1
|
Torrissen M, Ytteborg E, Svensen H, Stoknes I, Nilsson A, Østbye TK, Berge GM, Bou M, Ruyter B. Investigation of the functions of n-3 very-long-chain PUFAs in skin using in vivo Atlantic salmon and in vitro human and fish skin models. Br J Nutr 2023; 130:1915-1931. [PMID: 37169355 PMCID: PMC10630148 DOI: 10.1017/s0007114523001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
The purpose of this study was to investigate the effect of dietary n-3 very-long-chain PUFA (n-3 VLC-PUFA) on the maturation and development of skin tissue in juvenile Atlantic salmon (Salmo salar) in vivo, as well as their effects on skin keratocyte and human skin fibroblast cell migration in vitro. Atlantic salmon were fed different dietary levels of n-3 VLC-PUFA from an initial weight of 6 g to a final weight of 11 g. Changes in skin morphology were analysed at two time points during the experiment, and the effects on skin tissue fatty acid composition were determined. Additionally, in vitro experiments using human dermal fibroblasts and primary Atlantic salmon keratocytes were conducted to investigate the effect of VLC-PUFA on the migration capacity of the cells. The results demonstrated that increased dietary levels of n-3 VLC-PUFA led to an increased epidermis thickness and more rapid scale maturation in Atlantic salmon skin in vivo, leading to a more mature skin morphology, and possibly more robust skin, at an earlier life stage. Additionally, human skin fibroblasts and salmon skin keratocytes supplemented with n-3 VLC-PUFA in vitro showed more rapid migration, indicating potentially beneficial effects of VLC-PUFA in wound healing. In conclusion, VLC-PUFA may have beneficial effects on skin tissue development, function and integrity.
Collapse
Affiliation(s)
- Martina Torrissen
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
- Epax Norway, 6006Ålesund, Norway
- NMBU (Norwegian University of Life Sciences), 1433Ås, Norway
| | - Elisabeth Ytteborg
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | | | | | - Astrid Nilsson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Gerd Marit Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
- NMBU (Norwegian University of Life Sciences), 1433Ås, Norway
| |
Collapse
|
2
|
Ikari T, Furusawa Y, Tabuchi Y, Maruyama Y, Hattori A, Kitani Y, Toyota K, Nagami A, Hirayama J, Watanabe K, Shigematsu A, Rafiuddin MA, Ogiso S, Fukushi K, Kuroda K, Hatano K, Sekiguchi T, Kawashima R, Srivastav AK, Nishiuchi T, Sakatoku A, Yoshida MA, Matsubara H, Suzuki N. Kynurenine promotes Calcitonin secretion and reduces cortisol in the Japanese flounder Paralichthys olivaceus. Sci Rep 2023; 13:8700. [PMID: 37248272 DOI: 10.1038/s41598-023-35222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Deep ocean water (DOW) exerts positive effects on the growth of marine organisms, suggesting the presence of unknown component(s) that facilitate their aquaculture. We observed that DOW suppressed plasma cortisol (i.e., a stress marker) concentration in Japanese flounder (Paralichthys olivaceus) reared under high-density condition. RNA-sequencing analysis of flounder brains showed that when compared to surface seawater (SSW)-reared fish, DOW-reared fish had lower expression of hypothalamic (i.e., corticotropin-releasing hormone) and pituitary (i.e., proopiomelanocortin, including adrenocorticotropic hormone) hormone-encoding genes. Moreover, DOW-mediated regulation of gene expression was linked to decreased blood cortisol concentration in DOW-reared fish. Our results indicate that DOW activated osteoblasts in fish scales and facilitated the production of Calcitonin, a hypocalcemic hormone that acts as an analgesic. We then provide evidence that the Calcitonin produced is involved in the regulatory network of genes controlling cortisol secretion. In addition, the indole component kynurenine was identified as the component responsible for osteoblast activation in DOW. Furthermore, kynurenine increased plasma Calcitonin concentrations in flounders reared under high-density condition, while it decreased plasma cortisol concentration. Taken together, we propose that kynurenine in DOW exerts a cortisol-reducing effect in flounders by facilitating Calcitonin production by osteoblasts in the scales.
Collapse
Grants
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 22009, 22015, 22016, 22017, 22044 The cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University
- 20K06718, 21K05725, 22J01508 JSPS
- 20K06718, 21K05725, 22J01508 JSPS
- 20K06718, 21K05725, 22J01508 JSPS
- 2209 The Salt Science Research Foundation
- JPMJTM19AP JST
Collapse
Affiliation(s)
- Takahiro Ikari
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
| | - Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Arata Nagami
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, 923-0961, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, 923-0961, Japan
| | - Atsushi Shigematsu
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Muhammad Ahya Rafiuddin
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kohei Kuroda
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Kaito Hatano
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Ryotaro Kawashima
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, 923-0961, Japan
| | - Ajai K Srivastav
- Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur, 273-009, India
| | - Takumi Nishiuchi
- Bioscience Core Facility, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-Machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Akihiro Sakatoku
- School of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Masa-Aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Oki, Shimane, 685-0024, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan.
| |
Collapse
|
3
|
Hirayama J, Hattori A, Takahashi A, Furusawa Y, Tabuchi Y, Shibata M, Nagamatsu A, Yano S, Maruyama Y, Matsubara H, Sekiguchi T, Suzuki N. Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J Pineal Res 2023; 74:e12834. [PMID: 36203395 DOI: 10.1111/jpi.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.
Collapse
Affiliation(s)
- Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences & Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Masahiro Shibata
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| |
Collapse
|
4
|
Yamamoto T, Ikegame M, Furusawa Y, Tabuchi Y, Hatano K, Watanabe K, Kawago U, Hirayama J, Yano S, Sekiguchi T, Kitamura KI, Endo M, Nagami A, Matsubara H, Maruyama Y, Hattori A, Suzuki N. Osteoclastic and Osteoblastic Responses to Hypergravity and Microgravity: Analysis Using Goldfish Scales as a Bone Model. Zoolog Sci 2022; 39. [DOI: 10.2108/zs210107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/13/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Tatsuki Yamamoto
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8525, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Kaito Hatano
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Umi Kawago
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa 923-0961, Japan
| | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Ibaraki 305-8505, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Kei-ichiro Kitamura
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno, Ishikawa 920-0942, Japan
| | - Masato Endo
- Laboratory of Fish Culture, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Arata Nagami
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-cho, Ishikawa 927-0552, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-cho, Ishikawa 927-0552, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| |
Collapse
|
5
|
Wagner M, Bračun S, Duenser A, Sturmbauer C, Gessl W, Ahi EP. Expression variations in ectodysplasin-A gene (eda) may contribute to morphological divergence of scales in haplochromine cichlids. BMC Ecol Evol 2022; 22:28. [PMID: 35272610 PMCID: PMC8908630 DOI: 10.1186/s12862-022-01984-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elasmoid scales are one of the most common dermal appendages and can be found in almost all species of bony fish differing greatly in their shape. Whilst the genetic underpinnings behind elasmoid scale development have been investigated, not much is known about the mechanisms involved in moulding of scales. To investigate the links between gene expression differences and morphological divergence, we inferred shape variation of scales from two different areas of the body (anterior and posterior) stemming from ten haplochromine cichlid species from different origins (Lake Tanganyika, Lake Malawi, Lake Victoria and riverine). Additionally, we investigated transcriptional differences of a set of genes known to be involved in scale development and morphogenesis in fish. RESULTS We found that scales from the anterior and posterior part of the body strongly differ in their overall shape, and a separate look on scales from each body part revealed similar trajectories of shape differences considering the lake origin of single investigated species. Above all, nine as well as 11 out of 16 target genes showed expression differences between the lakes for the anterior and posterior dataset, respectively. Whereas in posterior scales four genes (dlx5, eda, rankl and shh) revealed significant correlations between expression and morphological differentiation, in anterior scales only one gene (eda) showed such a correlation. Furthermore, eda displayed the most significant expression difference between species of Lake Tanganyika and species of the other two younger lakes. Finally, we found genetic differences in downstream regions of eda gene (e.g., in the eda-tnfsf13b inter-genic region) that are associated with observed expression differences. This is reminiscent of a genetic difference in the eda-tnfsf13b inter-genic region which leads to gain or loss of armour plates in stickleback. CONCLUSION These findings provide evidence for cross-species transcriptional differences of an important morphogenetic factor, eda, which is involved in formation of ectodermal appendages. These expression differences appeared to be associated with morphological differences observed in the scales of haplochromine cichlids indicating potential role of eda mediated signal in divergent scale morphogenesis in fish.
Collapse
Affiliation(s)
- Maximilian Wagner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.,Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sandra Bračun
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria. .,Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
6
|
Zanaty MI, Abdel-Moneim A, Kitani Y, Sekiguchi T, Suzuki N. Effect of Omeprazole on Osteoblasts and Osteoclasts in vivo and in the in vitro Model Using Fish Scales. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1192-1200. [PMID: 34903151 DOI: 10.1134/s0006297921100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 06/14/2023]
Abstract
Omeprazole suppresses excessive secretion of gastric acid via irreversible inhibition of H+/K+-ATPase in the gastric parietal cells. Recent meta-analysis of data revealed an association between the use of proton pump inhibitors (PPIs) and increased risk of bone fractures, but the underlying molecular mechanism of PPI action remains unclear. In this study, we demonstrated that omeprazole directly influences bone metabolism using a unique in vitro bioassay system with teleost scales, as well as the in vivo model. The in vitro study showed that omeprazole significantly increased the activities of alkaline phosphatase and tartrate-resistant acid phosphatase after 6 h of incubation with this PPI. Expression of mRNAs for several osteoclastic markers was upregulated after 3-h incubation of fish scales with 10-7 M omeprazole. The in vivo experiments revealed that the plasma calcium levels significantly increased in the omeprazole-treated group. The results of in vitro and in vivo studies suggest that omeprazole affects bone cells by increasing bone resorption by upregulating expression of osteoclastic genes and promoting calcium release to the circulation. The suggested in vitro bioassay in fish scales is a practical model that can be used to study the effects of drugs on bone metabolism.
Collapse
Affiliation(s)
- Mohamed I Zanaty
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Yoichiro Kitani
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| |
Collapse
|
7
|
Chaichit S, Sato T, Yu H, Tanaka YK, Ogra Y, Mizoguchi T, Itoh M. Evaluation of Dexamethasone-Induced Osteoporosis In Vivo Using Zebrafish Scales. Pharmaceuticals (Basel) 2021; 14:ph14060536. [PMID: 34205111 PMCID: PMC8228068 DOI: 10.3390/ph14060536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a major cause of secondary osteoporosis, and the pathogenic mechanisms of GIOP remain to be elucidated. Here, we show a rapid dexamethasone-induced osteoporosis animal model using zebrafish scales. Intraperitoneal injection of dexamethasone over a 5-day period suppressed the regeneration of scales. Furthermore, the circularity of the newly formed regenerated scales was also slightly reduced compared to that of the control group on day 5. The changes in bone-related enzymes, such as cathepsin K, tartrate-resistant acid phosphatase (TRAP) for bone resorption, and alkaline phosphatase (ALP) for bone formation, provide insight into the progression of bone diseases; therefore, we further developed a method to measure the activities of cathepsin K, TRAP, and ALP using zebrafish scales. We found that a lysis buffer with detergent at neutral pH under sonication efficiently helped extract these three enzymes with high activity levels. Interestingly, treatment with a dexamethasone injection produced considerably higher levels of cathepsin K activity and a lower Ca/P ratio than those in the control group, suggesting that dexamethasone increased osteoclast activity, with no significant changes in the activities of TRAP and ALP. Our GIOP model and enzyme assay method could help to design better treatments for GIOP.
Collapse
Affiliation(s)
- Siripat Chaichit
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takuto Sato
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Huiqing Yu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Yu-ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (S.C.); (T.S.); (H.Y.); (Y.-k.T.); (Y.O.); (T.M.)
- Correspondence: ; Tel.: +81-43-226-2890
| |
Collapse
|
8
|
Igarashi-Migitaka J, Seki A, Ikegame M, Honda M, Sekiguchi T, Mishima H, Shimizu N, Matsubara H, Srivastav AK, Hirayama J, Maruyama Y, Kamijo-Ikemori A, Hirata K, Hattori A, Suzuki N. Oral administration of melatonin contained in drinking water increased bone strength in naturally aged mice. Acta Histochem 2020; 122:151596. [PMID: 32778234 DOI: 10.1016/j.acthis.2020.151596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Melatonin has recently been found to be a possible new regulator of bone metabolism. However, the influence of melatonin in natural age-related osteoporosis has not been fully elucidated yet, although there have been some reports regarding postmenopausal osteoporosis with melatonin treatments. The present study investigated the effects of long-term melatonin administration during the aging process on bone metabolism. Using quantitative computed tomography methods, we found that the total bone density of both the femur metaphysis and diaphysis decreased significantly in 20-month-old male mice. In the metaphysis, both trabecular bone mass and Polar-Strength Strain Index (SSI), which is an index of bone strength, decreased significantly. Judging from bone histomorphometry analysis, trabecular bone in 20-month-old male mice decreases significantly with age and is small and sparse, as compared to that of 4-month-old male mice. Loss of trabecular bone is one possible cause of loss of bone strength in the femoral bone. In the metaphysis, the melatonin administration group had significantly higher trabecular bone density than the non-administration group. The Polar-SSI, cortical area, and periosteal circumference in the diaphysis was also significantly higher with melatonin treatments. Since the melatonin receptor, MT2, was detected in both osteoblasts and osteoclasts of the femoral bone of male mice, we expect that melatonin acts on osteoblasts and osteoclasts to maintain the bone strength of the diaphysis and metaphysis. Thus, melatonin is a potential drug for natural age-related osteoporosis.
Collapse
|
9
|
Lavajoo F, Perelló-Amorós M, Vélez EJ, Sánchez-Moya A, Balbuena-Pecino S, Riera-Heredia N, Fernández-Borràs J, Blasco J, Navarro I, Capilla E, Gutiérrez J. Regulatory mechanisms involved in muscle and bone remodeling during refeeding in gilthead sea bream. Sci Rep 2020; 10:184. [PMID: 31932663 PMCID: PMC6957526 DOI: 10.1038/s41598-019-57013-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
The tolerance of fish to fasting offers a model to study the regulatory mechanisms and changes produced when feeding is restored. Gilthead sea bream juveniles were exposed to a 21-days fasting period followed by 2 h to 7-days refeeding. Fasting provoked a decrease in body weight, somatic indexes, and muscle gene expression of members of the Gh/Igf system, signaling molecules (akt, tor and downstream effectors), proliferation marker pcna, myogenic regulatory factors, myostatin, and proteolytic molecules such as cathepsins or calpains, while most ubiquitin-proteasome system members increased or remained stable. In bone, downregulated expression of Gh/Igf members and osteogenic factors was observed, whereas expression of the osteoclastic marker ctsk was increased. Refeeding recovered the expression of Gh/Igf system, myogenic and osteogenic factors in a sequence similar to that of development. Akt and Tor phosphorylation raised at 2 and 5 h post-refeeding, much faster than its gene expression increased, which occurred at day 7. The expression in bone and muscle of the inhibitor myostatin (mstn2) showed an inverse profile suggesting an inter-organ coordination that needs to be further explored in fish. Overall, this study provides new information on the molecules involved in the musculoskeletal system remodeling during the early stages of refeeding in fish.
Collapse
Affiliation(s)
- F Lavajoo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, I.R., Iran
| | - M Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - E J Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - A Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - N Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - I Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Riera-Heredia N, Vélez EJ, Gutiérrez J, Navarro I, Capilla E. Gene expression analyses in malformed skeletal structures of gilthead sea bream (Sparus aurata). JOURNAL OF FISH DISEASES 2019; 42:1169-1180. [PMID: 31180144 DOI: 10.1111/jfd.13019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
The incidence of skeletal anomalies in reared fish has been translated for years in important economic losses for the aquaculture industry. In the present study, we have analysed the gene expression of extracellular matrix components and transcription factors involved in bone development in gilthead sea bream presenting different skeletal anomalies: lordosis (LD), lordosis-scoliosis-kyphosis (LSK) or opercular, dental or jaw malformations in comparison with control (CT) specimens. Results showed a possible link between the presence of LD and LSK and the significant downregulation of genes involved in osteoblasts' maturation and matrix mineralization (collagen type 1-alpha, osteopontin, osteocalcin, matrix Gla protein and tissue non-specific alkaline phosphatase), as well as in bone resorption (cathepsin K and matrix metalloproteinase 9) compared to CT animals. Contrarily, the key osteogenic transcription factor runx2 was upregulated in the malformed vertebra suggesting impaired determination of mesenchymal stem cells towards the osteoblastic lineage. Despite the gene expression patterns of the other malformed structures were not affected in comparison with CT fish, the results of the present study may contribute in the long term to identify potential candidate gene profiles associated with column deformities that may help reducing the incidence of appearance of skeletal anomalies in this important aquaculture species.
Collapse
Affiliation(s)
- Natàlia Riera-Heredia
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
The role of fish scale derived scaffold and platelet rich plasma in healing of rabbit tibial defect: an experimental study. ACTA VET BRNO 2019. [DOI: 10.2754/avb201887040363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fish scale is rich in collagen type I and hydroxyapatite, resembling bone structure. It is readily available, cost effective and can compensate for the limitations of grafting methods such as unavailability, zoonotic disease transmission, and high cost. The aim of this study was to evaluate in vivo the fish scale potential and the possible synergistic effect of platelet rich plasma (PRP) with this scaffold in bone regeneration. Fifteen male white New Zealand rabbits were randomly divided into six groups, each involving 5 limbs. Full thickness bicortical defects were created in the proximal tibia of both pelvic limbs of rabbits. The defect was left untreated in the negative control group. In experimental groups the defect was filled with PRP (group 1), cellular fish scale (group 2), combination of cellular fish scale and PRP (group 3), acellular fish scale (group 4), and a combination of acellular fish scale and PRP (group 5). Fresh fish scales were decellularized to increase biocompatibility and reduce immunity reactions. Decellularization was confirmed by DAPI (4',6-diamidino-2-phenylindole) staining. The microstructure and surface characteristics of fish scales were assessed by scanning electron microscopy (SEM). Histopathological evaluation of bone healing was performed on day 56. Although there was no significant difference in the bone union among experimental groups, the union was superior in all experimental groups compared to control. Spongiosa and cortex formation were superior in the acellular groups. Furthermore, PRP promoted bone marrow formation. We concluded that fish scale is a biocompatible scaffold with a high regenerative potential.
Collapse
|
12
|
Akiyama M. Characterization of the F-box Proteins FBXW2 and FBXL14 in the Initiation of Bone Regeneration in Transplants given to Nude Mice. Open Biomed Eng J 2018; 12:75-89. [PMID: 30450135 PMCID: PMC6198513 DOI: 10.2174/1874120701812010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Cultured bovine-periosteum-derived cells can form three-dimensional structures on tissue culture dishes without artificial scaffolding material, can induce bone regeneration in vivo. The utility of cultured bovine-periosteum-derived cells for bone tissue regeneration after their transplantation into nude mice has been reported, the precise F-box molecular mechanism was unclear. Objective: The aim of this study was to investigate the specific F-box proteins required for bone regeneration by cultured bovine-periosteum-derived cells in vitro. Methods: In the present study, periosteum tissue and cultured periosteum-derived cells were cultured for 5 weeks in vitro and then embedded in collagen gel with a green tissue-marking dye. Electrophoresis and immunohistochemistry were used to identify the specific F-box proteins required for tissue bone regeneration. Results: The bovine-periosteum-derived cells were observed to form bone shortly after the expression of F-box proteins. After the initial phase of bone formation, the expression of the F-box proteins ceased. FBXW2 was shown to be expressed in the periosteum, but not in cultured periosteum-derived cells. Furthermore, FBXL14 disappeared during bone formation. Conclusions: Bone regeneration requires progenitor cells, such as bovine-periosteum-derived cells and the activation of the F-box Proteins FBXW2 and FBXL14, over time the expression of these proteins ceases. Further scientific and clinical trials are needed to investigate how the F-box Proteins can be used therapeutically to treat osteoporosis and osteonecrosis.
Collapse
Affiliation(s)
- Mari Akiyama
- Department of Biomaterials, Osaka Dental University, Osaka 573-1121, Japan
| |
Collapse
|
13
|
Muñoz D, Castillo H, Henríquez JP, Marcellini S. Bone regeneration after traumatic skull injury in Xenopus tropicalis. Mech Dev 2018; 154:153-161. [PMID: 30420272 DOI: 10.1016/j.mod.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
The main purpose of regenerative biology is to improve human health by exploiting cellular and molecular mechanisms favoring tissue repair. In recent years, non-mammalian vertebrates have emerged as powerful model organisms to tackle the problem of tissue regeneration. Here, we analyze the process of bone repair in metamorphosing Xenopus tropicalis tadpoles subjected to traumatic skull injury. Five days after skull perforation, a dense and highly vascularized mesenchymal is apparent over the injury site. Using an in vivo bone staining procedure based on independent pulses of Alizarin red and Calcein green, we show that the deposition of new bone matrix completely closes the wound in 15 days. The absence of cartilage implies that bone repair follows an intramembranous ossification route. Collagen second harmonic imaging reveals that while a well-organized lamellar type of bone is deposited during development, a woven type of bone is produced during the early-phase of the regeneration process. Osteoblasts lying against the regenerating bone robustly express fibrillar collagen 1a1, SPARC and Dlx5. These analyses establish Xenopus tropicalis as a new model system to improve traumatic skull injury recovery.
Collapse
Affiliation(s)
- David Muñoz
- Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Chile; Laboratory of Development and Evolution (LADE), University of Concepción, Chile
| | - Héctor Castillo
- Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Chile; Laboratory of Development and Evolution (LADE), University of Concepción, Chile
| | - Juan Pablo Henríquez
- Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Chile; Center for Advanced Microscopy (CMA Bio-Bio), University of Concepción, Chile
| | - Sylvain Marcellini
- Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Chile; Laboratory of Development and Evolution (LADE), University of Concepción, Chile.
| |
Collapse
|
14
|
Tazaki Y, Sugitani K, Ogai K, Kobayashi I, Kawasaki H, Aoyama T, Suzuki N, Tabuchi Y, Hattori A, Kitamura KI. RANKL, Ephrin-Eph and Wnt10b are key intercellular communication molecules regulating bone remodeling in autologous transplanted goldfish scales. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:46-58. [PMID: 29886255 DOI: 10.1016/j.cbpa.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the precise data of gene expression, functions, and chronological relationships amongst communication molecules involved in the bone remodeling process with an in vivo model using autologous transplanted scales of goldfish. Autotransplantation of methanol-fixed cell-free scales triggers scale resorption and regeneration, as well as helps elucidate the process of bone remodeling. We investigated osteoclastic markers, osteoblastic markers, and gene expressions of communicating molecules (RANKL, ephrinB2, EphB4, EphA4, Wnt10b) by qPCR, in situ hybridization for Wnt10b, and immunohistochemistry for EphrinB2 and EphA4 proteins to elucidate the bone remodeling process. Furthermore, functional inhibition experiments for the signaling of ephrinB2/Eph, ephrin/EphA4, and Wnt10b using specific antibodies, revealed that these proteins are involved in key signaling pathways promoting normal bone remodeling. Our data suggests that the remodeling process comprises of two successive phases. In the first absorption phase, differentiation of osteoclast progenitors by RANKL is followed by the bone absorption by mature, active osteoclasts, with the simultaneous induction of osteoblast progenitors by multinucleated osteoclast-derived Wnt10b, and proliferation of osteoblast precursors by ehprinB2/EphB4 signaling. Subsequently, during the second formation phase, termination of bone resorption by synergistic cooperation occurs, with downregulation of RANKL expression in activated osteoblasts and Ephrin/EphA4-mediated mutual inhibition between neighboring multinucleated osteoclasts, along with simultaneous activation of osteoblasts via forward and reverse EphrinB2/EphB4 signaling between neighboring osteoblasts. In addition, the present study shows that autologous transplantation of methanol-fixed cell-free scale is an ideal in vivo model to study bone remodeling.
Collapse
Affiliation(s)
- Yuya Tazaki
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan; Clinical Laboratory, Kanazawa University Hospital, Takara-machi Kanazawa Ishikawa, 920-8641, Japan
| | - Kayo Sugitani
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Kazuhiro Ogai
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Haruki Kawasaki
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Takafumi Aoyama
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Atsuhiko Hattori
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
15
|
Kase Y, Ikari T, Sekiguchi T, Sato M, Ogiso S, Kawada T, Matsubara S, Satake H, Sasayama Y, Endo M, Kitamura KI, Hattori A, Watanabe TX, Maruyama Y, Watanabe Y, Funahashi H, Kambegawa A, Suzuki N. Sardine procalcitonin amino-terminal cleavage peptide has a different action from calcitonin and promotes osteoblastic activity in the scales of goldfish. Comp Biochem Physiol A Mol Integr Physiol 2017; 211:77-83. [PMID: 28614698 DOI: 10.1016/j.cbpa.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/17/2022]
Abstract
The nucleotide sequence of a sardine preprocalcitonin precursor has been determined from their ultimobranchial glands in the present study. From our analysis of this sequence, we found that sardine procalcitonin was composed of procalcitonin amino-terminal cleavage peptide (N-proCT) (53 amino acids), CT (32 amino acids), and procalcitonin carboxyl-terminal cleavage peptide (C-proCT) (18 amino acids). As compared with C-proCT, N-proCT has been highly conserved among teleosts, reptiles, and birds, which suggests that N-proCT has some bioactivities. Therefore, both sardine N-proCT and sardine CT were synthesized, and their bioactivities for osteoblasts and osteoclasts were examined using our assay system with goldfish scales that consisted of osteoblasts and osteoclasts. As a result, sardine N-proCT (10-7M) activated osteoblastic marker enzyme activity, while sardine CT did not change. On the other hand, sardine CT (10-9 to 10-7M) suppressed osteoclastic marker enzyme activity, although sardine N-proCT did not influence enzyme activity. Furthermore, the mRNA expressions of osteoblastic markers such as type 1 collagen and osteocalcin were also promoted by sardine N-proCT (10-7M) treatment; however, sardine CT did not influence their expressions. The osteoblastic effects of N-proCT lack agreement. In the present study, we can evaluate exactly the action for osteoblasts because our scale assay system is very sensitive and it is a co-culture system for osteoblasts and osteoclasts with calcified bone matrix. Both CT and N-proCT seem to influence osteoblasts and osteoclasts and promote bone formation by different actions in teleosts.
Collapse
Affiliation(s)
- Yoichi Kase
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Takahiro Ikari
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Masayuki Sato
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Yuichi Sasayama
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Masato Endo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-0942, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | | | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Yoshinari Watanabe
- Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hisayuki Funahashi
- Department of Anatomy, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan.
| |
Collapse
|
16
|
Sekiguchi T, Shiraishi A, Satake H, Kuwasako K, Takahashi H, Sato M, Urata M, Wada S, Endo M, Ikari T, Hattori A, Srivastav AK, Suzuki N. Calcitonin-typical suppression of osteoclastic activity by amphioxus calcitonin superfamily peptides and insights into the evolutionary conservation and diversity of their structures. Gen Comp Endocrinol 2017; 246:294-300. [PMID: 28062302 DOI: 10.1016/j.ygcen.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 01/27/2023]
Abstract
Calcitonin (CT) is a hormone that decreases serum calcium level by suppressing osteoclastic activity in the vertebrate bone. In vertebrates, the structure-function relationship of CTs has been studied extensively. We recently identified three CT superfamily peptides, Bf-CTFP1 to 3, and clarified the molecular and functional characteristics of their receptor and receptor activity-modifying protein in amphioxus, Branchiostoma floridae. However, the CT activity of Bf-CTFPs has yet to be investigated. In the present study, a functional analysis of Bf-CTFPs was performed using goldfish scales having both osteoclasts and osteoblasts. All Bf-CTFPs suppressed osteoclastic activity via a goldfish CT receptor. Although the primary amino acid sequences of the Bf-CTFPs showed low sequence similarity to vertebrate CTs, Bf-CTFP1 to 3 share three amino acids, Thr25, Thr27, and Pro32-NH2, that are required for receptor binding, with salmon CT. Moreover, homology model analysis revealed that the Bf-CTFPs form alpha-helical structures. The alpha-helical position and length of Bf-CTFP1 and 2 were conserved with those of a highly potent ligand, teleost CT. Interestingly, the composition of the alpha-helix of Bf-CTFP3 differed from those of teleost CT, despite that the action of Bf-CTFP3 on goldfish scales was the same as that of Bf-CTFP1 and 2. Collectively, the present study provides new insights into the structure-function relationship of CT and its functional evolution in chordates.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Miyazaki 889-1692, Japan
| | - Hiroki Takahashi
- National Institute for Basic Biology, Laboratory of Morphogenesis, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Masayuki Sato
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Makoto Urata
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan; Institute of Noto SATOUMI Education and Studies, Noto-cho, Ishikawa 927-0553, Japan
| | - Shuichi Wada
- Department of Animal Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Masato Endo
- Department of Marine Biosciences, Division of Marine Science, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Takahiro Ikari
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Ajai K Srivastav
- Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur 273-009, India
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
17
|
Suzuki N, Sato M, Nassar HF, Abdel-Gawad FK, Bassem SM, Yachiguchi K, Tabuchi Y, Endo M, Sekiguchi T, Urata M, Hattori A, Mishima H, Shimasaki Y, Oshima Y, Hong CS, Makino F, Tang N, Toriba A, Hayakawa K. Seawater Polluted with Highly Concentrated Polycyclic Aromatic Hydrocarbons Suppresses Osteoblastic Activity in the Scales of Goldfish, Carassius auratus. Zoolog Sci 2017; 33:407-13. [PMID: 27498800 DOI: 10.2108/zs150211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have developed an original in vitro bioassay using teleost scale, that has osteoclasts, osteoblasts, and bone matrix as each marker: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Using this scale in vitro bioassay, we examined the effects of seawater polluted with highly concentrated polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) on osteoblastic and osteoclastic activities in the present study. Polluted seawater was collected from two sites (the Alexandria site on the Mediterranean Sea and the Suez Canal site on the Red Sea). Total levels of PAHs in the seawater from the Alexandria and Suez Canal sites were 1364.59 and 992.56 ng/l, respectively. We were able to detect NPAHs in both seawater samples. Total levels of NPAHs were detected in the seawater of the Alexandria site (12.749 ng/l) and the Suez Canal site (3.914 ng/l). Each sample of polluted seawater was added to culture medium at dilution rates of 50, 100, and 500, and incubated with the goldfish scales for 6 hrs. Thereafter, ALP and TRAP activities were measured. ALP activity was significantly suppressed by both polluted seawater samples diluted at least 500 times, but TRAP activity did not change. In addition, mRNA expressions of osteoblastic markers (ALP, osteocalcin, and the receptor activator of the NF-κB ligand) decreased significantly, as did the ALP enzyme activity. In fact, ALP activity decreased on treatment with PAHs and NPAHs. We conclude that seawater polluted with highly concentrated PAHs and NPAHs influences bone metabolism in teleosts.
Collapse
Affiliation(s)
- Nobuo Suzuki
- 1 Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Masayuki Sato
- 1 Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Hossam F Nassar
- 2 Environmental Research Division, Water Pollution Control Department, National Research Center, Cairo 12621, Egypt
| | - Fagr Kh Abdel-Gawad
- 2 Environmental Research Division, Water Pollution Control Department, National Research Center, Cairo 12621, Egypt
| | - Samah M Bassem
- 2 Environmental Research Division, Water Pollution Control Department, National Research Center, Cairo 12621, Egypt
| | - Koji Yachiguchi
- 1 Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Yoshiaki Tabuchi
- 3 Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masato Endo
- 4 Department of Marine Biosciences, Division of Marine Science, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Toshio Sekiguchi
- 1 Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Makoto Urata
- 1 Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.,5 Institute of Noto SATOUMI Education and Studies, Noto-cho, Ishikawa 927-0553, Japan
| | - Atsuhiko Hattori
- 6 Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Hiroyuki Mishima
- 7 Department of Medical Hygiene, Kochi Gakuen College, Kochi 780-0955, Japan
| | - Youhei Shimasaki
- 8 Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- 8 Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Chun-Sang Hong
- 9 Hankuk University of Foreign Studies, 81, Oedae-ro, Mohyeon-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do 17035, Korea
| | - Fumiya Makino
- 10 Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Ishikawa 920-1192, Japan
| | - Ning Tang
- 10 Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Ishikawa 920-1192, Japan
| | - Akira Toriba
- 10 Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Ishikawa 920-1192, Japan
| | - Kazuichi Hayakawa
- 1 Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.,10 Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Ishikawa 920-1192, Japan
| |
Collapse
|
18
|
Suzuki N, Kitamura KI, Hattori A. Fish scale is a suitable model for analyzing determinants of skeletal fragility in type 2 diabetes. Endocrine 2016; 54:575-577. [PMID: 27796812 DOI: 10.1007/s12020-016-1153-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa, 927-0553, Japan.
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-0942, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
| |
Collapse
|
19
|
Sato M, Hanmoto T, Yachiguchi K, Tabuchi Y, Kondo T, Endo M, Kitani Y, Sekiguchi T, Urata M, Hai TN, Srivastav AK, Mishima H, Hattori A, Suzuki N. Sodium fluoride induces hypercalcemia resulting from the upregulation of both osteoblastic and osteoclastic activities in goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2016; 189:54-60. [PMID: 27475026 DOI: 10.1016/j.cbpc.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022]
Abstract
The influence of sodium fluoride (NaF) on calcium metabolism was examined in goldfish (fresh water teleost). At 2days after administration of NaF (500ng/g body weight; 5μg/g body weight) (around 10(-5) to 10(-4)M in goldfish), we indicated that plasma calcium levels upregulated in both doses of NaF-treated goldfish. To examine the mechanism of hypercalcemia by NaF treatments, therefore, direct effects of NaF on osteoblasts and osteoclasts in goldfish were investigated by an original assay system using teleost scale which has osteoblasts, osteoclasts and bone matrix. Alkaline phosphatase activity in the scales increased with the treatment of NaF (10(-6) and 10(-5)M) during 6h of incubation. Also, tartrate-resistant acid phosphatase activity increased after exposure to NaF (10(-5)M) at the 6h of incubation. To investigate the osteoclastic activation, the mRNA expression of osteoclastogenesis related factors were examined. The receptor activator of the nuclear factor-κB ligand (RANKL) which is known as a factor for osteoclastogenesis, increased in the NaF-treated scales after 6h of incubation. The ratio of RANKL/osteoprotegerin (osteoclastogenesis inhibitory factor) significantly increased after 6h of incubation. Resulting from the increase of RANKL mRNA level, the expression of transcription-regulating factors was significantly increased. Furthermore, the expression of functional genes, cathepsin K and matrix metalloproteinase-9 mRNA, was significantly increased. In our knowledge, this is the first report concerning the effects of NaF on osteoblasts and osteoclasts in teleosts. We concluded that NaF influences calcium metabolism via osteoclastic activation in goldfish.
Collapse
Affiliation(s)
- Masayuki Sato
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Taizo Hanmoto
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Koji Yachiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masato Endo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Makoto Urata
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan; Institute of Noto SATOUMI Education and Studies, Housu-gun, Ishikawa 927-0553, Japan
| | - Tran Ngoc Hai
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Ajai K Srivastav
- Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur 273-009, India
| | - Hiroyuki Mishima
- Department of Medical Hygiene, Kochi Gakuen College, Kochi 780-0955, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
20
|
Effects of hyperglycemia on bone metabolism and bone matrix in goldfish scales. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:152-158. [PMID: 27643756 DOI: 10.1016/j.cbpa.2016.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022]
Abstract
Increased risk of fracture associated with type 2 diabetes has been a topic of recent concern. Fracture risk is related to a decrease in bone strength, which can be affected by bone metabolism and the quality of the bone. To investigate the cause of the increased fracture rate in patients with diabetes through analyses of bone metabolism and bone matrix protein properties, we used goldfish scales as a bone model for hyperglycemia. Using the scales of seven alloxan-treated and seven vehicle-treated control goldfish, we assessed bone metabolism by analyzing the activity of marker enzymes and mRNA expression of marker genes, and we measured the change in molecular weight of scale matrix proteins with SDS-PAGE. After only a 2-week exposure to hyperglycemia, the molecular weight of α- and β-fractions of bone matrix collagen proteins changed incrementally in the regenerating scales of hyperglycemic goldfish compared with those of euglycemic goldfish. In addition, the relative ratio of the γ-fraction significantly increased, and a δ-fraction appeared after adding glyceraldehyde-a candidate for the formation of advanced glycation end products in diabetes-to isolated type 1 collagen in vitro. The enzymatic activity and mRNA expression of osteoblast and osteoclast markers were not significantly different between hyperglycemic and euglycemic goldfish scales. These results indicate that hyperglycemia is likely to affect bone quality through glycation of matrix collagen from an early stage of hyperglycemia. Therefore, non-enzymatic glycation of collagen fibers in bone matrix may lead to the deterioration of bone quality from the onset of diabetes.
Collapse
|
21
|
Luo SY, Chen JF, Zhong ZG, Lv XH, Yang YJ, Zhang JJ, Cui L. Salvianolic acid B stimulates osteogenesis in dexamethasone-treated zebrafish larvae. Acta Pharmacol Sin 2016; 37:1370-1380. [PMID: 27569393 DOI: 10.1038/aps.2016.62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/10/2016] [Indexed: 12/29/2022]
Abstract
AIM Our previous studies show that salvianolic acid B (Sal B) promotes osteoblast differentiation and matrix mineralization. In this study, we evaluated the protective effects of Sal B on the osteogenesis in dexamethasone (Dex)-treated larval zebrafish, and elucidated the underlying mechanisms. METHODS At 3 d post fertilization, wild-type AB zebrafish larvae or bone transgenic tg (sp7:egfp) zebrafish larvae were exposed to Sal B, Dex, or a mixture of Dex+Sal B for 6 d. Bone mineralization in AB strain larval zebrafish was assessed with alizarin red staining, and osteoblast differentiation in tg (sp7:egfp) larval zebrafish was examined with fluorescence scanning. The expression of osteoblast-specific genes in the larvae was detected using qRT-PCR assay. The levels of oxidative stress markers (ROS and MDA) in the larvae were also measured. RESULTS Exposure to Dex (5-20 μmol/L) dose-dependently decreased the bone mineralization area and integral optical density (IOD) in wild-type AB zebrafish larvae and the osteoblast fluorescence area and IOD in tg (sp7:egfp) zebrafish larvae. Exposure to Dex (10 μmol/L) significantly reduced the expression of osteoblast-specific genes, including runx2a, osteocalcin (OC), alkaline phosphatase (ALP) and osterix (sp7), and increased the accumulation of ROS and MDA in the larvae. Co-exposure to Sal B (0.2-2 μmol/L) dose-dependently increased the bone mineralization area and IOD in AB zebafish larvae and osteoblast fluorescence in tg (sp7:egfp) zebrafish larvae. Co-exposure to Sal B (2 μmol/L) significantly attenuated deleterious alterations in bony tissue and oxidative stress in both Dex-treated AB zebafish larvae and tg (sp7:egfp) zebrafish larvae. CONCLUSION Sal B stimulates bone formation and rescues GC-caused inhibition on osteogenesis in larval zebrafish by counteracting oxidative stress and increasing the expression of osteoblast-specific genes. Thus, Sal B may have protective effects on bone loss trigged by GC.
Collapse
|
22
|
Hamazaki K, Suzuki N, Kitamura KI, Hattori A, Nagasawa T, Itomura M, Hamazaki T. Is vaccenic acid (18:1t n-7) associated with an increased incidence of hip fracture? An explanation for the calcium paradox. Prostaglandins Leukot Essent Fatty Acids 2016; 109:8-12. [PMID: 27269708 DOI: 10.1016/j.plefa.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
High calcium intake may increase hip fracture (HF) incidence. This phenomenon, known as the calcium paradox, might be explained by vaccenic acid (18:1t n-7, VA), the highly specific trans fatty acid (TFA) present in dairy products. First, we ecologically investigated the relationship between 18:1 TFA intake and HF incidence using data from 12 to 13 European countries collected before 2000; then we measured the effects of VA and elaidic acid (18:1t n-9, EA) on osteoblasts from goldfish scales (tissues very similar to mammalian bone), with alkaline phosphatase as a marker; and finally we measured the effect of VA on mRNA expression in the scales for the major bone proteins type I collagen and osteocalcin. HF incidence was significantly correlated with 18:1 TFA intake in men (r=0.57) and women (r=0.65). Incubation with 1μmol/L VA and EA for 48h significantly decreased alkaline phosphatase activity by 25% and 21%, respectively. Incubation of scales with 10μmol/L VA for 48h significantly decreased mRNA expression for type I collagen and osteocalcin (by about 50%). In conclusion, VA may be causatively related to HF and could explain the calcium paradox. It may be prudent to reduce 18:1 TFA intake, irrespective of trans positions, to prevent HF.
Collapse
Affiliation(s)
- Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan.
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Kei-Ichiro Kitamura
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa city, Ishikawa 920-0942, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Tetsuro Nagasawa
- Division of Clinical Application, Department of Clinical Sciences, Institute of Natural Medicine, University of Toyama, Toyama city, Toyama 930-0194, Japan(2)
| | - Miho Itomura
- Division of Clinical Application, Department of Clinical Sciences, Institute of Natural Medicine, University of Toyama, Toyama city, Toyama 930-0194, Japan(2); Department of Internal Medicine, Toyama Jonan Onsen Daini Hospital, Toyama city, Toyama 933-8271, Japan
| | - Tomohito Hamazaki
- Division of Clinical Application, Department of Clinical Sciences, Institute of Natural Medicine, University of Toyama, Toyama city, Toyama 930-0194, Japan(2); Department of Internal Medicine, Toyama Jonan Onsen Daini Hospital, Toyama city, Toyama 933-8271, Japan
| |
Collapse
|
23
|
Yeh CC, Su YH, Lin YJ, Chen PJ, Shi CS, Chen CN, Chang HI. Evaluation of the protective effects of curcuminoid (curcumin and bisdemethoxycurcumin)-loaded liposomes against bone turnover in a cell-based model of osteoarthritis. Drug Des Devel Ther 2015; 9:2285-300. [PMID: 25945040 PMCID: PMC4408943 DOI: 10.2147/dddt.s78277] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Curcumin (Cur) and bisdemethoxycurcumin (BDMC), extracted from Curcuma longa, are poorly water-soluble polyphenol compounds that have shown anti-inflammatory potential for the treatment of osteoarthritis. To increase cellular uptake of Cur and BDMC in bone tissue, soybean phosphatidylcholines were used for liposome formulation. In this study, curcuminoid (Cur and BDMC)-loaded liposomes were characterized in terms of particle size, encapsulation efficiency, liposome stability, and cellular uptake. The results show that there is about 70% entrapment efficiency of Cur and BDMC in liposomes and that particle sizes are stable after liposome formation. Both types of liposome can inhibit macrophage inflammation and osteoclast differential activities. In comparison with free drugs (Cur and BDMC), curcuminoid-loaded liposomes were less cytotoxic and expressed high cellular uptake of the drugs. Of note is that Cur-loaded liposomes can prevent liposome-dependent inhibition of osteoblast differentiation and mineralization, but BDMC-loaded liposomes could not. With interleukin (IL)-1β stimulation, curcuminoid-loaded liposomes can successfully downregulate the expression of inflammatory markers on osteoblasts, and show a high osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio to prevent osteoclastogenesis. In the present study, we demonstrated that Cur and BDMC can be successfully encapsulated in liposomes and can reduce osteoclast activity and maintain osteoblast functions. Therefore, curcuminoid-loaded liposomes may slow osteoarthritis progression.
Collapse
Affiliation(s)
- Chih-Chang Yeh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
- Orthopaedic Department, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan, Republic of China
| | - Yu-Han Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Yu-Jhe Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Pin-Jyun Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| |
Collapse
|
24
|
Duran I, Ruiz-Sánchez J, Santamaría JA, Marí-Beffa M. Holmgren's principle of delamination during fin skeletogenesis. Mech Dev 2014; 135:16-30. [PMID: 25460362 DOI: 10.1016/j.mod.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
During fin morphogenesis, several mesenchyme condensations occur to give rise to the dermal skeleton. Although each of them seems to create distinctive and unique structures, they all follow the premises of the same morphogenetic principle. Holmgren's principle of delamination was first proposed to describe the morphogenesis of skeletal elements of the cranium, but Jarvik extended it to the development of the fin exoskeleton. Since then, some cellular or molecular explanations, such as the "flypaper" model (Thorogood et al.), or the evolutionary description by Moss, have tried to clarify this topic. In this article, we review new data from zebrafish studies to meet these criteria described by Holmgren and other authors. The variety of cell lineages involved in these skeletogenic condensations sheds light on an open discussion of the contributions of mesoderm- versus neural crest-derived cell lineages to the development of the head and trunk skeleton. Moreover, we discuss emerging molecular studies that are disclosing conserved regulatory mechanisms for dermal skeletogenesis and similarities during fin development and regeneration, which may have important implications in the potential use of the zebrafish fin as a model for regenerative medicine.
Collapse
Affiliation(s)
- I Duran
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Orthopedic Surgery, University of California, Los Angeles, CA 90095, USA; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| | - J Ruiz-Sánchez
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - J A Santamaría
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - M Marí-Beffa
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| |
Collapse
|
25
|
Yachiguchi K, Sekiguchi T, Nakano M, Hattori A, Yamamoto M, Kitamura KI, Maeda M, Tabuchi Y, Kondo T, Kamauchi H, Nakabayashi H, Srivastav AK, Hayakawa K, Sakamoto T, Suzuki N. Effects of inorganic mercury and methylmercury on osteoclasts and osteoblasts in the scales of the marine teleost as a model system of bone. Zoolog Sci 2014; 31:330-7. [PMID: 24832906 DOI: 10.2108/zs130265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To evaluate the effects of inorganic mercury (InHg) and methylmercury (MeHg) on bone metabolism in a marine teleost, the activity of tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) as indicators of such activity in osteoclasts and osteoblasts, respectively, were examined in scales of nibbler fish (Girella punctata). We found several lines of scales with nearly the same TRAP and ALP activity levels. Using these scales, we evaluated the influence of InHg and MeHg. TRAP activity in the scales treated with InHg (10(-5) and 10(-4) M) and MeHg (10(-6) to 10(-4) M) during 6 hrs of incubation decreased significantly. In contrast, ALP activity decreased after exposure to InHg (10(-5) and 10(-4) M) and MeHg (10(-6) to 10(-4) M) for 18 and 36 hrs, although its activity did not change after 6 hrs of incubation. As in enzyme activity 6 hrs after incubation, mRNA expression of TRAP (osteoclastic marker) decreased significantly with InHg and MeHg treatment, while that of collagen (osteoblastic marker) did not change significantly. At 6 hrs after incubation, the mRNA expression of metallothionein, which is a metal-binding protein in osteoblasts, was significantly increased following treatment with InHg or MeHg, suggesting that it may be involved in the protection of osteoblasts against mercury exposure up to 6 hrs after incubation. To our knowledge, this is the first report of the effects of mercury on osteoclasts and osteoblasts using marine teleost scale as a model system of bone.
Collapse
Affiliation(s)
- Koji Yachiguchi
- 1 Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Grivas J, Haag M, Johnson A, Manalo T, Roell J, Das TL, Brown E, Burns AR, Lafontant PJ. Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163:14-23. [PMID: 24548889 PMCID: PMC4032620 DOI: 10.1016/j.cbpc.2014.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 12/20/2022]
Abstract
The remarkable ability of the heart to regenerate has been demonstrated in the zebrafish and giant danio, two fish members of the cyprinid family. Here we use light and electron microscopy to examine the repair response in the heart of another cyprinid, the goldfish (Carassius auratus), following cautery injury to a small portion of its ventricular myocardium. We observed a robust inflammatory response in the first two weeks consisting primarily of infiltrating macrophages, heterophils, and melanomacrophages. These inflammatory cells were identified in the lumen of the spongy heart, within the site of the wound, and attached to endocardial cells adjacent to the site of injury. Marked accumulation of collagen fibers and increased connective tissue were also observed during the first and second weeks in a transition zone between healthy and injured myocardium as well as in adjacent sub-epicardial regions. The accumulation of collagen and connective tissue however did not persist. The presence of capillaries was also noted in the injured area during repair. The replacement of the cauterized region of the ventricle by myocardial tissue was achieved in 6weeks. The presence of ethynyl deoxyuridine-positive cardiac myocytes and partially differentiated cardiac myocytes during repair suggest effective cardiac myocyte driven regeneration mechanisms also operate in the injured goldfish heart, and are similar to those observed in zebrafish and giant danio. Our data suggest the ability for cardiac regeneration may be widely conserved among cyprinids.
Collapse
Affiliation(s)
- Jamie Grivas
- DePauw University, Department of Biology, Greencastle, IN, USA
| | - Maria Haag
- DePauw University, Department of Biology, Greencastle, IN, USA
| | | | - Trina Manalo
- DePauw University, Department of Biology, Greencastle, IN, USA
| | - Julia Roell
- DePauw University, Department of Biology, Greencastle, IN, USA
| | - Tanmoy L. Das
- DePauw University, Department of Biology, Greencastle, IN, USA
| | - Evelyn Brown
- College of Optometry, University of Houston, Houston, TX, USA
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, TX, USA
| | - Pascal J. Lafontant
- DePauw University, Department of Biology, Greencastle, IN, USA
- Corresponding Author: Pascal J. Lafontant 1 E Hanna St, Olin 258 DePauw University Greencastle, IN 46135 Ph: (765) 721-0515 Fax: (765) 648-4766
| |
Collapse
|
27
|
Yachiguchi K, Matsumoto N, Haga Y, Suzuki M, Matsumura C, Tsurukawa M, Okuno T, Nakano T, Kawabe K, Kitamura KI, Toriba A, Hayakawa K, Chowdhury VS, Endo M, Chiba A, Sekiguchi T, Nakano M, Tabuchi Y, Kondo T, Wada S, Mishima H, Hattori A, Suzuki N. Polychlorinated biphenyl (118) activates osteoclasts and induces bone resorption in goldfish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6365-72. [PMID: 23247518 PMCID: PMC4021165 DOI: 10.1007/s11356-012-1347-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/16/2012] [Indexed: 05/15/2023]
Abstract
To analyze the effect of polychlorinated biphenyl (PCB) 118 on fish bone metabolism, we examined osteoclastic and osteoblastic activities, as well as plasma calcium levels, in the scales of PCB (118)-injected goldfish. In addition, effect of PCB (118) on osteoclasts and osteoblasts was investigated in vitro. Immature goldfish, in which the endogenous effects of sex steroids are negligible, were used. PCB (118) was solubilized in dimethyl sulfoxide at a concentration of 10 ppm. At 1 and 2 days after PCB (118) injection (100 ng/g body weight), both osteoclastic and osteoblastic activities, and plasma calcium levels were measured. In an in vitro study, then, both osteoclastic and osteoblastic activities as well as each marker mRNA expression were examined. At 2 days, scale osteoclastic activity in PCB (118)-injected goldfish increased significantly, while osteoblastic activity did not change significantly. Corresponding to osteoclastic activity, plasma calcium levels increased significantly at 2 days after PCB (118) administration. Osteoclastic activation also occurred in the marker enzyme activities and mRNA expressions in vitro. Thus, we conclude that PCB (118) disrupts bone metabolism in goldfish both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Koji Yachiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Housu-gun, Ishikawa 927-0553 Japan
| | - Noriko Matsumoto
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Housu-gun, Ishikawa 927-0553 Japan
| | - Yuki Haga
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037 Japan
| | - Motoharu Suzuki
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037 Japan
| | - Chisato Matsumura
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037 Japan
| | - Masahiro Tsurukawa
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037 Japan
| | - Toshihiro Okuno
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037 Japan
| | - Takeshi Nakano
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037 Japan
| | - Kimi Kawabe
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192 Japan
| | - Kei-ichiro Kitamura
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kodatsuno, Ishikawa 920-0942 Japan
| | - Akira Toriba
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192 Japan
| | - Kazuichi Hayakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192 Japan
| | - Vishwajit S. Chowdhury
- International Education Center, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Masato Endo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477 Japan
| | - Atsuhiko Chiba
- Department of Materials and Life Sciences, Sophia University, Tokyo, 102-8554 Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Housu-gun, Ishikawa 927-0553 Japan
| | - Masaki Nakano
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827 Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194 Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 Japan
| | - Shigehito Wada
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Toyama, Sugitani, Toyama 930-0194 Japan
| | - Hiroyuki Mishima
- Department of Human Life Sciences, Kochi Gakuen College, Kochi, 780-0955 Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827 Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Housu-gun, Ishikawa 927-0553 Japan
| |
Collapse
|
28
|
de Vrieze E, Moren M, Metz JR, Flik G, Lie KK. Arachidonic acid enhances turnover of the dermal skeleton: studies on zebrafish scales. PLoS One 2014; 9:e89347. [PMID: 24586706 PMCID: PMC3929718 DOI: 10.1371/journal.pone.0089347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/17/2014] [Indexed: 11/22/2022] Open
Abstract
In fish nutrition, the ratio between omega-3 and omega-6 poly-unsaturated fatty acids influences skeletal development. Supplementation of fish oils with vegetable oils increases the content of omega-6 fatty acids, such as arachidonic acid in the diet. Arachidonic acid is metabolized by cyclooxygenases to prostaglandin E2, an eicosanoid with effects on bone formation and remodeling. To elucidate effects of poly-unsaturated fatty acids on developing and existing skeletal tissues, zebrafish (Danio rerio) were fed (micro-) diets low and high in arachidonic acid content. Elasmoid scales, dermal skeletal plates, are ideal to study skeletal metabolism in zebrafish and were exploited in the present study. The fatty acid profile resulting from a high arachidonic acid diet induced mild but significant increase in matrix resorption in ontogenetic scales of adult zebrafish. Arachidonic acid affected scale regeneration (following removal of ontogenetic scales): mineral deposition was altered and both gene expression and enzymatic matrix metalloproteinase activity changed towards enhanced osteoclastic activity. Arachidonic acid also clearly stimulates matrix metalloproteinase activity in vitro, which implies that resorptive effects of arachidonic acid are mediated by matrix metalloproteinases. The gene expression profile further suggests that arachidonic acid increases maturation rate of the regenerating scale; in other words, enhances turnover. The zebrafish scale is an excellent model to study how and which fatty acids affect skeletal formation.
Collapse
Affiliation(s)
- Erik de Vrieze
- Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
- Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| | - Mari Moren
- NIFES (National Institute of Nutrition and Seafood Research), Bergen, Norway
| | - Juriaan R. Metz
- Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
- Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Gert Flik
- Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
- Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Kai Kristoffer Lie
- NIFES (National Institute of Nutrition and Seafood Research), Bergen, Norway
| |
Collapse
|
29
|
Vieira FA, Thorne MAS, Stueber K, Darias M, Reinhardt R, Clark MS, Gisbert E, Power DM. Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. Gen Comp Endocrinol 2013; 191:45-58. [PMID: 23770218 DOI: 10.1016/j.ygcen.2013.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
An articulated endoskeleton that is calcified is a unifying innovation of the vertebrates, however the molecular basis of the structural divergence between terrestrial and aquatic vertebrates, such as teleost fish, has not been determined. In the present study long-read next generation sequencing (NGS, Roche 454 platform) was used to characterize acellular perichondral bone (vertebrae) and chondroid bone (gill arch) in the gilthead sea bream (Sparus auratus). A total of 15.97 and 14.53Mb were produced, respectively from vertebrae and gill arch cDNA libraries and yielded 32,374 and 28,371 contigs (consensus sequences) respectively. 10,455 contigs from vertebrae and 10,625 contigs from gill arches were annotated with gene ontology terms. Comparative analysis of the global transcriptome revealed 4249 unique transcripts in vertebrae, 4201 unique transcripts in the gill arches and 3700 common transcripts. Several core gene networks were conserved between the gilthead sea bream and mammalian skeleton. Transcripts for putative endocrine factors were identified in acellular gilthead sea bream bone suggesting that in common with mammalian bone it can act as an endocrine tissue. The acellular bone of the vertebra, in contrast to current opinion based on histological analysis, was responsive to a short fast and significant (p<0.05) down-regulation of several transcripts identified by NGS, osteonectin, osteocalcin, cathepsin K and IGFI occurred. In gill arches fasting caused a significant (p<0.05) down-regulation of osteocalcin and up-regulation of MMP9.
Collapse
|