1
|
Su Z, Yao B, Liu G, Fang J. Polyphenols as potential preventers of osteoporosis: A comprehensive review on antioxidant and anti-inflammatory effects, molecular mechanisms, and signal pathways in bone metabolism. J Nutr Biochem 2024; 123:109488. [PMID: 37865383 DOI: 10.1016/j.jnutbio.2023.109488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Osteoporosis (OP) is a skeletal disorder characterized by decreased bone density, alterations in bone microstructure, and increased damage to the bones. As the population ages and life expectancy increases, OP has become a global epidemic, drawing attention from scientists and doctors. Because of polyphenols have favorable antioxidant and anti-allergy effects, which are regarded as potential methods to prevent angiocardipathy and OP. Polyphenols offer a promising approach to preventing and treating OP by affecting bone metabolism, reducing bone resolution, maintaining bone density, and lowering the differentiation level of osteoclasts (OC). There are multiple ways in which polyphenols affect bone metabolism. This article provides an overview of how polyphenols inhibit oxidative stress, exert antibacterial effects, and prevent the occurrence of OP. Furthermore, we will explore the regulatory mechanisms and signaling pathways implicated in this process.
Collapse
Affiliation(s)
- Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Bin Yao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China.
| |
Collapse
|
2
|
Rheinheimer BA, Pasquale MC, Limesand KH, Hoffman MP, Chibly AM. Evaluating the transcriptional landscape and cell-cell communication networks in chronically irradiated parotid glands. iScience 2023; 26:106660. [PMID: 37168562 PMCID: PMC10165028 DOI: 10.1016/j.isci.2023.106660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Understanding the transcriptional landscape that results in chronic salivary hypofunction after irradiation will help identify injury mechanisms and develop regenerative therapies. We present scRNA-seq analysis from control and irradiated murine parotid glands collected 10 months after irradiation. We identify a population of secretory cells defined by specific expression of Etv1, which may be an acinar cell precursor. Acinar and Etv1+ secretory express Ntrk2 and Erbb3, respectively while the ligands for these receptors are expressed in myoepithelial and stromal cells. Furthermore, our data suggests that secretory cells and CD4+CD8+T-cells are the most transcriptionally affected during chronic injury with radiation, suggesting active immune involvement. Lastly, evaluation of cell-cell communication networks predicts that neurotrophin, neuregulin, ECM, and immune signaling are dysregulated after irradiation, and thus may play a role in the lack of repair. This resource will be helpful to understand cell-specific pathways that may be targeted to repair chronic damage in irradiated glands.
Collapse
Affiliation(s)
| | - Mary C. Pasquale
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kirsten H. Limesand
- Nutritional Sciences Department, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alejandro M. Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Li ZY, Zhu YX, Chen JR, Chang X, Xie ZZ. The role of KLF transcription factor in the regulation of cancer progression. Biomed Pharmacother 2023; 162:114661. [PMID: 37068333 DOI: 10.1016/j.biopha.2023.114661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Kruppel-like factors (KLFs) are a family of zinc finger transcription factors that have been found to play an essential role in the development of various human tissues, including epithelial, teeth, and nerves. In addition to regulating normal physiological processes, KLFs have been implicated in promoting the onset of several cancers, such as gastric cancer, lung cancer, breast cancer, liver cancer, and colon cancer. To inhibit cancer progression, various existing medicines have been used to modulate the expression of KLFs, and anti-microRNA treatments have also emerged as a potential strategy for many cancers. Investigating the possibility of targeting KLFs in cancer therapy is urgently needed, as the roles of KLFs in cancer have not received enough attention in recent years. This review summarizes the factors that regulate KLF expression and function at both the transcriptional and posttranscriptional levels, which could aid in understanding the mechanisms of KLFs in cancer progression. We hope that this review will contribute to the development of more effective anti-cancer medicines targeting KLFs in the future.
Collapse
Affiliation(s)
- Zi-Yi Li
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yu-Xin Zhu
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jian-Rui Chen
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xu Chang
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhen-Zhen Xie
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Experimental teaching center of Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
4
|
Wu K, Wang L, Liu M, Xiu Y, Hu Y, Fu S, Huang H, Xu B, Xiao H. The CD226-ERK1/2-LAMP1 pathway is an important mechanism for Vγ9Vδ2 T cell cytotoxicity against chemotherapy-resistant acute myeloid leukemia blasts and leukemia stem cells. Cancer Sci 2021; 112:3233-3242. [PMID: 34107135 PMCID: PMC8353902 DOI: 10.1111/cas.15014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Vγ9Vδ2 T cells are attractive effector cells for immunotherapy with potent cytotoxic activity against a variety of malignant cells. However, the effect of Vγ9Vδ2 T cells on chemotherapy-resistant acute myeloid leukemia (AML) blasts, especially highly refractory leukemia stem cells (LSCs) is still unknown. In this study, we investigated the effect of cytotoxicity of allogeneic Vγ9Vδ2 T cells on chemotherapy-resistant AML cell lines, as well as on primary AML blasts and LSCs obtained from refractory AML patients. The results indicated that Vγ9Vδ2 T cells can efficiently kill drug-resistant AML cell lines in vitro and in vivo, and the sensitivity of AML cells to Vγ9Vδ2 T cell-mediated cytotoxicity is not influenced by the sensitivity of AML cells to chemotherapy. We further found that Vγ9Vδ2 T cells exhibited a comparable effect of cytotoxicity against LSCs to primary AML blasts. More importantly, we revealed that the CD226-extracellular signal-regulatory kinase1/2 (ERK1/2)-lysosome-associated membrane protein 1 (LAMP1) pathway is an important mechanism for Vγ9Vδ2 T cell-induced cytotoxicity against AML cells. First, Vγ9Vδ2 T cells recognized AML cells by receptor-ligand interaction of CD226-Nectin-2, which then induced ERK1/2 phosphorylation in Vγ9Vδ2 T cells. Finally, triggering the movement of lytic granules toward AML cells induced cytolysis of AML cells. The expression level of Nectin-2 may be used as a novel marker to predict the susceptibility/resistance of AML cells to Vγ9Vδ2 T cell treatment.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cytotoxicity, Immunologic
- Drug Resistance, Neoplasm
- Female
- HL-60 Cells
- Humans
- Immunotherapy, Adoptive
- K562 Cells
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Lysosomal Membrane Proteins/metabolism
- MAP Kinase Signaling System
- Mice
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kangni Wu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of HematologyThe First Affiliated Hospital of Xiamen University and Institute of HematologyMedical College of Xiamen UniversityXiamenChina
| | - Li‐mengmeng Wang
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Meng Liu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanghui Xiu
- Eye Institute and Xiamen Eye Center Affiliated to Xiamen UniversityXiamenChina
| | - Yongxian Hu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shan Fu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - He Huang
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Bing Xu
- Department of HematologyThe First Affiliated Hospital of Xiamen University and Institute of HematologyMedical College of Xiamen UniversityXiamenChina
| | - Haowen Xiao
- Department of HematologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
5
|
Turpaev KT. Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes. BIOCHEMISTRY (MOSCOW) 2020; 85:54-67. [PMID: 32079517 DOI: 10.1134/s0006297920010058] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KLF2 is a member of the Krüppel-like transcription factor family of proteins containing highly conserved DNA-binding zinc finger domains. KLF2 participates in the differentiation and regulation of the functional activity of monocytes, T lymphocytes, adipocytes, and vascular endothelial cells. The activity of KLF2 is controlled by several regulatory systems, including the MEKK2,3/MEK5/ERK5/MEF2 MAP kinase cascade, Rho family G-proteins, histone acetyltransferases CBP and p300, and histone deacetylases HDAC4 and HDAC5. Activation of KLF2 in endothelial cells induces eNOS expression and provides vasodilatory effect. Many KLF2-dependent genes participate in the suppression of blood coagulation and aggregation of T cells and macrophages with the vascular endothelium, thereby preventing atherosclerosis progression. KLF2 can have a dual effect on the gene transcription. Thus, it induces expression of multiple genes, but suppresses transcription of NF-κB-dependent genes. Transcription factors KLF2 and NF-κB are reciprocal antagonists. KLF2 inhibits induction of NF-κB-dependent genes, whereas NF-κB downregulates KLF2 expression. KLF2-mediated inhibition of NF-κB signaling leads to the suppression of cell response to the pro-inflammatory cytokines IL-1β and TNFα and results in the attenuation of inflammatory processes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Zhang J, Li G, Feng L, Lu H, Wang X. Krüppel-like factors in breast cancer: Function, regulation and clinical relevance. Biomed Pharmacother 2019; 123:109778. [PMID: 31855735 DOI: 10.1016/j.biopha.2019.109778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has accounted for the leading cause of cancer-related mortality among women worldwide. Although the progress in its diagnosis and treatment has come at a remarkable pace during the past several decades, there are still a wide array of problems regarding its progression, metastasis and treatment resistance that have not yet been fully clarified. Recently, an increasing number of studies have revealed that some members of Krüppel-like factors(KLFs) are significantly associated with cell proliferation, apoptosis, metastasis, cancer stem cell regulation and prognostic and predictive value for patients in breast cancer, indicating their promising prognostic and predictive potential for breast cancer survival and outcome. In this review, we will summarize our current knowledge of the functions, regulations and clinical relevance of KLFs in breast cancer.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Adam C, Glück L, Ebert R, Goebeler M, Jakob F, Schmidt M. The MEK5/ERK5 mitogen-activated protein kinase cascade is an effector pathway of bone-sustaining bisphosphonates that regulates osteogenic differentiation and mineralization. Bone 2018; 111:49-58. [PMID: 29567200 DOI: 10.1016/j.bone.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 01/24/2023]
Abstract
Bisphosphonates play an important role in the treatment of metabolic bone diseases such as osteoporosis. In addition to their anti-resorptive activity by triggering osteoclast apoptosis, nitrogen-containing bisphosphonates (N-BP) may also influence osteogenic differentiation, which might rely on their capacity to inhibit the mevalonate pathway. In vascular endothelial cells inhibition of this pathway by cholesterol-lowering statins activates the MEK5/ERK5 mitogen-activated protein kinase cascade, which plays an important role in cellular differentiation, apoptosis or inflammatory processes. Here we evaluated whether N-BP may also target the MEK5/ERK5 pathway and analysed the consequences of ERK5 activation on osteogenic differentiation. We show that N-BP dose-dependently activate ERK5 in primary human endothelial cells and osteoblasts. The mechanism likely involves farnesyl pyrophosphate synthase inhibition and subsequent functional inhibition of the small GTPase Cdc42 since siRNA-mediated knockdown of both genes could reproduce N-BP-induced ERK5 activation. ERK5 activation resulted in regulation of several bone-relevant genes and was required for calcification and osteogenic differentiation of bone marrow-derived mesenchymal stems cells as evident by the lack of alkaline phosphatase induction and alizarin-red S staining observed upon ERK5 knockdown or upon differentiation initiation in presence of a pharmacological ERK5 inhibitor. Our data provide evidence that N-BP activate the MEK5/ERK5 cascade and reveal an essential role of ERK5 in osteogenic differentiation and mineralization of skeletal precursors.
Collapse
Affiliation(s)
- Christian Adam
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Lucia Glück
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | | | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | - Marc Schmidt
- Department of Dermatology, University Hospital Würzburg, Germany.
| |
Collapse
|
8
|
Wang HG, Cao B, Zhang LX, Song N, Li H, Zhao WZ, Li YS, Ma SM, Yin DJ. KLF2 inhibits cell growth via regulating HIF-1α/Notch-1 signal pathway in human colorectal cancer HCT116 cells. Oncol Rep 2017. [PMID: 28628187 DOI: 10.3892/or.2017.5708] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The transcription factor Krüppel-like factor 2 (KLF2) has been shown to function as a tumor suppressor and regulate biological processes of cancer cells, such as cell growth, cell apoptosis and angiogenesis. However, the function and mechanism of KLF2 in colorectal cancer (CRC) is still unknown. In the present study, we show that the expression of KLF2 is diminished in a cohort of CRC cell lines. Also, KLF2 overexpression remarkably inhibits HCT116 and SW480 cell survival and proliferation. Moreover, cell death detection ELISA plus assay showed that KLF2 overexpression increased HCT116 cell proliferation. Caspase-3/7 activity also increased in HCT116 cells transfected with PcDNA3.1-KLF2. Further studies showed that KLF2 significantly suppresses the expression of Notch-1 and is dependent on the decline of the HIF-1α level. Most importantly, silencing Notch-1 expression or HIF-1α level both impair the action of KLF2 overexpression in CRC cells. Collectively, we demonstrated that KLF2 mediates CRC cell biological processes including cell growth and apoptosis via regulating the HIF-1α/Notch-1 signal pathway. These results indicated that KLF2 plays an important role in CRC and provided novel insight on the function of KLF2 in tumor progression.
Collapse
Affiliation(s)
- Hai-Gang Wang
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Bin Cao
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Li-Xian Zhang
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Nan Song
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Hui Li
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Wen-Zeng Zhao
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Yan-Shu Li
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Shun-Mao Ma
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Dong-Jian Yin
- North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| |
Collapse
|
9
|
Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P, Shu YQ. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer 2015; 14:165. [PMID: 26336870 PMCID: PMC4558931 DOI: 10.1186/s12943-015-0431-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and the biology of this cancer remains poorly understood. Recent evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in a variety of cancers, including HCC. Taurine Up-regulated Gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is found to be disregulated in non-small cell lung carcinoma (NSCLC) and esophageal squamous cell carcinoma (ESCC). However, its clinical significance and potential role in HCC remain unclear. Methods and results In this study, expression of TUG1 was analyzed in 77 HCC tissues and matched normal tissues by using quantitative polymerase chain reaction (qPCR). TUG1 expression was up-regulated in HCC tissues and the higher expression of TUG1 was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, silencing of TUG1 expression inhibited HCC cell proliferation, colony formation, tumorigenicity and induced apoptosis in HCC cell lines. We also found that TUG1 overexpression was induced by nuclear transcription factor SP1 and TUG1 could epigeneticly repress Kruppel-like factor 2 (KLF2) transcription in HCC cells by binding with PRC2 and recruiting it to KLF2 promoter region. Conclusion Our results suggest that lncRNA TUG1, as a growth regulator, may serve as a new diagnostic biomarker and therapy target for HCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0431-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-De Huang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City, Jiangsu Province, 223301, People's Republic of China
| | - Wen-Ming Chen
- Department of Oncology, Jining No.1 People's Hospital, No.6, Jiankang Road, Jining City, Shandong Province, 272011, People's Republic of China
| | - Fu-Zhen Qi
- Department of Hepatopancreatobiliary Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City, Jiangsu Province, 223300, People's Republic of China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China
| | - Tong-Peng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China
| | - Pei Ma
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China
| | - Yong-Qian Shu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Huang MD, Chen WM, Qi FZ, Xia R, Sun M, Xu TP, Yin L, Zhang EB, De W, Shu YQ. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J Hematol Oncol 2015; 8:57. [PMID: 27391317 PMCID: PMC5015197 DOI: 10.1186/s13045-015-0153-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/26/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, especially in China. And the mechanism of its progression remains poorly understood. Growing evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in many cancers, including HCC. CDKN2B antisense RNA1 (ANRIL), a lncRNA, coclustered mainly with p14/ARF has been reported to be dysregulated in gastric cancer, esophageal squamous cell carcinoma, and lung cancer. However, its clinical significance and potential role in HCC is still not documented. METHODS AND RESULTS In this study, expression of ANRIL was analyzed in 77 HCC tissues and matched normal tissues by using quantitative real-time polymerase chain reaction (qRT-PCR). ANRIL expression was up-regulated in HCC tissues, and the higher expression of ANRIL was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, taking advantage of loss of function experiments in HCC cells, we found that knockdown of ANRIL expression could impair cell proliferation and invasion and induce cell apoptosis both in vitro and in vivo. We also found that ANRIL could epigenetically repress KLF2 transcription in HCC cells by binding with PRC2 and recruiting it to KLF2 promoter region. We also found that Sp1 could regulate the expression of ANRIL. CONCLUSION Our results suggest that lncRNA ANRIL, as a growth regulator, may serve as a new biomarker and target for therapy in HCC.
Collapse
Affiliation(s)
- Ming-de Huang
- Department of Medical Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an City, Jiangsu Province 223301 People’s Republic of China
| | - Wen-ming Chen
- Department of Oncology, Jining No.1 People’s Hospital, No.6, Jiankang Road, Jining City, Shandong Province 272011 People’s Republic of China
| | - Fu-zhen Qi
- Department of Hepatopancreatobiliary Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an City, Jiangsu Province 223300 People’s Republic of China
| | - Rui Xia
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province People’s Republic of China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province People’s Republic of China
| | - Tong-peng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province People’s Republic of China
| | - Li Yin
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province People’s Republic of China
| | - Er-bao Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province People’s Republic of China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province People’s Republic of China
| | - Yong-qian Shu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province People’s Republic of China
| |
Collapse
|
11
|
Huang MD, Chen WM, Qi FZ, Xia R, Sun M, Xu TP, Yin L, Zhang EB, De W, Shu YQ. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell apoptosis by epigenetic silencing of KLF2. J Hematol Oncol 2015; 8:50. [PMID: 25966845 PMCID: PMC4434820 DOI: 10.1186/s13045-015-0146-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/29/2015] [Indexed: 01/17/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, especially in China. And the mechanism of its progression remains poorly understood. Growing evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in many cancers, including HCC. ANRIL, a lncRNA co-clustered mainly with p14/ARF has been reported to be dysregulated in gastric cancer, esophageal squamous cell carcinoma, and lung cancer. However, its clinical significance and potential role in HCC are still not documented. Methods and results In this study, expression of ANRIL was analyzed in 77 HCC tissues and matched normal tissues by using quantitative polymerase chain reaction (qRT-PCR). ANRIL expression was upregulated in HCC tissues, and the higher expression of ANRIL was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, taking advantage of loss-of-function experiments in HCC cells, we found that knockdown of ANRIL expression could impair cell proliferation and invasion and induce cell apoptosis both in vitro and in vivo. We also found that ANRIL could epigenetically repress Kruppel-like factor 2 (KLF2) transcription in HCC cells by binding with PRC2 and recruiting it to the KLF2 promoter region. We also found that SP1 could regulate the expression of ANRIL. Conclusion Our results suggest that lncRNA ANRIL, as a growth regulator, may serve as a new biomarker and target for therapy in HCC. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0146-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-de Huang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City, Jiangsu Province, 223301, People's Republic of China.
| | - Wen-ming Chen
- Department of Oncology, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining City, Shandong Province, 272011, People's Republic of China.
| | - Fu-zhen Qi
- Department of Hepatopancreatobiliary Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City, Jiangsu Province, 223300, People's Republic of China.
| | - Rui Xia
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China.
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China.
| | - Tong-peng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China.
| | - Li Yin
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China.
| | - Er-bao Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China.
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China.
| | - Yong-qian Shu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing City, Jiangsu Province, People's Republic of China.
| |
Collapse
|
12
|
Lafage-Proust MH, Roche B, Langer M, Cleret D, Vanden Bossche A, Olivier T, Vico L. Assessment of bone vascularization and its role in bone remodeling. BONEKEY REPORTS 2015; 4:662. [PMID: 25861447 DOI: 10.1038/bonekey.2015.29] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Abstract
Bone is a composite organ that fulfils several interconnected functions, which may conflict with each other in pathological conditions. Bone vascularization is at the interface between these functions. The roles of bone vascularization are better documented in bone development, growth and modeling than in bone remodeling. However, every bone remodeling unit is associated with a capillary in both cortical and trabecular envelopes. Here we summarize the most recent data on vessel involvement in bone remodeling, and we present the characteristics of bone vascularization. Finally, we describe the various techniques used for bone vessel imaging and quantitative assessment, including histology, immunohistochemistry, microtomography and intravital microscopy. Studying the role of vascularization in adult bone should provide benefits for the understanding and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Marie-Hélène Lafage-Proust
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Bernard Roche
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Max Langer
- Université de Lyon , Lyon, France ; CREATIS, CNRS UMR 5220-INSERM U1044 , Lyon, France
| | - Damien Cleret
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Arnaud Vanden Bossche
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Thomas Olivier
- Université de Lyon , Lyon, France ; Laboratoire Hubert Curien , Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| |
Collapse
|
13
|
Probenecid as a sensitizer of bisphosphonate-mediated effects in breast cancer cells. Mol Cancer 2014; 13:265. [PMID: 25496233 PMCID: PMC4295226 DOI: 10.1186/1476-4598-13-265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022] Open
Abstract
Background Anti-resorptive bisphosphonates (BP) are used for the treatment of osteoporosis and bone metastases. Clinical studies indicated a benefit in survival and tumor relapse in subpopulations of breast cancer patients receiving zoledronic acid, thus stimulating the debate about its anti-tumor activity. Amino-bisphosphonates in nM concentrations inhibit farnesyl pyrophosphate synthase leading to accumulation of isopentenyl pyrophosphate (IPP) and the ATP/pyrophosphate adduct ApppI, which induces apoptosis in osteoclasts. For anti-tumor effects μM concentrations are needed and a sensitizer for bisphosphonate effects would be beneficial in clinical anti-tumor applications. We hypothesized that enhancing intracellular pyrophosphate accumulation via inhibition of probenecid-sensitive channels and transporters would sensitize tumor cells for bisphosphonates anti-tumor efficacy. Method MDA-MB-231, T47D and MCF-7 breast cancer cells were treated with BP (zoledronic acid, risedronate, ibandronate, alendronate) and the pyrophosphate channel inhibitors probenecid and novobiocin. We determined cell viability and caspase 3/7 activity (apoptosis), accumulation of IPP and ApppI, expression of ANKH, PANX1, ABCC1, SLC22A11, and the zoledronic acid target gene and tumor-suppressor KLF2. Results Treatment of MDA-MB-231 with BP induced caspase 3/7 activity, with zoledronic acid being the most effective. In MCF-7 and T47D either BP markedly suppressed cell viability with only minor effects on apoptosis. Co-treatment with probenecid enhanced BP effects on cell viability, IPP/ApppI accumulation as measurable in MCF-7 and T47D cells, caspase 3/7 activity and target gene expression. Novobiocin co-treatment of MDA-MB-231 yielded identical results on viability and apoptosis compared to probenecid, rendering SLC22A family members as candidate modulators of BP effects, whereas no such evidence was found for ANKH, ABCC1 and PANX1. Conclusions In summary, we demonstrate effects of various bisphosphonates on caspase 3/7 activity, cell viability and expression of tumor suppressor genes in breast cancer cells. Blocking probenecid and novobiocin-sensitive channels and transporters enhances BP anti-tumor effects and renders SLC22A family members as good candidates as BP modulators. Further studies will have to unravel if treatment with such BP-sensitizers translates into preclinical and clinical efficacy. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-265) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Maes C, Clemens TL. Angiogenic-osteogenic coupling: the endothelial perspective. BONEKEY REPORTS 2014; 3:578. [PMID: 25328674 PMCID: PMC4197481 DOI: 10.1038/bonekey.2014.73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christa Maes
- Laboratory for Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven , Leuven, Belgium
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
15
|
Rachner TD, Göbel A, Thiele S, Rauner M, Benad-Mehner P, Hadji P, Bauer T, Muders MH, Baretton GB, Jakob F, Ebert R, Bornhäuser M, Schem C, Hofbauer LC. Dickkopf-1 is regulated by the mevalonate pathway in breast cancer. Breast Cancer Res 2014; 16:R20. [PMID: 24528599 PMCID: PMC3979025 DOI: 10.1186/bcr3616] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/05/2014] [Indexed: 11/16/2022] Open
Abstract
Introduction Amino-bisphosphonates and statins inhibit the mevalonate pathway, and may exert anti-tumor effects. The Wnt inhibitor dickkopf-1 (DKK-1) promotes osteolytic bone lesions by inhibiting osteoblast functions and has been implicated as an adverse marker in multiple cancers. We assessed the effects of mevalonate pathway inhibition on DKK-1 expression in osteotropic breast cancer. Methods Regulation of DKK-1 by bisphosphonates and statins was assessed in human breast cancer cell lines, and the role of the mevalonate pathway and downstream targets was analyzed. Moreover, the potential of breast cancer cells to modulate osteoblastogenesis via DKK-1 was studied in mC2C12 cells. Clinical relevance was validated by analyzing DKK-1 expression in the tissue and serum of women with breast cancer exposed to bisphosphonates. Results DKK-1 was highly expressed in receptor-negative breast cancer cell lines. Patients with receptor-negative tumors displayed elevated levels of DKK-1 at the tissue and serum level compared to healthy controls. Zoledronic acid and atorvastatin potently suppressed DKK-1 in vitro by inhibiting geranylgeranylation of CDC42 and Rho. Regulation of DKK-1 was strongest in osteolytic breast cancer cell lines with abundant DKK-1 expression. Suppression of DKK-1 inhibited the ability of breast cancer cells to block WNT3A-induced production of alkaline phosphates and bone-protective osteoprotegerin in preosteoblastic C2C12 cells. In line with the in vitro data, treatment of breast cancer patients with zoledronic acid decreased DKK-1 levels by a mean of 60% after 12 months of treatment. Conclusion DKK-1 is a novel target of the mevalonate pathway that is suppressed by zoledronic acid and atorvastatin in breast cancer.
Collapse
|
16
|
Schilling T, Ebert R, Raaijmakers N, Schütze N, Jakob F. Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration. J Steroid Biochem Mol Biol 2014; 139:252-61. [PMID: 23262262 DOI: 10.1016/j.jsbmb.2012.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/13/2023]
Abstract
Phytoestrogens and other plant-derived compounds and extracts have been developed for the treatment of menopause-related complaints and disorders, e.g. hot flushes and osteoporosis. Since estrogens have been discussed to enhance the risk for hormone-sensitive cancers, research activities try to find alternatives. Phytoestrogens like genistein and resveratrol as well as other plant-derived compounds are capable of substituting for estrogens to some extent. Their effects on mesenchymal stem cells and the tissues derived therefrom have been investigated in vitro and in preclinical settings. Besides their well-known estrogenic, i.e. mainly antiresorptive effects on bone via estrogen receptor (ER) signalling, they also directly or indirectly affect osteogenic and adipogenic pathways. As a novel mechanism, phytoestrogens and plant-derived saponins and flavonoids like kaempferol and xanthohumol have been described to reciprocally affect the osteogenic versus the adipogenic differentiation pathway. Both, ER-mediated and other pathways mediate a shift towards osteogenesis by inhibiting PPARγ and C/EBPα, the key adipogenic transcription factors (TFs), while stimulating the key osteogenic TFs Runx2 and Sp7. Besides ER signalling, the broad spectrum of molecular mechanisms supporting osteogenesis comprises the modulation of PPARγ, Wnt/β-catenin, and Sirt1 signalling, which inversely influence the transcription or transactivation of osteogenic versus adipogenic TFs. Preventing the age- and hormone deficiency-related shift towards adipogenesis without provoking adverse estrogenic effects represents a very promising strategy for treating bone loss and other metabolic diseases beyond bone. Research on plant-derived compounds will have to be pursued in vitro as well as in preclinical studies and controlled clinical trials in humans are urgently needed. This article is part of a Special Issue entitled 'Phytoestrogens'.
Collapse
Affiliation(s)
- Tatjana Schilling
- University of Würzburg, Orthopaedic Department, Orthopaedic Centre for Musculoskeletal Research, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Tomlinson RE, Silva MJ. Skeletal Blood Flow in Bone Repair and Maintenance. Bone Res 2013; 1:311-22. [PMID: 26273509 DOI: 10.4248/br201304002] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023] Open
Abstract
Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anatomy, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.
Collapse
Affiliation(s)
- Ryan E Tomlinson
- Department of Orthopaedic Surgery, Washington University in St. Louis , Saint Louis, MO, USA ; Musculoskeletal Research Center, Washington University in St. Louis , Saint Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis , Saint Louis, MO, USA ; Musculoskeletal Research Center, Washington University in St. Louis , Saint Louis, MO, USA
| |
Collapse
|
18
|
Marenzana M, Arnett TR. The Key Role of the Blood Supply to Bone. Bone Res 2013; 1:203-15. [PMID: 26273504 DOI: 10.4248/br201303001] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/22/2013] [Indexed: 12/16/2022] Open
Abstract
The importance of the vascular supply for bone is well-known to orthopaedists but is still rather overlooked within the wider field of skeletal research. Blood supplies oxygen, nutrients and regulatory factors to tissues, as well as removing metabolic waste products such as carbon dioxide and acid. Bone receives up to about 10% of cardiac output, and this blood supply permits a much higher degree of cellularity, remodelling and repair than is possible in cartilage, which is avascular. The blood supply to bone is delivered to the endosteal cavity by nutrient arteries, then flows through marrow sinusoids before exiting via numerous small vessels that ramify through the cortex. The marrow cavity affords a range of vascular niches that are thought to regulate the growth and differentiation of hematopoietic and stromal cells, in part via gradients of oxygen tension. The quality of vascular supply to bone tends to decline with age and may be compromised in common pathological settings, including diabetes, anaemias, chronic airway diseases and immobility, as well as by tumours. Reductions in vascular supply are associated with bone loss. This may be due in part to the direct effects of hypoxia, which blocks osteoblast function and bone formation but causes reciprocal increases in osteoclastogenesis and bone resorption. Common regulatory factors such as parathyroid hormone or nitrates, both of which are potent vasodilators, might exert their osteogenic effects on bone via the vasculature. These observations suggest that the bone vasculature will be a fruitful area for future research.
Collapse
Affiliation(s)
- Massimo Marenzana
- Department of Bioengineering, Imperial College London and Kennedy Institute of Rheumatology, University of Oxford , UK
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London , UK
| |
Collapse
|