK pathways, raising the possibility that consumption of α-MMC-containing food may lead to inflammatory-related diseases.
Collapse
Affiliation(s)
- Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jia-Qian Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Sally Kin-Wah Lee
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Anfernee Kai-Wing Tse
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
- Correspondence: (A.K.-W.T.); (Z.-L.Y.); Tel.: +86-0756-3620147 (A.K.-W.T.); +852-3411-2465 (Z.-L.Y.)
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Correspondence: (A.K.-W.T.); (Z.-L.Y.); Tel.: +86-0756-3620147 (A.K.-W.T.); +852-3411-2465 (Z.-L.Y.)
| |
Collapse
|
3
|
Hutami IR, Tanaka E, Izawa T. Crosstalk between Fas and S1P 1 signaling via NF-kB in osteoclasts controls bone destruction in the TMJ due to rheumatoid arthritis. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:12-19. [PMID: 30733840 PMCID: PMC6354287 DOI: 10.1016/j.jdsr.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) mainly affects various joints of the body, including the temporomandibular joint (TMJ), and it involves an infiltration of autoantibodies and inflammatory leukocytes into articular tissues and the synovium. Initially, the synovial lining tissue becomes engaged with several kinds of infiltrating cells, including osteoclasts, macrophages, lymphocytes, and plasma cells. Eventually, bone degradation occurs. In order to elucidate the best therapy for RA, a comprehensive study of RA pathogenesis needs to be completed. In this article, we discuss a Fas-deficient condition which develops into RA, with an emphasis on the role of sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling which induces the migration of osteoclast precursor cells. We describe that Fas/S1P1 signaling via NF-κB activation in osteoclasts is a key factor in TMJ-RA severity and we discuss a strategy for blocking nuclear translocation of the p50 NF-κB subunit as a potential therapy for attenuating osteoclastogenesis.
Collapse
Affiliation(s)
| | | | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University, Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| |
Collapse
|
4
|
He G, Ma R. Overview of Molecular Mechanisms Involved in Herbal Compounds for Inhibiting Osteoclastogenesis from Macrophage Linage RAW264.7. Curr Stem Cell Res Ther 2019; 15:570-578. [PMID: 31269885 DOI: 10.2174/1574888x14666190703144917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Differentiation from RAW264.7 cells to osteoclasts rely on many signaling pathways, such as NF-κB, MAPK, Akt and others. However, the specific underlying mechanisms are not clear. Recently, much works have focused on the inhibitory effects of plant derived compounds in the differentiation from RAW264.7 to osteoclasts. However, the specific mechanisms remain unclear. In this paper, we summarize a lot of plant derived compounds which exert blocking effect on the progression of differentiation via signaling pathways.
Collapse
Affiliation(s)
- Gaole He
- Department of Spine, Honghui-Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
5
|
Tsai CH, Hsu MH, Huang PH, Hsieh CT, Chiu YM, Shieh DC, Lee YJ, Tsay GJ, Wu YY. A paeonol derivative, YPH-PA3 promotes the differentiation of monocyte/macrophage lineage precursor cells into osteoblasts and enhances their autophagy. Eur J Pharmacol 2018; 832:104-113. [PMID: 29782859 DOI: 10.1016/j.ejphar.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
Previous studies have indicated that paeonol inhibits RANKL-induced osteoclastogenesis by inhibiting the ERK, p38, and NF-κB pathway. We modified paeonol to form a new compound, YPH-PA3, and found that it promoted osteoclastogenesis rather than inhibited it the way paeonol does. The aim of this study is to investigate the mechanisms involved in YPH-PA3-promoted osteoclastogenesis. YPH-PA3-promoted differentiation of RAW264.7 cells (human monocytes) into osteoclasts is activated through ERK/p38/JNK phosphorylation, affecting c-FOS, NF-κB, and NFATc2. Real-time quantitative PCR and western blot revealed an increased expression of autophagy-related markers during YPH-PA3-induced osteoclastogenesis. We also demonstrated the relationship between p62/LC3 localization and F-actin ring formation by double-labeling immunofluorescence. Knockdown of p62 small-interfering RNA (siRNA) attenuated YPH-PA3-induced expression of autophagy-related genes. Our study results indicated that p62 may play a role in YPH-PA3-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Orthopedics, School of Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Po-Hao Huang
- Department of Internal Medicine, School of Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan
| | - Chin-Tung Hsieh
- Department of Pediatrics, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, I-Lan, Taiwan
| | - Ying-Ming Chiu
- Division of Allergy, Immunology & Rheumatology, Changhua Christian Hospital, Changhua, Taiwan; Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung, Taiwan
| | - Dong-Chen Shieh
- Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung, Taiwan
| | - Yi-Ju Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Gregory J Tsay
- Department of Internal Medicine, School of Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan; Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Ying Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Tzeng HE, Tsai CH, Ho TY, Hsieh CT, Chou SC, Lee YJ, Tsay GJ, Huang PH, Wu YY. Radix Paeoniae Rubra stimulates osteoclast differentiation by activation of the NF-κB and mitogen-activated protein kinase pathways. Altern Ther Health Med 2018; 18:132. [PMID: 29688864 PMCID: PMC5913877 DOI: 10.1186/s12906-018-2196-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
Background Radix Paeoniae Rubra (RPR), a traditional Chinese herb, has anti-inflammatory and immuno-regulatory properties. This study explored the effects of RPR on stimulation of osteoclast differentiation in RAW264.7 cells and peripheral blood mononuclear cells (PBMC)s. Methods The mature osteoclasts were measured by bone resorption assays and TRAP staining. JNK, ERK, p38 and NF-κB inhibitors were used applied in order to verify their contribution in RPR-induced osteoclast differentiation. The NF-κB and MAPK pathways were evaluated by western blotting, RT-PCR and luciferase assay. Results RPR induced osteoclast differentiation in a dose-dependent manner and induced the resorption activity of osteoclasts differentiation of RAW264.7 cells and PBMCs. Western blotting showed that RPR treatment induced phosphorylation of JNK, ERK, and p38 in RAW 264.7 cells. Treatment of JNK, ERK, and p38 MAP kinase inhibitors verified the contribution of JNK, ERK and p38. RPR treatment induced c-Fos and NFATc1 protein expression; NF-κB inhibitor treatment and luciferase assay verified the contribution of the NF-κB pathway. Conclusions This study demonstrated the interesting effect, in which RPR stimulated osteoclast differentiation in murine RAW264.7 cells and human monocytes. Electronic supplementary material The online version of this article (10.1186/s12906-018-2196-7) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Hutami IR, Izawa T, Mino-Oka A, Shinohara T, Mori H, Iwasa A, Tanaka E. Fas/S1P 1 crosstalk via NF-κB activation in osteoclasts controls subchondral bone remodeling in murine TMJ arthritis. Biochem Biophys Res Commun 2017; 490:1274-1281. [PMID: 28687489 DOI: 10.1016/j.bbrc.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Enhanced turnover of subchondral trabecular bone is a hallmark of rheumatoid arthritis (RA) and it results from an imbalance between bone resorption and bone formation activities. To investigate the formation and activation of osteoclasts which mediate bone resorption, a Fas-deficient MRL/lpr mouse model which spontaneously develops autoimmune arthritis and exhibits decreased bone mass was studied. Various assays were performed on subchondral trabecular bone of the temporomandibular joint (TMJ) from MRL/lpr mice and MRL+/+ mice. Initially, greater osteoclast production was observed in vitro from bone marrow macrophages obtained from MRL/lpr mice due to enhanced phosphorylation of NF-κB, as well as Akt and MAPK, to receptor activator of nuclear factor-κB ligand (RANKL). Expression of sphingosine 1-phosphate receptor 1 (S1P1) was also significantly upregulated in the condylar cartilage. S1P1 was found to be required for S1P-induced migration of osteoclast precursor cells and downstream signaling via Rac1. When SN50, a synthetic NF-κB-inhibitory peptide, was applied to the MRL/lpr mice, subchondral trabecular bone loss was reduced and both production of osteoclastogenesis markers and sphingosine kinase (Sphk) 1/S1P1 signaling were reduced. Thus, the present results suggest that Fas/S1P1 signaling via activation of NF-κB in osteoclast precursor cells is a key factor in the pathogenesis of RA in the TMJ.
Collapse
Affiliation(s)
- Islamy Rahma Hutami
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan.
| | - Akiko Mino-Oka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Takehiro Shinohara
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Hiroki Mori
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Akihiko Iwasa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| |
Collapse
|