1
|
Jahangirnezhad M, Mahmoudinezhad SS, Moradi M, Moradi K, Rohani A, Tayebi L. Bone Scaffold Materials in Periodontal and Tooth-supporting Tissue Regeneration: A Review. Curr Stem Cell Res Ther 2024; 19:449-460. [PMID: 36578254 DOI: 10.2174/1574888x18666221227142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontium is an important tooth-supporting tissue composed of both hard (alveolar bone and cementum) and soft (gingival and periodontal ligament) sections. Due to the multi-tissue architecture of periodontium, reconstruction of each part can be influenced by others. This review focuses on the bone section of the periodontium and presents the materials used in tissue engineering scaffolds for its reconstruction. MATERIALS AND METHODS The following databases (2015 to 2021) were electronically searched: ProQuest, EMBASE, SciFinder, MRS Online Proceedings Library, Medline, and Compendex. The search was limited to English-language publications and in vivo studies. RESULTS Eighty-three articles were found in primary searching. After applying the inclusion criteria, seventeen articles were incorporated into this study. CONCLUSION In complex periodontal defects, various types of scaffolds, including multilayered ones, have been used for the functional reconstruction of different parts of periodontium. While there are some multilayered scaffolds designed to regenerate alveolar bone/periodontal ligament/cementum tissues of periodontium in a hierarchically organized construct, no scaffold could so far consider all four tissues involved in a complete periodontal defect. The progress and material considerations in the regeneration of the bony part of periodontium are presented in this work to help investigators develop tissue engineering scaffolds suitable for complete periodontal regeneration.
Collapse
Affiliation(s)
- Mahmood Jahangirnezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadaf Sadat Mahmoudinezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kooshan Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Rohani
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
2
|
Shaikh MS, Zafar MS, Alnazzawi A, Javed F. Nanocrystalline hydroxyapatite in regeneration of periodontal intrabony defects: A systematic review and meta-analysis. Ann Anat 2021; 240:151877. [PMID: 34864225 DOI: 10.1016/j.aanat.2021.151877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/09/2021] [Accepted: 11/21/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alveolar bone loss and mobility of teeth is commonly observed in periodontitis patients. Regeneration of periodontal intrabony defects is indicated to restore the lost bone and periodontal tissues. The aim of the present study was to evaluate the clinical outcomes of periodontal intrabony lesions by using nanocrystalline hydroxyapatite (NHA) graft and comparing it with open flap debridement (OFD) alone. MATERIALS AND METHODS The eligibility criteria encompassed randomized (RCTs) and controlled clinical trials (CCTs). Weighted mean differences were calculated for clinical attachment level (CAL) gain, probing pocket depth (PPD) reduction and gingival recession (REC) change, demonstrated as forest plots. The revised Cochrane Risk of Bias tool for randomized trials (RoB2) and Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) tool were used for quality assessment of RCTs and non-randomized trials respectively. RESULTS From 22 full-text articles identified, three RCTs, one CCT and one retrospective follow-up of RCT were included. All the five papers comprised the quantitative evaluation. The use of NHA graft provided additional CAL gain of 0.96 mm (p = 0.0009) and PPD reduction of 0.97 mm (p < 0.00001) when compared to OFD alone. However, in terms of REC changes, no considerable benefits of NHA graft were demonstrated than OFD alone (p = 0.48). CONCLUSIONS The bioactive NHA graft showed promising results clinically in regenerative periodontology and can be considered for the management of periodontal intrabony defects. The use of NHA graft considerably provided better clinical outcomes in intrabony defects compared to using the OFD alone. Future research investigating NHA graft against other regenerative materials including specific BGs, at longer follow-up periods and bigger sample sizes and in furcation defects warranted.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawwarah 41311, Saudi Arabia; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| | - Ahmad Alnazzawi
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al Madinah Al Munawwarah 41311, Saudi Arabia
| | - Fawad Javed
- Department of Orthodontics, Eastman Institute for Oral Health, University of Rochester, New York 14620, United States
| |
Collapse
|
3
|
Zn-Containing Membranes for Guided Bone Regeneration in Dentistry. Polymers (Basel) 2021; 13:polym13111797. [PMID: 34072433 PMCID: PMC8199215 DOI: 10.3390/polym13111797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Barrier membranes are employed in guided bone regeneration (GBR) to facilitate bone in-growth. A bioactive and biomimetic Zn-doped membrane with the ability to participate in bone healing and regeneration is necessary. The aim of the present study is to state the effect of doping the membranes for GBR with zinc compounds in the improvement of bone regeneration. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken, focusing on the antibacterial effects, physicochemical and biological properties of Zn-loaded membranes. Bioactivity, bone formation and cytotoxicity were analyzed. Microstructure and mechanical properties of these membranes were also determined. Zn-doped membranes have inhibited in vivo and in vitro bacterial colonization. Zn-alloy and Zn-doped membranes attained good biocompatibility and were found to be non-toxic to cells. The Zn-doped matrices showed feasible mechanical properties, such as flexibility, strength, complex modulus and tan delta. Zn incorporation in polymeric membranes provided the highest regenerative efficiency for bone healing in experimental animals, potentiating osteogenesis, angiogenesis, biological activity and a balanced remodeling. Zn-loaded membranes doped with SiO2 nanoparticles have performed as bioactive modulators provoking an M2 macrophage increase and are a potential biomaterial for promoting bone repair. Zn-doped membranes have promoted pro-healing phenotypes.
Collapse
|
4
|
Porta M, Tonda-Turo C, Pierantozzi D, Ciardelli G, Mancuso E. Towards 3D Multi-Layer Scaffolds for Periodontal Tissue Engineering Applications: Addressing Manufacturing and Architectural Challenges. Polymers (Basel) 2020; 12:polym12102233. [PMID: 32998365 PMCID: PMC7599927 DOI: 10.3390/polym12102233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and functionality of the periodontal tissue represents still a great challenge. In this study, a porous poly(ε-caprolactone) (PCL) and Sr-doped nano hydroxyapatite (Sr-nHA) with a multi-layer structure was produced via a single-step additive manufacturing (AM) process, as a potential strategy for hard periodontal tissue regeneration. Physicochemical characterization was conducted in order to evaluate the overall scaffold architecture, topography, as well as porosity with respect to the original CAD model. Furthermore, compressive tests were performed to assess the mechanical properties of the resulting multi-layer structure. Finally, in vitro biological performance, in terms of biocompatibility and osteogenic potential, was evaluated by using human osteosarcoma cells. The manufacturing route used in this work revealed a highly versatile method to fabricate 3D multi-layer scaffolds with porosity levels as well as mechanical properties within the range of dentoalveolar bone tissue. Moreover, the single step process allowed the achievement of an excellent integrity among the different layers of the scaffold. In vitro tests suggested the promising role of the ceramic phase within the polymeric matrix towards bone mineralization processes. Overall, the results of this study demonstrate that the approach undertaken may serve as a platform for future advances in 3D multi-layer and patient-specific strategies that may better address complex periodontal tissue defects.
Collapse
Affiliation(s)
- Marta Porta
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
| | - Chiara Tonda-Turo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
| | - Daniele Pierantozzi
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
| | - Gianluca Ciardelli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
- Correspondence:
| |
Collapse
|
5
|
Saikosaponin d downregulates microRNA-155 and upregulates FGF2 to improve depression-like behaviors in rats induced by unpredictable chronic mild stress by negatively regulating NF-κB. Brain Res Bull 2020; 157:69-76. [PMID: 31926302 DOI: 10.1016/j.brainresbull.2020.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Saikosaponin d (SSd) is a traditional Chinese medicine that has been widely used in depression treatment. Given the lack of studies demonstrating the underlying mechanism of action of SSd in depression, the presented study was conducted with aims of investigating the effect of SSd on rats with depression-like behaviors induced by unpredicted chronic mild stress (UCMS) and its underlying molecular mechanism. To investigate the effect of SSd on depression, rat models with depression-like behaviors were established through 3-week exposure to UCMS, followed by administration of 10 mg/kg fluoxetine, 0.75 mg/kg SSd, 1.50 mg/kg SSd, or 10 mg/kg caffeic acid phenethyl ester (CAPE). The depression-like behaviors of rats were evaluated by sucrose preference test, open field test, forced swimming test, and tail suspension test. Afterwards, the regulatory relationship among nuclear factor-κB (NF-κB), microRNA (miR)-155 and fibroblast growth factor 2 (FGF2) were detected by dual-luciferase reporter gene assay and ChIP. RT-qPCR and Western blot analysis was conducted to determine the expression of genes and proteins. Finally, hippocampal neurons were extracted from modeled rats and transfected with miR-155 mimic, miR-155 inhibitor, NF-κB overexpression plasmid, or siRNA against NF-κB. The results showed that the depression-like behaviors induced by UCMS in rats was successfully attenuated by SSd. In hippocampal neurons of rats treated with SSd, NF-κB was significantly downregulated while FGF2 was significantly upregulated. NF-κB targets miR-155 and negatively regulates the expression of FGF2. NF-κB knockdown resulted in reduced depression-like behaviors of rats. These findings provide evidence that SSd could ameliorate depression-like behaviors in the rats treated with UCMS by downregulating NF-κB and miR-155, and upregulating FGF2.
Collapse
|
6
|
Wu H, Ma S, Xiang M, Tong S. HTRA1 promotes transdifferentiation of normal fibroblasts to cancer-associated fibroblasts through activation of the NF-κB/bFGF signaling pathway in gastric cancer. Biochem Biophys Res Commun 2019; 514:933-939. [PMID: 31088682 DOI: 10.1016/j.bbrc.2019.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/30/2022]
Abstract
Cancer-associated fibroblasts comprise the major stromal cell populations in gastric cancer, which is a significant contributor to cancer-related death worldwide. As a member of the serine protease family, HTRA1 is reportedly involved in malignant transformation of various tumor types. In the present study, we observed that HTRA1 is positively correlated with α-SMA expression in gastric cancer tissues, which was also confirmed by correlation analysis and Gene Set Enrichment Analysis (GSEA) using the GEO database. Upregulation of HTRA1 in gastric cancer cell lines induces expression of α-SMA in normal fibroblasts. To explore how HTRA1 activates normal fibroblasts, an ELISA assay was performed. Secretion of bFGF/FGF2 from gastric cancer cells was significantly increased in response to HTRA1 overexpression. However, upreguation of α-SMA in normal fibroblasts induced by HTRA1 was restored by inhibiting the expression of bFGF. Furthermore, HTRA1 promotes bFGF/FGF2 expression through activation of NF-κB signaling in gastric cancer cells. Inhibition of the NF-κB signaling pathway partially restored baseline expression levels of α-SMA induced by HTRA1. In conclusion, HTRA1 promotes transdifferentiation of normal fibroblasts to cancer-associated fibroblasts by increasing bFGF/FGF2 expression, which is dependent upon activation of NF-κB signaling in gastric cancer.
Collapse
Affiliation(s)
- Hongxue Wu
- Department of Gastrointestinal Surgery, Wuhan University, Renmin Hospital, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei Province, PR China
| | - Shujin Ma
- Department of Gastrointestinal Surgery, Wuhan University, Renmin Hospital, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei Province, PR China
| | - Mingwei Xiang
- Department of Gastrointestinal Surgery, Wuhan University, Renmin Hospital, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei Province, PR China
| | - Shilun Tong
- Department of Gastrointestinal Surgery, Wuhan University, Renmin Hospital, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei Province, PR China.
| |
Collapse
|
7
|
Pereira RC, Benelli R, Canciani B, Scaranari M, Daculsi G, Cancedda R, Gentili C. Beta-tricalcium phosphate ceramic triggers fast and robust bone formation by human mesenchymal stem cells. J Tissue Eng Regen Med 2019; 13:1007-1018. [PMID: 30811859 DOI: 10.1002/term.2848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
Due to their osteoconductive and inductive properties, a variety of calcium phosphate (CaP) scaffolds are commonly used in orthopaedics as graft material to heal bone defects. In this study, we have used two CaP scaffolds with different hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ratios (MBCP®; 60/40 and MBCP+ ®; 20/80) to investigate their intrinsic capacity to favour human bone marrow stem cells (hBMSCs) osteogenic differentiation capacity. We report that MBCP+ ® showed in in vitro culture model a higher rate of calcium ion release in comparison with MBCP®. In two defined coculture systems, the hBMSC seeded onto MBCP+ ® presented an increased amount of VEGF secretion, resulting in an enhanced endothelial cell proliferation and capillary formation compared with hBMSC seeded onto MBCP®. When both ceramics combined with hBMSC were implanted in a nude mouse model, we observed a faster osteogenic differentiation and enhancement mature bone deposition sustained by the presence of a vast host vasculature within the MBCP+ ® ceramics. Bone formation was observed in samples highly positive to the activation of calcium sensing receptor protein (CaSr) on the surface of seeded hBMSC that also shown higher BMP-2 protein expression. With these data we provide valuable insights in the possible mechanisms of ossification and angiogenesis by hBMSC that we believe to be primed by calcium ions released from CaP scaffolds. Evidences could lead to an optimization of ceramic scaffolds to prime bone repair.
Collapse
Affiliation(s)
- Rui C Pereira
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Roberto Benelli
- Laboratory of Immunology, IRCCS AOU San Martino, Genoa, Italy
| | - Barbara Canciani
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Monica Scaranari
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Guy Daculsi
- INSERM LIOAD U791, Dental Faculty, Nantes University, Nantes, France
| | - Ranieri Cancedda
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Chiara Gentili
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
8
|
Liao YP, Du WM, Hu Y, Li FS, Ma Y, Wang H, Zhu JH, Zhou Y, Li Q, Su YX, He BC. CREB/Wnt10b mediates the effect of COX-2 on promoting BMP9-induced osteogenic differentiation via reducing adipogenic differentiation in mesenchymal stem cells. J Cell Biochem 2018; 120:9572-9587. [PMID: 30525243 DOI: 10.1002/jcb.28234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/15/2018] [Indexed: 01/10/2023]
Abstract
Bone morphogenetic protein 9 (BMP9) is one of the most potent osteogenic factors, which may be a potential candidate for bone tissue engineering. However, the osteogenic capacity of BMP9 still need to be further enhanced. In this study, we determined the effect of Wnt10b on BMP9-induced osteogenic differentiation in mesenchymal stem cell (MSCs) and the possible mechanism underlying this process. We introduced the polymerase chain reaction (PCR), Western blot analysis, histochemical stain, ectopic bone formation, and microcomputed tomography analysis to evaluate the effect of Wnt10b on BMP9-induced osteogenic differentiation. Meanwhile, PCR, Western blot analysis, chromatin immunoprecipitation, and immunoprecipitation were used to analyze the possible relationship between BMP9 and Wnt10b. We found that BMP9 upregulates Wnt10b in C3H10T1/2 cells. Wnt10b increases the osteogenic markers and bone formation induced by BMP9 in C3H10T1/2 cells, and silencing Wnt10b decreases these effects of BMP9. Meanwhile, Wnt10b enhances the level of phosphorylated Smad1/5/8 (p-Smad1/5/8) induced by BMP9, which can be reduced by silencing Wnt10b. On the contrary, Wnt10b inhibits adipogenic markers induced by BMP9, which can be decreased by silencing Wnt10b. Further analysis indicated that BMP9 upregulates cyclooxygenase-2 (COX-2) and phosphorylation of cAMP-responsive element binding (p-CREB) simultaneously. COX-2 potentiates the effect of BMP9 on increasing p-CREB and Wnt10b, while silencing COX-2 decreases these effects. p-CREB interacts with p-Smad1/5/8 to bind the promoter of Wnt10b in C3H10T1/2 cells. Our findings suggested that Wnt10b can promote BMP9-induced osteogenic differentiation in MSCs, which may be mediated through enhancing BMP/Smad signal and reducing adipogenic differentiation; BMP9 may upregulate Wnt10b via the COX-2/p-CREB-dependent manner.
Collapse
Affiliation(s)
- Yun-Peng Liao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei-Min Du
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying Hu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Fu-Shu Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yan Ma
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Han Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jia-Hui Zhu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ya Zhou
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qin Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Xi Su
- Department of Orthopedic, Children Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
9
|
Wang C, Ke Y, Liu S, Pan S, Liu Z, Zhang H, Fan Z, Zhou C, Liu J, Wang F. Ectopic fibroblast growth factor receptor 1 promotes inflammation by promoting nuclear factor-κB signaling in prostate cancer cells. J Biol Chem 2018; 293:14839-14849. [PMID: 30093411 DOI: 10.1074/jbc.ra118.002907] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Initiation of expression of fibroblast growth factor receptor 1 (FGFR1) concurrent with loss of FGFR2 expression is a well-documented event in the progression of prostate cancer (PCa). Although it is known that some FGFR isoforms confer advantages in cell proliferation and survival, the mechanism by which the subversion of different FGFR isoforms contributes to PCa progression is incompletely understood. Here, we report that fibroblast growth factor (FGF) promotes NF-κB signaling in PCa cells and that this increase is associated with FGFR1 expression. Disruption of FGFR1 kinase activity abrogated both FGF activity and NF-κB signaling in PCa cells. Of note, the three common signaling pathways downstream of FGFR1 kinase, extracellular signal-regulated kinase 1/2 (ERK1/2), phosphoinositide 3-kinase (PI3K/AKT), and phosphoinositide phospholipase Cγ (PLCγ), were not required for FGF-mediated NF-κB signaling. Instead, transforming growth factor β-activating kinase 1 (TAK1), a central regulator of the NF-κB pathway, was required for FGFR1 to stimulate NF-κB signaling. Moreover, we found that FGFR1 promotes NF-κB signaling in PCa cells by reducing TAK1 degradation and thereby supporting sustained NF-κB activation. Consistently, Fgfr1 ablation in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model reduced inflammation in the tumor microenvironment. In contrast, activation of the FGFR1 kinase in the juxtaposition of chemical-induced dimerization (CID) and kinase 1 (JOCK1) mouse model increased inflammation. As inflammation plays an important role in PCa initiation and progression, these findings suggest that ectopically expressed FGFR1 promotes PCa progression, at least in part, by increasing inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Cong Wang
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, .,the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Yuepeng Ke
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Shaoyou Liu
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,the Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Sharon Pan
- the Gastroenterology and Hepatology Division, Seattle Children's Hospital, Seattle, Washington 98105
| | - Ziying Liu
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Hui Zhang
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China, and
| | - Zhichao Fan
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Changyi Zhou
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Junchen Liu
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Fen Wang
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843,
| |
Collapse
|
10
|
Peng W, Deng W, Zhang J, Pei G, Rong Q, Zhu S. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758. Biochem Biophys Res Commun 2018; 503:815-821. [PMID: 29913147 DOI: 10.1016/j.bbrc.2018.06.081] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) were proposed to be important regulators influencing various differentiation processes. Yet, the molecular mechanisms of lncRNAs governing osteogenic differentiation of Periodontal Ligament Stem Cells (PDLSCs) remain unclear. Here, PDLSCs were isolated from normal periodontal ligament of human (PDL) whereas P-PDLSCs were isolated from periodontitis affected PDL. Quantitative real-time PCR (qRT-PCR) was performed to examine the relative expression level of lncRNA-ANCR and of Osterix (OSX), Alkaline Phosphatase (ALP) as well as Runt-related transcription factor 2 (RUNX2) in PDLSCs. Gain- and loss-of- function experiments was performed to study the role of lncRNA-ANCR. Alizarin Red staining was used to evaluate the function of lncRNA-ANCR and miRNA-758 on osteogenic differentiation. In addition, via dual luciferase reporter assay and RNA immunoprecipitation the microRNA sponge potential of lncRNA-ANCR was assessed. A luciferase reporter assay identified the correlation between miR-758 and Notch2. Our results showed that the expression of ALP, RUNX2 and OSX were increased whereas lncRNA-ANCR was decreased during the process of differentiation in PDLSCs. Overexpression of lncRNA-ANCR decreased the expression of ALP, RUNX2 and OSX as confirmed by Alizarin red staining. Overexpression of lncRNA-ANCR resulted in reduction of the miR-758 expression level. Furthermore, RNA immunoprecipitation proved that lncRNA-ANCR targets miR-758 directly. The results of dual luciferase reporter assay also demonstrated that miR-758 regulated Notch2 expression by targeting 3'-UTR of Notch2. In conclusion, the novel pathway lncRNA-ANCR/miR-758/Notch2 plays an important role in the process of regulating osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Deng
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital, Haikou, PR China
| | - Jing Zhang
- Department of Stomatology, Clifford Hospital, Guangzhou University of Chinese Medicine, PR China
| | - Gengwang Pei
- Otolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, PR China
| | - Qiong Rong
- Department of Stomatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Shuangxi Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
11
|
Novel potential scaffold for periodontal tissue engineering. Clin Oral Investig 2017; 21:2695-2707. [PMID: 28214952 DOI: 10.1007/s00784-017-2072-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/07/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The objective of the study is characterization of novel calcium and zinc-loaded electrospun matrices to be used for periodontal regeneration. MATERIALS AND METHODS A polymethylmetacrylate-based membrane was calcium or zinc loaded. Matrices were characterized morphologically by atomic force and scanning electron microscopy and mechanically probed by a nanoindenter. Biomimetic calcium phosphate precipitation on polymeric tissues was assessed. Cell viability tests were performed using oral mucosa fibroblasts. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests or by ANOVA and Student-Newman-Keuls multiple comparisons. RESULTS Zinc and calcium loading on matrices did not modify their morphology but increased nanomechanical properties and decreased nanoroughness. Precipitation of calcium and phosphate on the matrix surfaces was observed in zinc-loaded specimens. Matrices were found to be non-toxic to cells in all the assays. Calcium- and zinc-loaded scaffolds presented a very low cytotoxic effect. CONCLUSIONS Zinc-loaded membranes permit cell viability and promoted mineral precipitation in physiological conditions. Based on the tested nanomechanical properties and scaffold architecture, the proposed membranes may be suitable for cell proliferation. CLINICAL RELEVANCE The ability of zinc-loaded matrices to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity and its surface chemistry allowing covalent binding of proteins, may offer new strategies for periodontal regeneration.
Collapse
|
12
|
Bayani M, Torabi S, Shahnaz A, Pourali M. Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects. A review of literature. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1281760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mojtaba Bayani
- Periodontics Department, Dental Faculty, Arak University of Medical Sciences, Arak, Iran
| | - Sepehr Torabi
- Periodontics Department, Dental Faculty, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aysan Shahnaz
- Periodontics Department, Dental Faculty, Qom University of Medical Science, Qom, Iran
| | - Mohammad Pourali
- Periodontics Department, Dental Faculty, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
13
|
Hernández-Bedolla MA, González-Domínguez E, Zavala-Barrera C, Gutiérrez-López TY, Hidalgo-Moyle JJ, Vázquez-Prado J, Sánchez-Torres C, Reyes-Cruz G. Calcium-sensing-receptor (CaSR) controls IL-6 secretion in metastatic breast cancer MDA-MB-231 cells by a dual mechanism revealed by agonist and inverse-agonist modulators. Mol Cell Endocrinol 2016; 436:159-68. [PMID: 27477783 DOI: 10.1016/j.mce.2016.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 01/25/2023]
Abstract
IL-6 is a tightly controlled pleiotropic cytokine with hormone-like properties whose levels are frequently altered in cancer and inflammatory diseases. In highly invasive MDA-MB-231 breast cancer cells, basal activity of endogenously expressed calcium sensing receptor (CaSR) promotes IL-6 secretion. Interestingly, upon agonist stimulation, CaSR reduces IL-6 levels whereas it promotes secretion of various other cytokines and growth factors, raising intriguing questions about how CaSR signaling modulates IL-6 secretion. Here, using NPS-2143, which acted as an inverse agonist, we show that IL-6 secretion promoted by constitutive activity of CaSR is mechanistically linked to Gαs/PKC, MEK1/2 and mTORC1 signaling pathways, integrated by transactivated EGFR. On the other hand, agonist-stimulated CaSR engages in a Rab11a-dependent trafficking pathway critical to inhibit constitutive IL-6 secretion via the PI3K/AKT and PKC signaling pathways. These results support the emerging potential of CaSR as a therapeutic target in metastatic breast cancer whose pharmacological modulation would reduce IL-6.
Collapse
Affiliation(s)
- Marco Antonio Hernández-Bedolla
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Erika González-Domínguez
- Department of Molecular Biomedicine, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Cesar Zavala-Barrera
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Tania Yareli Gutiérrez-López
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Joseline Janai Hidalgo-Moyle
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Carmen Sánchez-Torres
- Department of Molecular Biomedicine, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico.
| |
Collapse
|
14
|
Osorio R, Alfonso-Rodríguez CA, Medina-Castillo AL, Alaminos M, Toledano M. Bioactive Polymeric Nanoparticles for Periodontal Therapy. PLoS One 2016; 11:e0166217. [PMID: 27820866 PMCID: PMC5098795 DOI: 10.1371/journal.pone.0166217] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
Aims to design calcium and zinc-loaded bioactive and cytocompatible nanoparticles for the treatment of periodontal disease. Methods PolymP-nActive nanoparticles were zinc or calcium loaded. Biomimetic calcium phosphate precipitation on polymeric particles was assessed after 7 days immersion in simulated body fluid, by scanning electron microscopy attached to an energy dispersive analysis system. Amorphous mineral deposition was probed by X-ray diffraction. Cell viability analysis was performed using oral mucosa fibroblasts by: 1) quantifying the liberated deoxyribonucleic acid from dead cells, 2) detecting the amount of lactate dehydrogenase enzyme released by cells with damaged membranes, and 3) by examining the cytoplasmic esterase function and cell membranes integrity with a fluorescence-based method using the Live/Dead commercial kit. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests. Results Precipitation of calcium and phosphate on the nanoparticles surfaces was observed in calcium-loaded nanoparticles. Non-loaded nanoparticles were found to be non-toxic in all the assays, calcium and zinc-loaded particles presented a dose dependent but very low cytotoxic effect. Conclusions The ability of calcium-loaded nanoparticles to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity may offer new strategies for periodontal disease treatment.
Collapse
Affiliation(s)
- Raquel Osorio
- Dental School. University of Granada. Colegio Máximo, Campus de Cartuja s/n. 18017 Granada, Spain
- * E-mail:
| | | | - Antonio L. Medina-Castillo
- NanoMyP. Spin-Off Enterprise from University of Granada. Edificio BIC-Granada. Av. Innovación 1. 18016 Armilla, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, 18012, Granada, Spain
| | - Manuel Toledano
- Dental School. University of Granada. Colegio Máximo, Campus de Cartuja s/n. 18017 Granada, Spain
| |
Collapse
|
15
|
Sakai Y, Nemoto E, Kanaya S, Shimonishi M, Shimauchi H. Calcium Phosphate Particles Induce Interleukin-8 Expression in a Human Gingival Epithelial Cell Line via the Nuclear Factor-κB Signaling Pathway. J Periodontol 2014; 85:1464-73. [DOI: 10.1902/jop.2014.130709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Organista-Juárez D, Carretero-Ortega J, Vicente-Fermín O, Vázquez-Victorio G, Sosa-Garrocho M, Vázquez-Prado J, Macías-Silva M, Reyes-Cruz G. Calcium-sensing receptor inhibits TGF-β-signaling by decreasing Smad2 phosphorylation. IUBMB Life 2013; 65:1035-42. [DOI: 10.1002/iub.1232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Diana Organista-Juárez
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Apartado postal 14-740 México D.F. 07000 Mexico
| | - Jorge Carretero-Ortega
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | - Onasis Vicente-Fermín
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Apartado postal 14-740 México D.F. 07000 Mexico
| | - Genaro Vázquez-Victorio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | - José Vázquez-Prado
- Department of Pharmacology; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Apartado postal 14-740 México D.F. 07000 Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Apartado postal 14-740 México D.F. 07000 Mexico
| |
Collapse
|