1
|
Koshyk A, Pohl AJ, Firminger CR, Edwards WB. Probability of fatigue failure and minimum sample size requirements for cyclically loaded bone. J Mech Behav Biomed Mater 2025; 169:107061. [PMID: 40388846 DOI: 10.1016/j.jmbbm.2025.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
Fatigue-life measurements of bone exhibit a significant amount of scatter, which may be characterized probabilistically using a Weibull analysis. Despite an abundance of fatigue testing literature, a standard recommendation for the number of samples required to adequately characterize the probability of fatigue failure in bone does not exist. The primary objective of this work was to determine the minimum sample size required to fit a Weibull distribution to fatigue-life measurements of cyclically loaded bone. Two existing experimental datasets comprising cortical and subchondral bone samples were used in this work. Weibull parameters were estimated using both the maximum likelihood and rank regression methods. A Monte Carlo simulation was used to estimate Weibull parameters for different sample sizes and a convergence analysis was used to determine the minimum required sample size. A simulated dataset with known population parameters was also used to assess the accuracy of the estimated Weibull parameters and to compare the two estimation methods. Our findings suggest that as many as n = 11 samples may be required to adequately quantify Weibull parameters from fatigue tests of bone. At the converged sample size, Weibull parameters differed from true population-level parameters by 3 %-25 %, depending on the estimation method. The maximum likelihood method provided the most accurate and precise estimates of Weibull parameters. These findings provide a framework for future studies aimed at reliably quantifying the probability of fatigue failure in bone.
Collapse
Affiliation(s)
- Andrew Koshyk
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Andrew J Pohl
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Colin R Firminger
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - W Brent Edwards
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Cichański A, Topoliński T, Nowicki K. Accelerated Method for Determining the Fatigue Limit of Trabecular Bone. MATERIALS (BASEL, SWITZERLAND) 2025; 18:232. [PMID: 39859702 PMCID: PMC11766473 DOI: 10.3390/ma18020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
This paper presents an experimental method for estimating the fatigue limit of trabecular bone using a single trabecular bone sample, the microstructural parameters of which were determined by microCT. Fatigue tests were carried out using the Locati method, with stepwise increasing load amplitude. The fatigue limits of the trabecular structures were determined experimentally in accordance with Miner's law of fatigue damage accumulation, based on the parameters of the reference S-N curve taken from the literature. On the basis of the fatigue limits, the S-N curves were determined for the tested samples, and from them the compressive strength USS-N corresponding to the fatigue limit for the N = 1 cycle. Ultimate compressive strength US was determined as a result of compression to failure tests. Computational dependencies combining the BV/TV index with US and the BMD index with US were formulated. To verify the proposed method, two groups of human trabecular bone samples were analysed: n = 42 were tested under monotonic loading, and n = 61 were tested under cyclic loading with stepwise increasing amplitude. The statistical test of the distribution conformity of the calculated USS-N compressive strength to the experimental US ultimate strength was performed. The results of the Kolmogorov-Smirnov statistical test were D = 0.19 (p = 0.314). The agreement of the distributions of BV/TV, as determined experimentally and calculated from the computational dependencies, was also tested statistically, with the result of the Kolmogorov-Smirnov test being D = 0.286 (p = 0.065). A similar analysis performed for BMD yielded D = 0.238 (p = 0.185).
Collapse
Affiliation(s)
- Artur Cichański
- Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | | | | |
Collapse
|
3
|
Ciamillo SA, Wulster KB, Gassert TM, Richardson DW, Brown KA, Stefanovski D, Ortved KF. Prospective, longitudinal assessment of subchondral bone morphology and pathology using standing, cone-beam computed tomography in fetlock joints of 2-year-old Thoroughbred racehorses in their first year of training. Equine Vet J 2025; 57:126-139. [PMID: 38247205 DOI: 10.1111/evj.14048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Catastrophic injuries of the fetlock joints occur in Thoroughbred racehorses and are preceded by stress-induced bone injury. Early detection of subchondral bone injury is essential to prevent irreversible damage or bone failure. OBJECTIVES To investigate the use of standing, robotic cone-beam computed tomography (CBCT) for assessing longitudinal changes in subchondral bone morphology and pathology of the fetlock joints associated with race training in young Thoroughbreds. STUDY DESIGN Observational cohort study. METHODS Forty-one 2-year-old Thoroughbred racehorses were recruited prior to the start of race training. Standing CBCT and radiographs of all 4 metacarpo-/metatarsophalangeal (MCP/MTP) joints were obtained at 0, 6 and 12 months. Hyperdensity, as an estimate of subchondral bone sclerosis, was measured in the distal third metacarpal (MC3)/metatarsal (MT3) bone and proximal phalanx (P1) at each time point on computed tomography. CBCTs were examined for subchondral bone pathology consisting of areas of hypodensity within regions of hyperdensity. RESULTS Subchondral bone sclerosis increased significantly over time in the medial and lateral MC3/MT3 condyles and in the medial and lateral parasagittal grooves of MC3/MT3. The presence of subchondral bone pathology increased significantly over time in the medial and lateral palmar condyles of MC3/MT3, the lateral parasagittal groove, the medial dorsal condyle and the medial and lateral ridges of P1. MAIN LIMITATIONS There was attrition of horses due to relocation, change in ownership, and retirement from racing. Husbandry, training regimens and racing schedules were not controlled for in the study. CONCLUSIONS Standing CBCT is an efficient and effective screening tool for assessing subchondral bone morphology and identifying pathology of the fetlock joint in young Thoroughbred racehorses. CBCT may facilitate early detection of bone pathology allowing for timely intervention and prevention of more serious injuries.
Collapse
Affiliation(s)
- Sarah A Ciamillo
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Kathryn B Wulster
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Taryn M Gassert
- Sports Medicine Associates of Chester County, Cochranville, Pennsylvania, USA
| | - Dean W Richardson
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Kara A Brown
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
4
|
Irandoust S, Whitton RC, Muir P, Henak CR. Subchondral bone fatigue injury in the parasagittal condylar grooves of the third metacarpal bone in thoroughbred racehorses elevates site-specific strain concentration. J Mech Behav Biomed Mater 2024; 155:106561. [PMID: 38678748 DOI: 10.1016/j.jmbbm.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Condylar stress fracture of the distal end of the third metacarpal/metatarsal (MC3/MT3) bones is a major cause of Thoroughbred racehorse injury and euthanasia worldwide. Functional adaptation to exercise and fatigue damage lead to structural changes in the subchondral bone that include increased modeling (resulting in sclerotic bone tissue) and targeted remodeling repair (resulting in focal resorption spaces in the parasagittal groove). Whether these focal structural changes, as detectable by standing computed tomography (sCT), lead to elevated strain at the common site of condylar stress fracture has not been demonstrated. Therefore, the goal of the present study was to compare full-field three-dimensional (3D) strain on the distopalmar aspect of MC3 bone specimens with and without focal subchondral bone injury (SBI). Thirteen forelimb specimens were collected from racing Thoroughbreds for mechanical testing ex vivo and underwent sCT. Subsequently, full-field displacement and strain at the joint surface were determined using stereo digital image correlation. Strain concentration was observed in the parasagittal groove (PSG) of the loaded condyles, and those with SBI in the PSG showed higher strain rates in this region than control bones. PSG strain rate in condyles with PSG SBI was more sensitive to CT density distribution in comparison with condyles with no sCT-detectable injury. Findings from this study help to interpret structural changes in the subchondral bone due to fatigue damage and to assess risk of incipient stress fracture in a patient-specific manner.
Collapse
Affiliation(s)
- Soroush Irandoust
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - R Christopher Whitton
- Equine Centre, Melbourne Veterinary School, University of Melbourne, Werribee, Vic, 3030, Australia
| | - Peter Muir
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Ayodele BA, Malekipour F, Pagel CN, Mackie E, Whitton RC. Assessment of subchondral bone microdamage quantification using contrast-enhanced imaging techniques. J Anat 2024; 245:58-69. [PMID: 38481117 PMCID: PMC11161821 DOI: 10.1111/joa.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Bone microdamage is common at subchondral bone (SCB) sites subjected to repeated high rate and magnitude of loading in the limbs of athletic animals and humans. Microdamage can affect the biomechanical behaviour of bone under physiological loading conditions. To understand the effects of microdamage on the mechanical properties of SCB, it is important to be able to quantify it. The extent of SCB microdamage had been previously estimated qualitatively using plain microcomputed tomography (μCT) and a radiocontrast quantification method has been used for trabecular bone but this method may not be directly applicable to SCB due to differences in bone structure. In the current study, SCB microdamage detection using lead uranyl acetate (LUA) and quantification by contrast-enhanced μCT and backscattered scanning electron microscopy (SEM) imaging techniques were assessed to determine the specificity of the labels to microdamage and the accuracy of damaged bone volume metrices. SCB specimens from the metacarpus of racehorses, with the hyaline articular cartilage (HAC) removed, were grouped into two with one group subjected to ex vivo uniaxial compression loading to create experimental bone damage. The other group was not loaded to preserve the pre-existing in vivo propagated bone microdamage. A subset of each group was stained with LUA using an established or a modified protocol to determine label penetration into SCB. The μCT and SEM images of stained specimens showed that penetration of LUA into the SCB was better using the modified protocol, and this protocol was repeated in SCB specimens with intact hyaline articular cartilage. The percentage of total label localised to bone microdamage was determined on SEM images, and the estimated labelled bone volume determined by μCT in SCB groups was compared. Label was present around diffuse and linear microdamage as well as oblique linear microcracks present at the articular surface, except in microcracks with high-density mineral infills. Bone surfaces lining pores with recent mineralisation were also labelled. Labelled bone volume fraction (LV/BV) estimated by μCT was higher in the absence of HAC. At least 50% of total labels were localised to bone microdamage when the bone area fraction (B.Ar/T.Ar) of the SCB was greater than 0.85 but less than 30% when B.Ar/T.Ar of the SCB was less than 0.85. To adjust for LUA labels on bone surfaces, a measure of the LV/BV corrected for bone surface area (LV/BV BS-1) was used to quantify damaged SCB. In conclusion, removal of HAC and using a modified labelling protocol effectively stained damaged SCB of the metacarpus of racehorses and represents a technique useful for quantifying microdamage in SCB. This method can facilitate future investigations of the effects of microdamage on joint physiology.
Collapse
Affiliation(s)
| | - Fatemeh Malekipour
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
| | - Charles N. Pagel
- Melbourne Veterinary SchoolUniversity of MelbourneMelbourneVictoriaAustralia
| | - Eleanor J. Mackie
- Melbourne Veterinary SchoolUniversity of MelbourneMelbourneVictoriaAustralia
| | - R. Chris Whitton
- Melbourne Veterinary SchoolUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Koshyk A, Pohl AJ, Takahashi Y, Scott WM, Sparks HD, Edwards WB. Influence of microarchitecture on stressed volume and mechanical fatigue behaviour of equine subchondral bone. Bone 2024; 182:117054. [PMID: 38395248 DOI: 10.1016/j.bone.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Fractures of the equine metacarpophalangeal (MCP) joint are among the most common and fatal injuries experienced by racehorses. These bone injuries are a direct result of repetitive, high intensity loading of the skeleton during racing and training and there is consensus that they represent a mechanical fatigue phenomenon. Existing work has found the fatigue life of bone to be strongly determined by bone microarchitecture and the resulting stressed volume (i.e., the volume of bone stressed above assumed yield). The purpose of this study was to quantify the influence of bone microarchitecture on the mechanical fatigue behaviour of equine subchondral bone from the MCP joint across a wide variety of sample types. Forty-eight subchondral bone samples were prepared from the third metacarpal (MC3) and proximal phalanx (P1) of 8 horses and subsequently imaged using high resolution micro-computed tomography (μCT) to quantify microarchitectural features of interest, including bone volume fraction, tissue mineral density, pore size, pore spacing, and pore number. Samples were cyclically loaded in compression to a stress of 70 MPa, and fatigue life was defined as the number of cycles until failure. Finite element models were created from the μCT images and used to quantify stressed volume. Based on the expected log point-wise predictive density, stressed volume was a strong predictor of fatigue life in both the MC3 and P1. A regional analysis indicated fatigue life was more strongly associated with bone volume fraction in the superficial (r2 = 0.32, p < 0.001) and middle (r2 = 0.70, p < 0.001) regions of the subchondral bone, indicating the prominent role that the cortical plate played in the fatigue resistance of equine subchondral bone. By improving our understanding of the variance in fatigue life measurements, this research helps clarify the underlying mechanisms of the mechanical fatigue process and provides a basic understanding of subchondral bone injuries in the equine fetlock joint.
Collapse
Affiliation(s)
- Andrew Koshyk
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Andrew J Pohl
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Yuji Takahashi
- Sports Science Division, Equine Research Institute, Shimotsuke, Tochigi, Japan
| | - W Michael Scott
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Holly D Sparks
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - W Brent Edwards
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Shaktivesh S, Malekipour F, Whitton RC, Lee PV. Mechanical response of local regions of subchondral bone under physiological loading conditions. J Mech Behav Biomed Mater 2024; 152:106405. [PMID: 38271752 DOI: 10.1016/j.jmbbm.2024.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Most fractures in the third metacarpal bone of equine athletes occur due to repeated cycles of high load magnitudes and are commonly generated during fast-training workouts. These repetitive loads may induce changes in the microstructure and mechanical properties that can develop into subchondral bone (SCB) injuries near the articular surface. In this study, we investigated the fatigue behaviour of local regions in SCB (near the articular surface i.e., 2 mm superficial SCB and the underlying 2 mm deeper SCB) under a simulated fast-training workout of an equine athlete. A fatigue test on SCB specimens was designed to simulate the fast-training workout, which comprised of repeated load cycles with varying load magnitude, representing the varying gait speed during a fast-training workout. The fatigue test was applied three times to each of the five cylindrical SCB specimens harvested from the left and right metacarpal condyles of five thoroughbred racehorses). All specimens completed at least one fatigue test. Three specimens completed all three fatigue tests with no visible cracks identified with Micro-CT scans. The other two specimens failed in the second fatigue test, and cracks were identified with Micro-CT scans in the various local regions. Using Digital Image Correlation (DIC) analysis, we found that in the local regions of all specimens, modulus decreased between load cycles corresponding to 68 and 93 MPa load magnitudes (equivalent to the fastest gallop speed). Wherein specimens that failed exhibited a greater decrease in modulus (in superficial SCB by 45.64 ± 5.66% and in deeper SCB by -36.85 ± 10.47% (n = 2)) than those not failed (in superficial SCB by -7.45 ± 14.62% and in deeper SCB by -5.67 ± 7.32% (n = 3)). This has provided evidence that the loads on SCB at galloping speeds are most likely to produce fatigue damage and that the damage induced is localised. Furthermore, one of the failed specimens exhibited a peak in the tensile strain rather than compressive strain in the superficial region with a rapid decrease in modulus. In addition, the superficial region of all specimens exhibited greater residual tensile strain than that of the deeper region.
Collapse
Affiliation(s)
| | - Fatemeh Malekipour
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - R Christopher Whitton
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, 3030, Victoria, Australia
| | - Peter Vs Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
8
|
McPhee S, Kershaw LE, Daniel CR, Peña Fernández M, Cillán-García E, Taylor SE, Wolfram U. QCT-based computational bone strength assessment updated with MRI-derived 'hidden' microporosity. J Mech Behav Biomed Mater 2023; 147:106094. [PMID: 37741181 DOI: 10.1016/j.jmbbm.2023.106094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
Microdamage accumulated through sustained periods of cyclic loading or single overloading events contributes to bone fragility through a reduction in stiffness and strength. Monitoring microdamage in vivo remains unattainable by clinical imaging modalities. As such, there are no established computational methods for clinical fracture risk assessment that account for microdamage that exists in vivo at any specific timepoint. We propose a method that combines multiple clinical imaging modalities to identify an indicative surrogate, which we term 'hidden porosity', that incorporates pre-existing bone microdamage in vivo. To do so, we use the third metacarpal bone of the equine athlete as an exemplary model for fatigue induced microdamage, which coalesces in the subchondral bone. N = 10 metacarpals were scanned by clinical quantitative computed tomography (QCT) and magnetic resonance imaging (MRI). We used a patch-based similarity method to quantify the signal intensity of a fluid sensitive MRI sequence in bone regions where microdamage coalesces. The method generated MRI-derived pseudoCT images which were then used to determine a pre-existing damage (Dpex) variable to quantify the proposed surrogate and which we incorporate into a nonlinear constitutive model for bone tissue. The minimum, median, and maximum detected Dpex of 0.059, 0.209, and 0.353 reduced material stiffness by 5.9%, 20.9%, and 35.3% as well as yield stress by 5.9%, 20.3%, and 35.3%. Limb-specific voxel-based finite element meshes were equipped with the updated material model. Lateral and medial condyles of each metacarpal were loaded to simulate physiological joint loading during gallop. The degree of detected Dpex correlated with a relative reduction in both condylar stiffness (p = 0.001, R2 > 0.74) and strength (p < 0.001, R2 > 0.80). Our results illustrate the complementary value of looking beyond clinical CT, which neglects the inclusion of microdamage due to partial volume effects. As we use clinically available imaging techniques, our results may aid research beyond the equine model on fracture risk assessment in human diseases such as osteoarthritis, bone cancer, or osteoporosis.
Collapse
Affiliation(s)
- Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Lucy E Kershaw
- Centre for Cardiovascular Sciences and Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Carola R Daniel
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | | | - Sarah E Taylor
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK.
| |
Collapse
|
9
|
Wong ASM, Morrice-West AV, Hitchens PL, Whitton RC. The association between Thoroughbred racehorse training practices and musculoskeletal injuries in Victoria, Australia. Front Vet Sci 2023; 10:1260554. [PMID: 37941814 PMCID: PMC10628463 DOI: 10.3389/fvets.2023.1260554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/29/2023] [Indexed: 11/10/2023] Open
Abstract
Catastrophic musculoskeletal injuries (CMI) in horses are associated with both too little and too much high-speed exercise. In order to advise trainers on training and management strategies that minimize the risk of musculoskeletal injury (MSI), a better understanding of how training practices affect MSI in racehorses is needed. Data from prospective studies relating training data and MSI are complicated by the gradual development of pathology and the effect of this on the ability of horses to train consistently prior to the identification of an injury. To circumvent this, 66 Australian Thoroughbred trainers were surveyed on their intended training practices, including rest, pre-training, and race-fit practices. Associations between intended training practices and catastrophic and non-catastrophic race day MSI outcomes in two-year-old and mature (≥three-year-old) horses were assessed using multivariable negative binomial regression models. The incidence of two-year-old race day MSI was lower for trainers who preferred shorter times (weeks) to trial, less time in fast work pre-trial (p = 0.003), shorter, more frequent rest periods (p < 0.01) and higher amounts of fast work at 15.5-16.7 m/s once race-fit (p = 0.001). The incidence of mature horse race day MSI was lower for trainers who preferred longer rest periods (p = 0.026) and a high-volume pre-trial training strategy comprising a high volume of slower speed gallop training and longer times to trial compared to fast and light training programs (p = 0.004) for their mature horses, in addition to higher amounts of fast work at 15.5-16.7 m/s for their race-fit two-year-olds (p = 0.012). Race day CMI incidence was lower for trainers who preferred lower volumes of fast gallop work for their race-fit mature horses (p < 0.05). These results suggest that two-year-old training practices could affect MSI risk later in a horse's career, and that age and stage in training (pre-trial, race-fit) are important considerations when developing training practices to minimize the risk of MSI.
Collapse
Affiliation(s)
- Adelene S. M. Wong
- Equine Lameness and Imaging Centre, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | | | | | | |
Collapse
|
10
|
Moshage SG, McCoy AM, Kersh ME. Elastic Modulus and Its Relation to Apparent Mineral Density in Juvenile Equine Bones of the Lower Limb. J Biomech Eng 2023; 145:081001. [PMID: 37144881 DOI: 10.1115/1.4062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Density-modulus relationships are necessary to develop finite element models of bones that may be used to evaluate local tissue response to different physical activities. It is unknown if juvenile equine trabecular bone may be described by the same density-modulus as adult equine bone, and how the density-modulus relationship varies with anatomical location and loading direction. To answer these questions, trabecular bone cores from the third metacarpal (MC3) and proximal phalanx (P1) bones of juvenile horses (age <1 yr) were machined in the longitudinal (n = 134) and transverse (n = 90) directions and mechanically tested in compression. Elastic modulus was related to apparent computed tomography density of each sample using power law regressions. We found that density-modulus relationships for juvenile equine trabecular bone were significantly different for each anatomical location (MC3 versus P1) and orientation (longitudinal versus transverse). Use of the incorrect density-modulus relationship resulted in increased root mean squared percent error of the modulus prediction by 8-17%. When our juvenile density-modulus relationship was compared to one of an equivalent location in adult horses, the adult relationship resulted in an approximately 80% increase in error of the modulus prediction. Moving forward, more accurate models of young bone can be developed and used to evaluate potential exercise regimens designed to encourage bone adaptation.
Collapse
Affiliation(s)
- Sara G Moshage
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Annette M McCoy
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign,, Urbana, IL 61801
| |
Collapse
|
11
|
Relationship between Thoroughbred workloads in racing and the fatigue life of equine subchondral bone. Sci Rep 2022; 12:11528. [PMID: 35798766 PMCID: PMC9262984 DOI: 10.1038/s41598-022-14274-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Fatigue life (FL) is the number of cycles of load sustained by a material before failure, and is dependent on the load magnitude. For athletes, ‘cycles’ translates to number of strides, with load proportional to speed. To improve previous investigations estimating workload from distance, we used speed (m/s, x) per stride collected using 5 Hz GPS/800 Hz accelerometer sensors as a proxy for limb load to investigate factors associated with FL in a Thoroughbred race start model over 25,234 race starts, using a combination of mathematical and regression modelling. Fore-limb vertical force (NKg-1) was estimated using a published equation: Vertical force = 2.778 + 2.1376x − 0.0535x2. Joint load (σ) was estimated based on the vertical force, scaled according to the maximum speed and defined experimental loads for the expected variation in load distribution across a joint surface (54-90 MPa). Percentage FL (%FL) was estimated using a published equation for cycles to failure (Nf) summed across each race start: Nf = 10(σ-134.2)/−14.1. Multivariable mixed-effects linear regression models were generated on %FL, adjusting for horse-level clustering, presented as coefficients; 95%CI. Scaled to the highest joint load, individual starts accrued a mean of 9.34%FL (sd. 1.64). Older age (coef. 0.03; 0.002–0.04), longer race-distances (non-linear power transformed), and firmer track surfaces (ref. Heavy 10: Good 3 coef. 2.37; 2.26–2.48) were associated with greater %FL, and males accrued less than females (p < 0.01). Most variables associated with %FL are reported risk factors for injury. Monitoring strides in racehorses may therefore allow identification of horses at risk, enabling early detection of injury.
Collapse
|
12
|
Pearce DJ, Hitchens PL, Malekipour F, Ayodele B, Lee PVS, Whitton RC. Biomechanical and Microstructural Properties of Subchondral Bone From Three Metacarpophalangeal Joint Sites in Thoroughbred Racehorses. Front Vet Sci 2022; 9:923356. [PMID: 35847629 PMCID: PMC9277662 DOI: 10.3389/fvets.2022.923356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fatigue-induced subchondral bone (SCB) injury is common in racehorses. Understanding how subchondral microstructure and microdamage influence mechanical properties is important for developing injury prevention strategies. Mechanical properties of the disto-palmar third metacarpal condyle (MCIII) correlate poorly with microstructure, and it is unknown whether the properties of other sites within the metacarpophalangeal (fetlock) joint are similarly complex. We aimed to investigate the mechanical and structural properties of equine SCB from specimens with minimal evidence of macroscopic disease. Three sites within the metacarpophalangeal joint were examined: the disto-palmar MCIII, disto-dorsal MCIII, and proximal sesamoid bone. Two regions of interest within the SCB were compared, a 2 mm superficial and an underlying 2 mm deep layer. Cartilage-bone specimens underwent micro-computed tomography, then cyclic compression for 100 cycles at 2 Hz. Disto-dorsal MCIII specimens were loaded to 30 MPa (n = 10), while disto-palmar MCIII (n = 10) and proximal sesamoid (n = 10) specimens were loaded to 40 MPa. Digital image correlation determined local strains. Specimens were stained with lead-uranyl acetate for volumetric microdamage quantification. The dorsal MCIII SCB had lower bone volume fraction (BVTV), bone mineral density (BMD), and stiffness compared to the palmar MCIII and sesamoid bone (p < 0.05). Superficial SCB had higher BVTV and lower BMD than deeper SCB (p < 0.05), except at the palmar MCIII site where there was no difference in BVTV between depths (p = 0.419). At all sites, the deep bone was stiffer (p < 0.001), although the superficial to deep gradient was smaller in the dorsal MCIII. Hysteresis (energy loss) was greater superficially in palmar MCIII and sesamoid (p < 0.001), but not dorsal MCIII specimens (p = 0.118). The stiffness increased with cyclic loading in total cartilage-bone specimens (p < 0.001), but not in superficial and deep layers of the bone, whereas hysteresis decreased with the cycle for all sites and layers (p < 0.001). Superficial equine SCB is uniformly less stiff than deeper bone despite non-uniform differences in bone density and damage levels. The more compliant superficial layer has an important role in energy dissipation, but whether this is a specific adaptation or a result of microdamage accumulation is not clear.
Collapse
Affiliation(s)
- Duncan J. Pearce
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Peta L. Hitchens
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Fatemeh Malekipour
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Babatunde Ayodele
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - R. Chris Whitton
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
- *Correspondence: R. Chris Whitton
| |
Collapse
|
13
|
Palmer AL, Rogers CW, Stafford KJ, Gal A, Bolwell CF. Risk-Factors for Soft-Tissue Injuries, Lacerations and Fractures During Racing in Greyhounds in New Zealand. Front Vet Sci 2021; 8:737146. [PMID: 34926634 PMCID: PMC8678076 DOI: 10.3389/fvets.2021.737146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Recognition of injuries in racing animals is essential to identify potential risk factors so actions can be taken to reduce or mitigate the cause of the injury to safeguard the animal. Racing greyhounds are subject to musculoskeletal injuries associated with athletic pursuit, in particular soft-tissue injuries, lacerations, and fractures. The objective of this study was therefore to determine risk factors for soft-tissue injuries, lacerations and fractures occurring during racing, using a cohort of greyhounds racing in New Zealand between 10th September 2014 and 31st July 2020. Dog-level, race-level and track-level risk factors for each outcome were assessed using mixed-effects multivariable logistic regression including trainer as a random effect. Throughout the study period there were 218,700 race starts by 4,914 greyhounds, with a total of 4,385 injuries. Of these, 3,067 (69.94%) were classed as soft-tissue injuries, 641 (14.62%) were reported as lacerations, and 458 (10.44%) were fractures. Greyhounds with a low racing frequency (racing more than 7 days apart) had 1.33 [95% confidence interval (CI): 1.06-1.67] times the odds of fracture compared to those racing more frequently. Older greyhounds had a greater odds of fracture compared with younger greyhounds. Racing every 7 days had a lower odds of soft-tissue injury compared with racing more than once a week. Dogs over 39 months had 1.53 (95% CI: 1.35-1.73) times the odds of sustaining a soft-tissue injury compared to the younger dogs. Greyhounds originating from Australia had a higher odds of fracture and laceration compared with New Zealand dogs. Better performing dogs (higher class) had a greater odds of fracture and laceration whilst maiden dogs had a higher odds of soft-tissue injury. Greyhounds starting from the outside box had a higher odds of fracture. There was considerable variation in the odds of soft-tissue injury at different racetracks. In conclusion, although the incidence of soft-tissue injuries was higher than other injury types, the repercussion of such injuries was less than those for fractures. The results from this study will help to inform intervention strategies aimed at reducing the rate of injuries in racing greyhounds, enhancing racing safety and greyhound welfare.
Collapse
Affiliation(s)
- Anna L Palmer
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Chris W Rogers
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Kevin J Stafford
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Charlotte F Bolwell
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
14
|
Legg KA, Gee EK, Cochrane DJ, Rogers CW. Preliminary Examination of the Biological and Industry Constraints on the Structure and Pattern of Thoroughbred Racing in New Zealand over Thirteen Seasons: 2005/06-2017/18. Animals (Basel) 2021; 11:ani11102807. [PMID: 34679829 PMCID: PMC8532836 DOI: 10.3390/ani11102807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023] Open
Abstract
This study aimed to examine thirteen seasons of flat racing starts (n = 388,964) in the context of an ecological system and identify metrics that describe the inherent characteristics and constraints of the New Zealand Thoroughbred racing industry. During the thirteen years examined, there was a 2-3% per year reduction in the number of races, starts and number of horses. There was a significant shift in the racing population with a greater number of fillies (aged 2-4 years) having a race start, and subsequent longer racing careers due to the inclusion of one more racing preparation post 2008 (p < 0.05). Additionally, there was an increasingly ageing population of racehorses. These changes resulted in more race starts in a career, but possibly because of biological constraints, there was no change in the number of race starts per season, starts per preparation, or days spelling between preparations (p < 0.05). There was no change in the proportion of horses having just one race start (14% of new entrants), indicating that the screening for suitability for a racing career remained consistent. These data identify key industry parameters which provide a basis for future modelling of intervention strategies to improve economic performance and reduce horse injury. Consideration of the racing industry as a bio-economic or ecological model provides framework to test how the industry may respond to intervention strategies and signal where changes in system dynamics may alter existing risk factors for injury.
Collapse
Affiliation(s)
- Kylie A. Legg
- School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.W.R.)
- Correspondence:
| | - Erica K. Gee
- School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.W.R.)
| | - Darryl J. Cochrane
- School of Sport, Exercise and Nutrition, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand;
| | - Chris W. Rogers
- School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.W.R.)
- School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
15
|
Morrice-West AV, Hitchens PL, Walmsley EA, Stevenson MA, Wong ASM, Whitton RC. Variation in GPS and accelerometer recorded velocity and stride parameters of galloping Thoroughbred horses. Equine Vet J 2020; 53:1063-1074. [PMID: 33098592 DOI: 10.1111/evj.13370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND With each stride, galloping horses generate large skeletal loads which influence bone physiology, and may contribute to musculoskeletal injury. Horse speed and stride characteristics are related, but the usefulness of using horse speed and distance travelled as a proxy for stride characteristics is unknown. OBJECTIVES We aimed to determine stride characteristics, their variance and their relationship with speed in horses performing maximally. STUDY DESIGN Retrospective cross-sectional analysis of archived data. METHODS Stride characteristics obtained using GPS and inertial sensors in Thoroughbred horses were retrieved. Data per 200 m race segment ('sectionals') for horses competing in races (N = 25,259 race starts) were analysed to determine if speed predicted stride parameters. Multivariable mixed-effects linear regression models were fitted. RESULTS Mean (±SD) stride length, stride count (number of strides per 200 m), duration and speed were 7.08 ± 0.39 m, 28.32 ± 1.56 strides/200 m, 0.43 ± 0.02 s/stride and 16.63 ± 1.04 m/s across all sectionals and starts. Speed and stride length decreased, and stride count increased with race progression (P < 0.001). Male sex, greater race distance, better finishing position and firmer track surfaces were associated with less strides per 200 m and longer stride durations. MAIN LIMITATIONS Lack of an independent party validation of the measurement system used in this study. CONCLUSIONS There was a substantial inter-horse variation in stride parameters, with speed predicting half or less of this variation. Speed alone does not fully explain stride characteristics in horses. Future studies aimed at investigating the impact of gait on bone biology and pathology would benefit from accounting for stride characteristics (eg length and duration).
Collapse
Affiliation(s)
- Ashleigh V Morrice-West
- U-Vet Equine Centre, Melbourne Veterinary School, The University of Melbourne, Werribee, Vic., Australia
| | - Peta L Hitchens
- U-Vet Equine Centre, Melbourne Veterinary School, The University of Melbourne, Werribee, Vic., Australia
| | - Elizabeth A Walmsley
- U-Vet Equine Centre, Melbourne Veterinary School, The University of Melbourne, Werribee, Vic., Australia
| | - Mark A Stevenson
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic., Australia
| | - Adelene S M Wong
- U-Vet Equine Centre, Melbourne Veterinary School, The University of Melbourne, Werribee, Vic., Australia
| | - R Chris Whitton
- U-Vet Equine Centre, Melbourne Veterinary School, The University of Melbourne, Werribee, Vic., Australia
| |
Collapse
|
16
|
Shaktivesh S, Malekipour F, Whitton RC, Hitchens PL, Lee PV. Fatigue behavior of subchondral bone under simulated physiological loads of equine athletic training. J Mech Behav Biomed Mater 2020; 110:103920. [PMID: 32957215 DOI: 10.1016/j.jmbbm.2020.103920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022]
Abstract
Fatigue-induced subchondral bone (SCB) injuries are prevalent among athletes due to the repetitive application of high magnitude loads on joints during intense physical training. Existing fatigue studies on bone utilize a standard fatigue test approach by applying loads of a constant magnitude and frequency even though physiological/realistic loading is a combination of various load magnitudes and frequencies. Metal materials in implant and aerospace applications have been studied for fatigue behavior under physiological or realistic loading, however, no such study has been conducted on biological materials like bones. In this study, we investigated fatigue behavior of SCB under the range of loads likely to occur during a fast-workout of an equine athlete in training. A loading protocol was developed by simulating physiological loads occurring during a fast-workout of a racehorse in training, which consisted of a sequence of compression-compression load cycles, including a warm-up (32, 54, 61 MPa) and cool-down (61, 54, 32 MPa) before and after the slow/fast/slow gallop phase of training, also referred to as a training loop. This loading protocol/training loop was applied at room temperature in load-control mode to cylindrical SCB specimens (n = 12) harvested from third metacarpal medial condyles (MCIII) of twelve thoroughbred racehorses and repeated until fatigue failure. The mean ± standard deviation for total time-to-failure (TTF) was 76,393 ± 64,243 s (equivalent to 18.3 ± 15.7 training workouts) for n = 12 specimens. We observed the highest relative energy loss (REL, hysteresis loss normalized to energy absorbed in a load cycle) under loads equivalent to gallop speeds and all specimens failed under these gallop loads. This demonstrates the importance of the gallop speeds in the development of SCB injury, consistent with observations made in live racehorses. Moreover, specimens with higher mean REL and lower mean stiffness during the first loop had a shorter fatigue life which further confirms the detrimental effect of high energy loss in SCB. Further studies are required to reconcile our results with fatigue injuries among equine athletes and understand the influence of different training programs on the fatigue behavior of subchondral bone.
Collapse
Affiliation(s)
- Shaktivesh Shaktivesh
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fatemeh Malekipour
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - R Christopher Whitton
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, 3030, Victoria, Australia
| | - Peta L Hitchens
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, 3030, Victoria, Australia
| | - Peter Vs Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
17
|
Distribution of mechanical strain in equine distal metacarpal subchondral bone: A microCT-based finite element model. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Malekipour F, Hitchens PL, Whitton RC, Lee PVS. Effects of in vivo fatigue-induced subchondral bone microdamage on the mechanical response of cartilage-bone under a single impact compression. J Biomech 2019; 100:109594. [PMID: 31924348 DOI: 10.1016/j.jbiomech.2019.109594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/03/2019] [Accepted: 12/21/2019] [Indexed: 11/30/2022]
Abstract
Subchondral bone (SCB) microdamage is prevalent in the joints of human athletes and animals subjected to high rate and magnitude cyclic loading of the articular surface. Quantifying the effect of such focal in vivo fatigue-induced microdamage on the mechanical response of the tissue is critical for the understanding of joint surface injury and the development of osteoarthritis. Thus, we aimed to quantify the mechanical properties of cartilage-bone from equine third metacarpal (MC3) condyles, which is a common area of accumulated microdamage due to repetitive impact loading. We chose a non-destructive technique, i.e. high-resolution microcomputed tomography (µCT) imaging, to identify various degrees of in vivo microdamage in SCB prior to mechanical testing; because µCT imaging can only identify a proportion of accumulated microdamage, we aimed to identify racing and training history variables that provide additional information on the prior loading history of the samples. We then performed unconfined high-rate compression of approximately 2% strain at 45%/s strain rate to simulate a cycle of gallop and used real-time strain measurements using digital image correlation (DIC) techniques to find the stiffness and shock absorbing ability (relative energy loss) of the cartilage-bone unit, and those associated with cartilage and SCB. Results indicated that stiffness of cartilage-bone and those associated with the SCB decreased with increasing grade of damage. Whole specimen stiffness also increased, and relative energy loss decreased with higher TMD, whereas bone volume fraction of the SCB was only associated negatively with the stiffness of the bone. Overall, the degree of subchondral bone damage observed with µCT was the main predictor of stiffness and relative energy loss of the articular surface of the third metacarpal bone of Thoroughbred racehorses under impact loading.
Collapse
Affiliation(s)
- Fatemeh Malekipour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peta L Hitchens
- Equine Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - R Chris Whitton
- Equine Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - Peter Vee-Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
19
|
Martig S, Hitchens PL, Lee PVS, Whitton RC. The relationship between microstructure, stiffness and compressive fatigue life of equine subchondral bone. J Mech Behav Biomed Mater 2019; 101:103439. [PMID: 31557658 DOI: 10.1016/j.jmbbm.2019.103439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
Subchondral bone injuries often precede articular cartilage damage in osteoarthritis and are common in thoroughbred racehorses due to the accumulation of fatigue damage from high speed racing and training. Thus, racehorses provide a model to investigate the role of subchondral bone in joint disease. We assessed the association of horse and racing related factors and micro-CT based micromorphology of three separate subchondral bone layers with the initial stiffness and compressive fatigue life of bone plugs. Furthermore, we investigated three different definitions of fatigue failure of subchondral bone during compressive fatigue testing. Initial stiffness was 2,362 ± 443 MPa (mean ± standard deviation). Median compressive fatigue life during cyclic loading to -78 MPa was 16,879 (range 210 to 57,064). Subchondral bone stiffness increased over a median of 24% (range 3%-42%) of fatigue life to a maximum of 3,614 ± 635 MPa. Compressive fatigue life was positively associated with bone volume fraction in the deeper layers of subchondral bone, maximal stiffness, and the number of cycles to maximal stiffness. Initial stiffness was positively associated with tissue mineral density in the deeper layers and bone volume fraction in the superficial layer. Most specimens with a fatigue life of less than 5,500 cycles fractured grossly before reaching 30% reduction of maximal stiffness. Cycles to 10% reduction of maximal stiffness correlated strongly with cycles to lowest recorded stiffness at gross fracture and thus is a valid alternative failure definition for compressive fatigue testing of subchondral bone. Our results show that subchondral bone sclerosis as a result of high speed exercise and measured as bone volume fraction is positively associated with compressive fatigue life and thus has a protective effect on subchondral bone. Further research is required to reconcile this finding with the common collocation of fatigue damage in sclerotic subchondral bone of racehorses.
Collapse
Affiliation(s)
- Sandra Martig
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Peta L Hitchens
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Peter V S Lee
- Melbourne School of Engineering, Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - R Chris Whitton
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| |
Collapse
|
20
|
Shaktivesh, Malekipour F, Whitton C, Lee PVS. A method for fatigue testing of equine McIII subchondral bone under a simulated fast workout training programme. Equine Vet J 2019; 52:332-335. [PMID: 31403713 DOI: 10.1111/evj.13163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Standard fatigue testing of bone uses a single load and frequency applied until failure. However, in situ, the subchondral bone of Thoroughbred racehorses is subjected to a combination (or a spectrum) of loads and frequencies during training and racing. OBJECTIVE To investigate the use of a fatigue testing method for equine third metacarpal (McIII) subchondral bone under a spectrum of loading conditions which a racehorse is likely to experience during a fast workout. STUDY DESIGN In vitro biomechanical experimental study. METHODS McIII subchondral bone specimens (n = 12) of racehorses were harvested from left and right medial condyles. A novel fatigue loading protocol was developed based upon a standard sequence of gaits during a typical fast workout protocol. This loading pattern, or loading loop, was repeated until the failure of the specimen. RESULTS The mean ± standard deviation for all specimens for total time-to-failure was 76,393 ± 64,243 s (equivalent to 18.3 ± 15.7 fast workouts). Ten of twelve specimens withstood at least one complete loop equivalent to a fast workout. All specimens failed during simulated gallop loading. MAIN LIMITATIONS The resting time between loops was much shorter than in vivo resting time and specimens were unconfined during compressive testing. CONCLUSIONS This novel fatigue loading protocol more closely mimics in vivo fatigue loading of McIII subchondral bone and demonstrates the importance of the highest speeds in the development of subchondral bone injury.
Collapse
Affiliation(s)
- Shaktivesh
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - F Malekipour
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - C Whitton
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - P V S Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Morrice-West AV, Hitchens PL, Walmsley EA, Stevenson MA, Whitton RC. Training practices, speed and distances undertaken by Thoroughbred racehorses in Victoria, Australia. Equine Vet J 2019; 52:273-280. [PMID: 31386764 DOI: 10.1111/evj.13156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Musculoskeletal injuries (MSI) in racehorses are commonly due to bone fatigue, a function of the number of cycles (strides) and the magnitude of load applied to the limb. These parameters can be estimated using speed and distance, with greater than 6000 m/month at a gallop (>14 m/s), in combination with canter distances greater than 44,000 m/month, reported to increase fracture risk. Despite their importance, there are limited data on the distances and speeds horses are exposed to during training. OBJECTIVES Estimate training volume at different speeds undertaken by Australian Thoroughbred racehorses. STUDY DESIGN Cross-sectional study. METHODS Registered trainers (n = 66) in Victoria, Australia were surveyed. Questions were designed to assess the full training workload from initial pre-training to training performed to achieve and maintain race fitness, as well as information on rest periods. Descriptive analyses were stratified by trainer- and horse-level factors, with assessment of variance within and between groups. Cluster analyses were used to identify similar workload intensity groups. RESULTS Horse-level factors (age, targeted race distance) were associated with workload (younger<older, sprinters<stayers). Trainer categorisation did not influence workload, but there was significant variation in volume of total gallop exercise between trainers (median gallop distance 8000 m/month [IQR 6400-12,000]). Cluster analyses identified four workload programmes (medians): low-intensity (4800 m/month), medium-volume (8000 m/month), medium-volume with a higher proportion of high-speed workouts (12,800 m/month) and high-volume programmes (19,200 m/month), with 23, 50, 17 and 9% of trainers predominately training racehorses under each of the respective programmes. Horses 3-years and older were rested twice yearly for 6.3 (95% CI 5.7, 6.8) weeks, with more experienced trainers resting horses for shorter periods (P = 0.03). MAIN LIMITATIONS Possible selection bias, subjective reporting of workloads by trainers. CONCLUSIONS Australian Thoroughbred training programmes include high volumes of galloping with more than half exceeding previously reported risk levels for MSI.
Collapse
Affiliation(s)
- A V Morrice-West
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - P L Hitchens
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - E A Walmsley
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - M A Stevenson
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - R C Whitton
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
22
|
Walmsley EA, Jackson M, Wells-Smith L, Whitton RC. Solar angle of the distal phalanx is associated with scintigraphic evidence of subchondral bone injury in the palmar/plantar aspect of the third metacarpal/tarsal condyles in Thoroughbred racehorses. Equine Vet J 2019; 51:720-726. [PMID: 30793363 DOI: 10.1111/evj.13086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/17/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Subchondral bone injury at the palmar/plantar aspect of the condyles of the third metacarpal/metatarsal bone (MC/MT3) commonly causes lameness and poor performance in racehorses. Injury occurs due to repetitive loading, the magnitude of which may be influenced by the position of the distal phalanx relative to the ground surface, i.e. the solar angle. The association of solar angle and injury at the palmar/plantar condyles of distal MC/MT3 therefore warrants investigation. OBJECTIVES Investigate the relationship between solar angle and radiopharmaceutical uptake at the palmar/plantar aspect of distal MC/MT3 on scintigraphic images of racehorses. STUDY DESIGN Retrospective case-controlled study. METHODS Scintigraphic images of Thoroughbred racehorses presented for poor performance or lameness were graded for intensity of radiopharmaceutical uptake in the palmar/plantar aspect of distal MC/MT3. Solar angle was graded (positive, neutral or negative), referring to the angle of the solar plane of the distal phalanx relative to the ground surface. Repeatability of solar angle (n = 1226 limbs) and agreement with objective radiographic evaluation (n = 52 limbs) were evaluated. Prescintigraphy performance data were collected from race records. Associations between solar angle, performance and radiopharmaceutical uptake were investigated using multivariable logistic regression. RESULTS Repeatability of scintigraphic solar angle grading (κ = 0.89, 95% CI 0.87-0.91) and agreement of scintigraphic and radiographic solar angle (κ = 0.88, 95% CI 0.75-0.97) were excellent. Horses that performed best prior to presentation were more likely to have both greater radiopharmaceutical uptake and a neutral/negative solar angle. When controlling for prior performance, horses with neutral/negative forelimb solar angle were twice as likely to have moderate/marked radiopharmaceutical uptake than horses with positive solar angle (P<0.02). Horses with negative hindlimb solar angle were six times more likely to have moderate/marked radiopharmaceutical uptake than horses with positive/neutral solar angle (P<0.001). MAIN LIMITATIONS Population bias due to preselected hospital population. CONCLUSIONS Both solar angle and race performance are independently associated with increased bone activity in the palmar/plantar aspect of the third metacarpal/tarsal condyles. The Summary is available in Portuguese - see Supporting Information.
Collapse
Affiliation(s)
- E A Walmsley
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - M Jackson
- Melbourne Polytechnic, Preston, Victoria, Australia
| | - L Wells-Smith
- Motion Equine Podiatry Consulting, Scone, New South Wales, Australia
| | - R C Whitton
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
23
|
Whitton RC, Ayodele BA, Hitchens PL, Mackie EJ. Subchondral bone microdamage accumulation in distal metacarpus of Thoroughbred racehorses. Equine Vet J 2018; 50:766-773. [PMID: 29660153 DOI: 10.1111/evj.12948] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/31/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Microdamage accumulation leads to subchondral bone injury and/or fracture in racehorses. An understanding of this process is essential for developing strategies for injury prevention. OBJECTIVES To quantify subchondral bone microdamage in the third metacarpal bone of Thoroughbred racehorses at different stages of the training cycle. STUDY DESIGN Cross-sectional. METHODS Bone blocks from the palmar aspect of the medial condyles of third metacarpal bones from 46 racing Thoroughbred horses undergoing post-mortem were examined with micro computed tomography (microCT) to detect calcified microcracks, and light microscopy to quantify bulk stained microcracks. Racing and training histories were obtained for comparison with microdamage data using regression modelling. RESULTS Subchondral bone microcracks were observed in all bones with at least one method. Microdamage grade was greater in older horses, levelling-off for horses 5 years and older (quadratic term P = 0.01), and with lower bone material density in the parasagittal groove (P = 0.02). Microcrack density was higher in older horses (P = 0.004), and with higher bone volume fraction (BV/TV) in the parasagittal groove in horses in training (interaction effect, P = 0.01) and lower in horses resting from training (P = 0.02). MAIN LIMITATIONS Cross-sectional data only. Incomplete detection of microdamage due to the limits of resolution of microCT and lack of three-dimensional imaging with microscopy. Multicollinearity between variables that indicated career progression (e.g. age, number of career starts, duration of training period) was detected. CONCLUSIONS Fatigue damage in the distal metacarpal subchondral bone is common in Thoroughbred racehorses undergoing post-mortem and appears to accumulate throughout a racing career. Reduced intensity or duration of training and racing and/or increased duration of rest periods may limit microdamage accumulation. Focal subchondral bone sclerosis indicates the presence of microdamage.
Collapse
Affiliation(s)
- R C Whitton
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - B A Ayodele
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - P L Hitchens
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - E J Mackie
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
24
|
Hitchens PL, Pivonka P, Malekipour F, Whitton RC. Mathematical modelling of bone adaptation of the metacarpal subchondral bone in racehorses. Biomech Model Mechanobiol 2018; 17:877-890. [PMID: 29344755 DOI: 10.1007/s10237-017-0998-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/23/2017] [Indexed: 02/02/2023]
Abstract
In Thoroughbred racehorses, fractures of the distal limb are commonly catastrophic. Most of these fractures occur due to the accumulation of fatigue damage from repetitive loading, as evidenced by microdamage at the predilection sites for fracture. Adaptation of the bone in response to training loads is important for fatigue resistance. In order to better understand the mechanism of subchondral bone adaptation to its loading environment, we utilised a square root function defining the relationship between bone volume fraction [Formula: see text] and specific surface [Formula: see text] of the subchondral bone of the lateral condyles of the third metacarpal bone (MCIII) of the racehorse, and using this equation, developed a mathematical model of subchondral bone that adapts to loading conditions observed in vivo. The model is expressed as an ordinary differential equation incorporating a formation rate that is dependent on strain energy density. The loading conditions applied to a selected subchondral region, i.e. volume of interest, were estimated based on joint contact forces sustained by racehorses in training. For each of the initial conditions of [Formula: see text] we found no difference between subsequent homoeostatic [Formula: see text] at any given loading condition, but the time to reach equilibrium differed by initial [Formula: see text] and loading condition. We found that the observed values for [Formula: see text] from the mathematical model output were a good approximation to the existing data for racehorses in training or at rest. This model provides the basis for understanding the effect of changes to training strategies that may reduce the risk of racehorse injury.
Collapse
Affiliation(s)
- Peta L Hitchens
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, 3030, Australia.
| | - Peter Pivonka
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Fatemeh Malekipour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - R Chris Whitton
- Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, 3030, Australia
| |
Collapse
|
25
|
Williamson AJ, Sims NA, Thomas CDL, Lee PVS, Stevenson MA, Whitton RC. Biomechanical testing of the calcified metacarpal articular surface and its association with subchondral bone microstructure in Thoroughbred racehorses. Equine Vet J 2017; 50:255-260. [DOI: 10.1111/evj.12748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/02/2017] [Indexed: 11/27/2022]
Affiliation(s)
- A. J. Williamson
- Faculty of Veterinary and Agricultural Sciences University of Melbourne Melbourne Australia
| | - N. A. Sims
- St Vincent's Institute of Medical Research and Department of Medicine St. Vincent's Hospital University of Melbourne Melbourne Australia
| | - C. D. L. Thomas
- Melbourne Dental School University of Melbourne Melbourne Australia
| | - P. V. S. Lee
- Department of Mechanical Engineering, Melbourne School of Engineering University of Melbourne Melbourne Australia
| | - M. A. Stevenson
- Faculty of Veterinary and Agricultural Sciences University of Melbourne Melbourne Australia
| | - R. C. Whitton
- Faculty of Veterinary and Agricultural Sciences University of Melbourne Melbourne Australia
| |
Collapse
|
26
|
Bani Hassan E, Mirams M, Mackie EJ, Whitton RC. Prevalence of subchondral bone pathological changes in the distal metacarpi/metatarsi of racing Thoroughbred horses. Aust Vet J 2017; 95:362-369. [DOI: 10.1111/avj.12628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
Affiliation(s)
- E Bani Hassan
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; 250 Princes Hwy Werribee 3030 Victoria Australia
- Australian Institute for Musculoskeletal Science (AIMSS) and Department of Medicine-Western Health, Melbourne Medical School; The University of Melbourne; Australia
| | - M Mirams
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; 250 Princes Hwy Werribee 3030 Victoria Australia
| | - EJ Mackie
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; 250 Princes Hwy Werribee 3030 Victoria Australia
| | - RC Whitton
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; 250 Princes Hwy Werribee 3030 Victoria Australia
| |
Collapse
|