1
|
Smith CE, Bartlett JD, Simmer JP, Hu JCC. Challenges of Studying Amelogenesis in Gene-Targeted Mouse Models. Int J Mol Sci 2025; 26:4905. [PMID: 40430043 PMCID: PMC12112697 DOI: 10.3390/ijms26104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Research on how a stratified oral epithelium gained the capability to create the hardest hydroxyapatite-based mineralized tissue produced biologically to protect the surfaces of teeth has been ongoing for at least 175 years. Many advances have been made in unraveling some of the key factors that allowed the innermost undifferentiated epithelial cells sitting on a skin-type basement membrane to transform into highly polarized cells capable of forming and controlling the mineralization of the extracellular organic matrix that becomes enamel. Genetic manipulation of mice has proven to be a useful approach for studying specific events in the amelogenesis developmental sequence but there have been pitfalls in interpreting loss of function data caused in part by conflicting literature, technical problems in tissue preservation, and the total amount of time spent on tooth development between different species that have led to equivocal conclusions. This critical review attempts to discuss some of these issues and highlight the challenges of characterizing amelogenesis in gene-targeted mouse models.
Collapse
Affiliation(s)
- Charles E. Smith
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, 3640 University St., Montreal, QC H3A 0C7, Canada;
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48190, USA;
| | - John D. Bartlett
- Division of Biosciences, College of Dentistry, Ohio State University, 305 W. 12th Ave., Columbus, OH 43210, USA;
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48190, USA;
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48190, USA;
| |
Collapse
|
2
|
Chan L, Lu J, Feng X, Lin L, Yao Y, Zhang X. Loss of Stat3 in Osterix + cells impairs dental hard tissues development. Cell Biosci 2023; 13:75. [PMID: 37088831 PMCID: PMC10123978 DOI: 10.1186/s13578-023-01027-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Mutations in the signal transducers and activators of transcription 3 (STAT3) gene result in hyper-IgE syndrome(HIES), a rare immunodeficiency that causes abnormalities in immune system, bones and teeth. However, the role of Stat3 in development of dental hard tissues was yet to investigate. METHODS In this study, a transgenic mouse of conditional knockout of Stat3 in dental mesenchymal cells (Osx-Cre; Stat3fl/fl, Stat3 CKO) was made. The differences of postnatal tooth development between control and Stat3 CKO mice were compared by histology, µCT and scanning electron microscopy. RESULT Compared with the control, Stat3 CKO mice were presented with remarkable abnormal tooth phenotypes characterized by short root and thin dentin in molars and incisors. The enamel defects were also found on mandibular incisors. showed that Ki67-positive cells significantly decreased in dental mesenchymal of Stat3 CKO mice. In addition, β-catenin signaling was reduced in Hertwig's epithelial root sheath (HERS) and odontoblasts of Stat3 CKO mice. CONCLUSIONS Our results suggested that Stat3 played an important role in dental hard tissues development, and Stat3 may regulate dentin and tooth root development through the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Laiting Chan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiarui Lu
- Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518033, Guangdong, China
| | - Xin Feng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lichieh Lin
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yichen Yao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaolei Zhang
- Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
3
|
Asgari R, Vaisi-Raygani A, Aleagha MSE, Mohammadi P, Bakhtiari M, Arghiani N. CD147 and MMPs as key factors in physiological and pathological processes. Biomed Pharmacother 2023; 157:113983. [PMID: 36370522 DOI: 10.1016/j.biopha.2022.113983] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Cluster of differentiation 147 (CD147) or extracellular matrix metalloproteinase inducer (EMMPRIN) is a transmembrane glycoprotein that induces the synthesis of matrix metalloproteinases (MMPs). MMPs, as zinc-dependent proteases and versatile enzymes, play critical roles in the degradation of the extracellular matrix (ECM) components, cleaving of the receptors of cellular surfaces, signaling molecules, and other precursor proteins, which may lead to attenuation or activation of such targets. CD147 and MMPs play essential roles in physiological and pathological conditions and any disorder in the expression, synthesis, or function of CD147 and MMPs may be associated with various types of disease. In this review, we have focused on the roles of CD147 and MMPs in some major physiological and pathological processes.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nahid Arghiani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
4
|
Isono K, Takahashi E, Miyoshi I, Tsuneto M, Hikosaka-Kuniishi M, Yamane T, Yamazaki H. Simultaneous Fluorescent Identification of Odontoblasts and Ameloblasts. J Dent Res 2020; 100:532-541. [PMID: 33289448 DOI: 10.1177/0022034520974576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The tooth is mainly composed of dentin and enamel. Identification of dentin-producing odontoblasts and enamel-producing ameloblasts using reporter techniques is useful to study tooth development and regeneration with tissue engineering. Ameloblasts express Amelogenin, Ameloblastin, Enamelin, and Amelotin, whereas odontoblasts express Dentin sialophosphoprotein (Dspp) and Dentin matrix protein1 (Dmp1). Although there are several transgenic lines using promoter elements or bacterial artificial chromosomes (BACs) to label odontoblasts and ameloblasts, there is a possibility that the expression patterns vary from the endogenous genes. Here, we established 2 lines of mice where tdTomato was knocked into the second exon of X-chromosomal Amelogenin (Amelx), and green fluorescent protein (GFP) was knocked into the second exon of Dspp. tdTomato and GFP were highly expressed on secretory ameloblasts and secretory and fully differentiated odontoblasts, respectively. In addition, DSPP and AMELX were not produced in the dentin matrix and enamel matrix of DsppGFP/GFP and AmelxtdTomato male mice (as representative of AmelxtdTomato/Y hemizygous male mice), respectively. Moreover, micro-computed tomography analysis of AmelxtdTomato male mice revealed a notable reduction in enamel volume but increased dentin mineral density. DsppGFP/GFP mice had reduced dentin mineral density. To identify odontoblasts and ameloblasts from developing tooth, we examined the expression of mesenchymal cell surface molecules CD90, CD166 and epithelial cell surface molecules CD49f, Epcam1 with fluorescence on odontoblasts and ameloblasts in these mice. We found that GFP+ odontoblasts and tdTomato+ ameloblasts in tooth germ from 0.5-d-old DsppGFP/+ mice and AmelxtdTomato male mice were enriched in CD45-/Ter119-/Epcam1-/CD90+/Integrin α4+cell fractions and CD45-/Ter119-/Epcam1+/CD49f+/CD147+ cell fractions, respectively. By using antibodies against mesenchymal and epithelial cell surface molecules and fluorescence, we can easily distinguish odontoblasts from ameloblasts and isolate each cell for further studies. These mice would serve as useful models for tooth development and regeneration as well as provide concurrent observation for the differentiation processes of odontoblasts and ameloblasts in vivo and in vitro.
Collapse
Affiliation(s)
- K Isono
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - E Takahashi
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - I Miyoshi
- Department of Laboratory Animal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - M Tsuneto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Tottori, Japan
| | - M Hikosaka-Kuniishi
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - T Yamane
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - H Yamazaki
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
5
|
Guindolet D, Gabison EE. Role of CD147 (EMMPRIN/Basigin) in Tissue Remodeling. Anat Rec (Hoboken) 2019; 303:1584-1589. [DOI: 10.1002/ar.24089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Damien Guindolet
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| | - Eric E. Gabison
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| |
Collapse
|
6
|
Malyshev IY, Runova GS, Poduraev YV, Mironov VA. [Natural amelogenesis and rationale for enamel regeneration by means of robotic bioprinting of tissues in situ]. STOMATOLOGII︠A︡ 2018; 97:58-64. [PMID: 29795109 DOI: 10.17116/stomat201897258-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- I Yu Malyshev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia, 127473
| | - G S Runova
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia, 127473
| | - Yu V Poduraev
- Moscow State Technological University STANKIN, Moscow, Russia, 127055
| | - V A Mironov
- Biotechnology Research Laboratory '3D Bioprinting Solutions', Moscow, Russia, 115409
| |
Collapse
|
7
|
Shi L, Li L, Wang D, Li S, Chen Z, An Z. Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development. J Mol Histol 2016; 47:337-44. [PMID: 27075451 DOI: 10.1007/s10735-016-9675-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/06/2016] [Indexed: 12/31/2022]
Abstract
Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues.
Collapse
Affiliation(s)
- Lu Shi
- Henan Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Zhengzhou University, 79 Zhongyuandong Road, Zhengzhou, 450000, Henan, People's Republic of China.
| | - Lingyun Li
- Henan Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Zhengzhou University, 79 Zhongyuandong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Ding Wang
- Henan Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Zhengzhou University, 79 Zhongyuandong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Shu Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44-1 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zhi Chen
- Key Lab for Oral Biomedical Engineering, Ministry of Education, School of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Zhengwen An
- Craniofacial Development and Stem Cell Biology, Floor 27 Guy's Hospital Dental Institute, King's College London, London, SE1 9RT, UK
| |
Collapse
|
8
|
Bardet C, Courson F, Wu Y, Khaddam M, Salmon B, Ribes S, Thumfart J, Yamaguti PM, Rochefort GY, Figueres ML, Breiderhoff T, Garcia-Castaño A, Vallée B, Le Denmat D, Baroukh B, Guilbert T, Schmitt A, Massé JM, Bazin D, Lorenz G, Morawietz M, Hou J, Carvalho-Lobato P, Manzanares MC, Fricain JC, Talmud D, Demontis R, Neves F, Zenaty D, Berdal A, Kiesow A, Petzold M, Menashi S, Linglart A, Acevedo AC, Vargas-Poussou R, Müller D, Houillier P, Chaussain C. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation. J Bone Miner Res 2016; 31:498-513. [PMID: 26426912 DOI: 10.1002/jbmr.2726] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/26/2022]
Abstract
Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients.
Collapse
Affiliation(s)
- Claire Bardet
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France
| | - Frédéric Courson
- Department of Odontology, AP-HP, and Reference Center for Rare Diseases of the Metabolism of Calcium and Phosphorus, Nord Val de Seine Hospital, Bretonneau, France
| | - Yong Wu
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France.,Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mayssam Khaddam
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France
| | - Benjamin Salmon
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France.,Department of Odontology, AP-HP, and Reference Center for Rare Diseases of the Metabolism of Calcium and Phosphorus, Nord Val de Seine Hospital, Bretonneau, France
| | - Sandy Ribes
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France
| | - Julia Thumfart
- Department of Pediatric Nephrology, Charité University School of Medicine, Berlin, Germany
| | - Paulo M Yamaguti
- Division of Dentistry, Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Faculty of Health Sciences, University of Brasilia (UnB), Brasilia, Brazil
| | - Gael Y Rochefort
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France
| | - Marie-Lucile Figueres
- INSERM UMRS 1138, Cordeliers Research Center, Paris-Diderot, Pierre et Marie Curie and Paris Descartes Universities, CNRS ERL 8228, Paris, France
| | - Tilman Breiderhoff
- Department of Pediatric Nephrology, Charité University School of Medicine, Berlin, Germany
| | - Alejandro Garcia-Castaño
- Department of Genetics, AP-HP, and Reference Center of Children and Adult Renal Hereditary Diseases (MARHEA), European Hospital Georges Pompidou, Paris, France
| | - Benoit Vallée
- Laboratory CRRET, Paris-Est University, CNRS, Créteil, France
| | - Dominique Le Denmat
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France
| | - Brigitte Baroukh
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France
| | - Thomas Guilbert
- Cochin Institute, Plate-Forme d'Imagerie Photonique, INSERM U1016, CNRS UMR8104, Paris Descartes University Sorbonne Paris Cité, Paris, France
| | - Alain Schmitt
- Cochin Institute, Transmission Electron Microscopy Platform, INSERM U1016, CNRS UMR8104, Paris Descartes University Sorbonne Paris Cité, Paris, France
| | - Jean-Marc Massé
- Cochin Institute, Transmission Electron Microscopy Platform, INSERM U1016, CNRS UMR8104, Paris Descartes University Sorbonne Paris Cité, Paris, France
| | - Dominique Bazin
- Laboratoire de Physique des Solides, CNRS, Paris Sud University, Orsay, and LCMCP-UPMC, Collège de France, Paris, France
| | - Georg Lorenz
- Fraunhofer Institute for Mechanics of Materials IWM, Halle, Germany
| | - Maria Morawietz
- Fraunhofer Institute for Mechanics of Materials IWM, Halle, Germany
| | - Jianghui Hou
- Division of Renal Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia Carvalho-Lobato
- Human Anatomy and Embryology, Health University of Barcelona Campus-Bellvitge, University of Barcelona, Barcelona, Spain
| | - Maria Cristina Manzanares
- Human Anatomy and Embryology, Health University of Barcelona Campus-Bellvitge, University of Barcelona, Barcelona, Spain
| | - Jean-Christophe Fricain
- CHU Bordeaux, Dental School, U1026 Tissue Bioengineering, University of Bordeaux/Inserm, Bordeaux, France
| | - Deborah Talmud
- Department of Pediatrics, Centre Hospitalier Régional (CHR) d'Orléans, Orleans, France
| | | | - Francisco Neves
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasilia (UNB), Brasilia, Brazil
| | - Delphine Zenaty
- Department of Pediatric Endocrinology, AP-HP, Paris Diderot University, Robert Debré Hospital, Paris, France
| | - Ariane Berdal
- INSERM UMRS 1138, Cordeliers Research Center, Paris-Diderot, Pierre et Marie Curie and Paris Descartes Universities, CNRS ERL 8228, Paris, France
| | - Andreas Kiesow
- Fraunhofer Institute for Mechanics of Materials IWM, Halle, Germany
| | - Matthias Petzold
- Fraunhofer Institute for Mechanics of Materials IWM, Halle, Germany
| | - Suzanne Menashi
- Laboratory CRRET, Paris-Est University, CNRS, Créteil, France
| | - Agnes Linglart
- Department of Pediatric Endocrinology, AP-HP, Paris Sud University, School of Medicine, and Reference Center for Rare Diseases of the Metabolism of Calcium and Phosphorus, Paris, France
| | - Ana Carolina Acevedo
- Division of Dentistry, Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Faculty of Health Sciences, University of Brasilia (UnB), Brasilia, Brazil
| | - Rosa Vargas-Poussou
- Department of Genetics, AP-HP, and Reference Center of Children and Adult Renal Hereditary Diseases (MARHEA), European Hospital Georges Pompidou, Paris, France
| | - Dominik Müller
- Department of Pediatric Nephrology, Charité University School of Medicine, Berlin, Germany
| | - Pascal Houillier
- INSERM UMRS 1138, Cordeliers Research Center, Paris-Diderot, Pierre et Marie Curie and Paris Descartes Universities, CNRS ERL 8228, Paris, France.,Department of Physiology, AP-HP, and Reference Center of Children and Adult Renal Hereditary Diseases (MARHEA), Georges Pompidou European Hospital, Paris, France
| | - Catherine Chaussain
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School Paris Descartes University, Sorbonne Paris Cité, France.,Department of Odontology, AP-HP, and Reference Center for Rare Diseases of the Metabolism of Calcium and Phosphorus, Nord Val de Seine Hospital, Bretonneau, France
| |
Collapse
|
9
|
Ghadakzadeh S, Mekhail M, Aoude A, Hamdy R, Tabrizian M. Small Players Ruling the Hard Game: siRNA in Bone Regeneration. J Bone Miner Res 2016; 31:475-87. [PMID: 26890411 DOI: 10.1002/jbmr.2816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
Abstract
Silencing gene expression through a sequence-specific manner can be achieved by small interfering RNAs (siRNAs). The discovery of this process has opened the doors to the development of siRNA therapeutics. Although several preclinical and clinical studies have shown great promise in the treatment of neurological disorders, cancers, dominant disorders, and viral infections with siRNA, siRNA therapy is still gaining ground in musculoskeletal tissue repair and bone regeneration. Here we present a comprehensive review of the literature to summarize different siRNA delivery strategies utilized to enhance bone regeneration. With advancement in understanding the targetable biological pathways involved in bone regeneration and also the rapid progress in siRNA technologies, application of siRNA for bone regeneration has great therapeutic potential. High rates of musculoskeletal injuries and diseases, and their inevitable consequences, impose a huge financial burden on individuals and healthcare systems worldwide.
Collapse
Affiliation(s)
- Saber Ghadakzadeh
- Experimental Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, Canada.,Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Mina Mekhail
- Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Ahmed Aoude
- Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Reggie Hamdy
- Experimental Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, Canada.,Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem 2015; 159:481-90. [PMID: 26684586 PMCID: PMC4846773 DOI: 10.1093/jb/mvv127] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022] Open
Abstract
Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Professor Emeritus, Nagoya University, 1204 Hirabariminami 2, Tenpaku, Nagoya 468-0020, Japan
| |
Collapse
|
11
|
How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 2015; 36:e00283. [PMID: 26604323 PMCID: PMC4718507 DOI: 10.1042/bsr20150256] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity.
Collapse
|
12
|
Balic A, Thesleff I. Tissue Interactions Regulating Tooth Development and Renewal. Curr Top Dev Biol 2015; 115:157-86. [DOI: 10.1016/bs.ctdb.2015.07.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|