1
|
Zaimi M, Grapsa E. Current therapeutic approach of chronic kidney disease-mineral and bone disorder. Ther Apher Dial 2024; 28:671-689. [PMID: 38898685 DOI: 10.1111/1744-9987.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Chronic kidney disease (CKD) has emerged as one of the leading noncommunicable diseases affecting >10% of the population worldwide. Bone and mineral disorders are a common complication among patients with CKD resulting in a poor life quality, high fracture risk, increased morbidity and cardiovascular mortality. According to Kidney Disease: Improving Global Outcomes, renal osteodystrophy refers to changes in bone morphology found in bone biopsy, whereas CKD-mineral and bone disorder (CKD-MBD) defines a complex of disturbances including biochemical and hormonal alterations, disorders of bone and mineral metabolism and extraskeletal calcification. As a result, the management of CKD-MBD should focus on the aforementioned parameters, including the treatment of hyperphosphatemia, hypocalcemia, abnormal PTH and vitamin D levels. Regarding the bone fragility fractures, osteoporosis and renal osteodystrophy, which constitute the bone component of CKD-MBD, anti-osteoporotic agents constitute the mainstay of treatment. However, a thorough elucidation of the CKD-MBD pathogenesis is crucial for the ideal personalized treatment approach. In this paper, we review the pathology and management of CKD-MBD based on the current literature with special attention to recent advances.
Collapse
Affiliation(s)
- Maria Zaimi
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Eirini Grapsa
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
2
|
Biruete A, Chen NX, Metzger CE, Srinivasan S, O'Neill K, Fallen PB, Fonseca A, Wilson HE, de Loor H, Evenepoel P, Swanson KS, Allen MR, Moe SM. The Dietary Fiber Inulin Slows Progression of Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD) in a Rat Model of CKD. JBMR Plus 2023; 7:e10837. [PMID: 38130753 PMCID: PMC10731114 DOI: 10.1002/jbm4.10837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic kidney disease (CKD)-mineral bone disorder (CKD-MBD) leads to fractures and cardiovascular disease. Observational studies suggest beneficial effects of dietary fiber on both bone and cardiovascular outcomes, but the effect of fiber on CKD-MBD is unknown. To determine the effect of fiber on CKD-MBD, we fed the Cy/+ rat with progressive CKD a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30% and ~15% of normal kidney function; CKD 4 and 5). We assessed CKD-MBD end points of biochemistry, bone quantity and quality, cardiovascular health, and cecal microbiota and serum gut-derived uremic toxins. Results were analyzed by two-way analysis of variance (ANOVA) to evaluate the main effects of CKD stage and inulin, and their interaction. The results showed that in CKD animals, inulin did not alter kidney function but reduced the increase from stage 4 to 5 in serum levels of phosphate and parathyroid hormone, but not fibroblast growth factor-23 (FGF23). Bone turnover and cortical bone parameters were similarly improved but mechanical properties were not altered. Inulin slowed progression of aorta and cardiac calcification, left ventricular mass index, and fibrosis. To understand the mechanism, we assessed intestinal microbiota and found changes in alpha and beta diversity and significant changes in several taxa with inulin, together with a reduction in circulating gut derived uremic toxins such as indoxyl sulfate and short-chain fatty acids. In conclusion, the addition of the fermentable fiber inulin to the diet of CKD rats led to a slowed progression of CKD-MBD without affecting kidney function, likely mediated by changes in the gut microbiota composition and lowered gut-derived uremic toxins. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Annabel Biruete
- Department of Nutrition SciencePurdue UniversityWest LafayetteINUSA
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Neal X. Chen
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Corinne E. Metzger
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Shruthi Srinivasan
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Kalisha O'Neill
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Paul B. Fallen
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Austin Fonseca
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Hannah E. Wilson
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Henriette de Loor
- KU Leuven Department of Microbiology and ImmunologyNephrology and Renal Transplantation Research Group, KU LeuvenLeuvenBelgium
| | - Pieter Evenepoel
- KU Leuven Department of Microbiology and ImmunologyNephrology and Renal Transplantation Research Group, KU LeuvenLeuvenBelgium
- Department of Nephrology and Renal TransplantationUniversity Hospitals LeuvenLeuvenBelgium
| | - Kelly S. Swanson
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Matthew R. Allen
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Sharon M. Moe
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
3
|
Biruete A, Chen NX, Metzger CE, Srinivasan S, O’Neill K, Fallen PB, Fonseca A, Wilson HE, de Loor H, Evenepoel P, Swanson KS, Allen MR, Moe SM. The Dietary Fermentable Fiber Inulin Alters the Intestinal Microbiome and Improves Chronic Kidney Disease Mineral-Bone Disorder in a Rat Model of CKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526093. [PMID: 36778372 PMCID: PMC9915522 DOI: 10.1101/2023.01.29.526093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Dietary fiber is important for a healthy diet, but intake is low in CKD patients and the impact this has on the manifestations of CKD-Mineral Bone Disorder (MBD) is unknown. Methods The Cy/+ rat with progressive CKD was fed a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30 and ~15 % of normal kidney function). We assessed CKD-MBD, cecal microbiota, and serum gut-derived uremic toxins. Two-way ANOVA was used to evaluate the effect of age and inulin diet, and their interaction. Results In CKD animals, dietary inulin led to changes in microbiota alpha and beta diversity at 30 and 32 weeks, with higher relative abundance of several taxa, including Bifidobacterium and Bacteroides , and lower Lactobacillus . Inulin reduced serum levels of gut-derived uremic toxins, phosphate, and parathyroid hormone, but not fibroblast growth factor-23. Dietary inulin decreased aorta and cardiac calcification and reduced left ventricular mass index and cardiac fibrosis. Bone turnover and cortical bone parameters were improved with inulin; however, bone mechanical properties were not altered. Conclusions The addition of the fermentable fiber inulin to the diet of CKD rats led to changes in the gut microbiota composition, lowered gut-derived uremic toxins, and improved most parameters of CKD-MBD. Future studies should assess this fiber as an additive therapy to other pharmacologic and diet interventions in CKD. Significance Statement Dietary fiber has well established beneficial health effects. However, the impact of fermentable dietary fiber on the intestinal microbiome and CKD-MBD is poorly understood. We used an animal model of progressive CKD and demonstrated that the addition of 10% of the fermentable fiber inulin to the diet altered the intestinal microbiota and lowered circulating gut-derived uremic toxins, phosphorus, and parathyroid hormone. These changes were associated with improved cortical bone parameters, lower vascular calcification, and reduced cardiac hypertrophy, fibrosis and calcification. Taken together, dietary fermentable fiber may be a novel additive intervention to traditional therapies of CKD-MBD.
Collapse
|
4
|
|
5
|
Nagy E, Sobh MM, Abdalbary M, Elnagar S, Elrefaey R, Shabaka S, Elshabrawy N, Shemies R, Tawfik M, Santos CGS, Barreto FC, El-Husseini A. Is Adynamic Bone Always a Disease? Lessons from Patients with Chronic Kidney Disease. J Clin Med 2022; 11:jcm11237130. [PMID: 36498703 PMCID: PMC9736225 DOI: 10.3390/jcm11237130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Renal osteodystrophy (ROD) is a common complication of end-stage kidney disease that often starts early with loss of kidney function, and it is considered an integral part in management of patients with chronic kidney disease (CKD). Adynamic bone (ADB) is characterized by suppressed bone formation, low cellularity, and thin osteoid seams. There is accumulating evidence supporting increasing prevalence of ADB, particularly in early CKD. Contemporarily, it is not very clear whether it represents a true disease, an adaptive mechanism to prevent bone resorption, or just a transitional stage. Several co-players are incriminated in its pathogenesis, such as age, diabetes mellitus, malnutrition, uremic milieu, and iatrogenic factors. In the present review, we will discuss the up-to-date knowledge of the ADB and focus on its impact on bone health, fracture risk, vascular calcification, and long-term survival. Moreover, we will emphasize the proper preventive and management strategies of ADB that are pivotal issues in managing patients with CKD. It is still unclear whether ADB is always a pathologic condition or whether it can represent an adaptive process to suppress bone resorption and further bone loss. In this article, we tried to discuss this hard topic based on the available limited information in patients with CKD. More studies are needed to be able to clearly address this frequent ROD finding.
Collapse
Affiliation(s)
- Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Rabab Elrefaey
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa Shabaka
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Rasha Shemies
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mona Tawfik
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Cássia Gomes S. Santos
- Department of Internal Medicine, Division of Nephrology, Federal University of Paraná, Curitiba 80060-00, PR, Brazil
| | - Fellype C. Barreto
- Department of Internal Medicine, Division of Nephrology, Federal University of Paraná, Curitiba 80060-00, PR, Brazil
| | - Amr El-Husseini
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40536-0298, USA
- Correspondence: ; Tel.: +1-859-218-0934; Fax: +1-859-323-0232
| |
Collapse
|
6
|
Toxic Effects of Indoxyl Sulfate on Osteoclastogenesis and Osteoblastogenesis. Int J Mol Sci 2021; 22:ijms222011265. [PMID: 34681927 PMCID: PMC8538618 DOI: 10.3390/ijms222011265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Uremic toxins, such as indoxyl sulfate (IS) and kynurenine, accumulate in the blood in the event of kidney failure and contribute to further bone damage. To maintain the homeostasis of the skeletal system, bone remodeling is a persistent process of bone formation and bone resorption that depends on a dynamic balance of osteoblasts and osteoclasts. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates the toxic effects of uremic toxins. IS is an endogenous AhR ligand and is metabolized from tryptophan. In osteoclastogenesis, IS affects the expression of the osteoclast precursor nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) through AhR signaling. It is possible to increase osteoclast differentiation with short-term and low-dose IS exposure and to decrease differentiation with long-term and/or high-dose IS exposure. Coincidentally, during osteoblastogenesis, through the AhR signaling pathway, IS inhibits the phosphorylation of ERK, and p38 reduces the expression of the transcription factor 2 (Runx2), disturbing osteoblastogenesis. The AhR antagonist resveratrol has a protective effect on the IS/AhR pathway. Therefore, it is necessary to understand the multifaceted role of AhR in CKD, as knowledge of these transcription signals could provide a safe and effective method to prevent and treat CKD mineral bone disease.
Collapse
|
7
|
Rodrigues FG, Ormanji MS, Heilberg IP, Bakker SJL, de Borst MH. Interplay between gut microbiota, bone health and vascular calcification in chronic kidney disease. Eur J Clin Invest 2021; 51:e13588. [PMID: 33948936 PMCID: PMC8459296 DOI: 10.1111/eci.13588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Deregulations in gut microbiota may play a role in vascular and bone disease in chronic kidney disease (CKD). As glomerular filtration rate declines, the colon becomes more important as a site of excretion of urea and uric acid, and an increased bacterial proteolytic fermentation alters the gut microbial balance. A diet with limited amounts of fibre, as well as certain medications (eg phosphate binders, iron supplementation, antibiotics) further contribute to changes in gut microbiota composition among CKD patients. At the same time, both vascular calcification and bone disease are common in patients with advanced kidney disease. This narrative review describes emerging evidence on gut dysbiosis, vascular calcification, bone demineralization and their interrelationship termed the 'gut-bone-vascular axis' in progressive CKD. The role of diet, gut microbial metabolites (ie indoxyl sulphate, p-cresyl sulphate, trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFA)), vitamin K deficiency, inflammatory cytokines and their impact on both bone health and vascular calcification are discussed. This framework may open up novel preventive and therapeutic approaches targeting the microbiome in an attempt to improve cardiovascular and bone health in CKD.
Collapse
Affiliation(s)
- Fernanda G Rodrigues
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milene S Ormanji
- Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ita P Heilberg
- Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil.,Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Kim MG, Yang J, Jo SK. Intestinal microbiota and kidney diseases. Kidney Res Clin Pract 2021; 40:335-343. [PMID: 34233442 PMCID: PMC8476297 DOI: 10.23876/j.krcp.21.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Large microbial communities reside in the gut as an endogenous organ and interact with the host physiology through symbiotic relationships, affecting health. Recent advances in high-throughput sequencing techniques have made it possible to better understand these complex microbial communities and their effects on hosts. Animal and clinical studies have provided considerable evidence to show that the microbiota plays an important role in chronic kidney disease, acute kidney injury, nephrolithiasis, and kidney transplantation by altering the functions of the intestinal barrier, regulating local and systemic inflammation, controlling production of metabolic components, and affecting immune responses. Although the exact mechanism underlying the microbial shift and its impact on disease progression remains uncertain, the kidney-gut interaction clearly plays a significant role in onset and progression of kidney disease and, therefore, holds promise as a therapeutic target. Here, we review recent literature pertaining to the bidirectional relationship between microbes and humans in various kidney diseases and discuss the future direction of microbial research in nephrology.
Collapse
Affiliation(s)
- Myung-Gyu Kim
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Yang
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang-Kyung Jo
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Association between the uremic toxins indoxyl-sulfate and p-cresyl-sulfate with sarcopenia and malnutrition in elderly patients with advanced chronic kidney disease. Exp Gerontol 2021; 147:111266. [PMID: 33529747 DOI: 10.1016/j.exger.2021.111266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND in patients with chronic kidney disease (CKD) indoxyl sulfate (IS) and p-cresyl sulfate (PCs) may induce sarcopenia either directly or via systemic inflammation. We evaluated whether IS and PCs were associated with: sarcopenia, systemic inflammation and nutritional status. METHODS we examined cross sectionally 93 patients with advanced CKD. Sarcopenia was identified according to EWGSOP2 definition. Malnutrition was assessed by Malnutrition Inflammation Score (MIS) and Protein Energy Wasting syndrome (PEW). Inflammatory status was assessed by dosing: CRP, IL6, TNFα, MCP1, IL10, IL17, IL12p70. RESULTS we did not find any association of sarcopenia with IS and PCs. IS was associated with LogTNFα and LogMCP-1 in the overall cohort (r = 0.30, p = 0.0043; r = 0.22 p = 0.047) and in not sarcopenic patients (r = 0.32, p = 0.0077; r = 0.25, p = 0.041). PCs was associated with LogIL10 and LogIL12p70 in sarcopenic patients (r = 0.58, p = 0.0042; r = 0.52, p = 0.013). IS was higher in patients without PEW (p = 0.029), while PCs was higher in patients with PEW (p = 0.0040). IS and PCs were not different in patients with normal or increased MIS. CONCLUSIONS IS and PCs were not associated with sarcopenia, although they were both associated with some inflammatory pathways. Notably, we found a positive association of PCs with PEW syndrome.
Collapse
|
11
|
Liu WC, Shyu JF, Lin YF, Chiu HW, Lim PS, Lu CL, Zheng CM, Hou YC, Chen PH, Lu KC. Resveratrol Rescue Indoxyl Sulfate-Induced Deterioration of Osteoblastogenesis via the Aryl Hydrocarbon Receptor /MAPK Pathway. Int J Mol Sci 2020; 21:ijms21207483. [PMID: 33050571 PMCID: PMC7589702 DOI: 10.3390/ijms21207483] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Indoxyl sulfate (IS), a uremic toxin derived from dietary tryptophan metabolism by the gut microbiota, is an endogenous aryl hydrocarbon receptor (AhR) agonist and a key player in bone remodeling. Resveratrol (RSV), an AhR antagonist, plays a protective role in shielding against AhR ligands. Our study explored the impact of IS on osteoblast differentiation and examined the possible mechanism of IS in controlling the expression of osteoblastogenesis markers through an in-depth investigation of AhR signaling. In vivo, we found histological architectural disruption of the femoral bones in 5/6 nephrectomies of young adult IS exposed mice, including reduced Runx2 antigen expression. RSV improved the diaphysis architecture, Runx2 expression, and trabecular quality. In vitro data suggest that IS at 500 and 1000 μM disturbed osteoblastogenesis through suppression of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways, which were found to be downstream of AhR. RSV proved to ameliorate the anti-osteoblastogenic effects of IS through the inhibition of AhR and downstream signaling. Taken together, we demonstrated that the IS/AhR/MAPK signaling pathway plays a crucial role in the inhibition of osteoblastogenesis, and RSV has a potential therapeutic role in reversing the IS-induced decline in osteoblast development and suppressing abnormal bone turnover in chronic kidney disease patients.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-F.S.); (P.-H.C.)
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Paik Seong Lim
- Division of Nephrology, Department of Internal Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan
| | - Po-Han Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-F.S.); (P.-H.C.)
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence: ; Tel.: +886-9-3573-4537
| |
Collapse
|
12
|
Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12:toxins12090590. [PMID: 32932981 PMCID: PMC7551879 DOI: 10.3390/toxins12090590] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.
Collapse
Affiliation(s)
- Amanda L. Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA;
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
- Correspondence:
| |
Collapse
|
13
|
Espi M, Koppe L, Fouque D, Thaunat O. Chronic Kidney Disease-Associated Immune Dysfunctions: Impact of Protein-Bound Uremic Retention Solutes on Immune Cells. Toxins (Basel) 2020; 12:toxins12050300. [PMID: 32384617 PMCID: PMC7291164 DOI: 10.3390/toxins12050300] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Regardless of the primary disease responsible for kidney failure, patients suffering from chronic kidney disease (CKD) have in common multiple impairments of both the innate and adaptive immune systems, the pathophysiology of which has long remained enigmatic. CKD-associated immune dysfunction includes chronic low-grade activation of monocytes and neutrophils, which induces endothelial damage and increases cardiovascular risk. Although innate immune effectors are activated during CKD, their anti-bacterial capacity is impaired, leading to increased susceptibility to extracellular bacterial infections. Finally, CKD patients are also characterized by profound alterations of cellular and humoral adaptive immune responses, which account for an increased risk for malignancies and viral infections. This review summarizes the recent emerging data that link the pathophysiology of CKD-associated immune dysfunctions with the accumulation of microbiota-derived metabolites, including indoxyl sulfate and p-cresyl sulfate, the two best characterized protein-bound uremic retention solutes.
Collapse
Affiliation(s)
- Maxime Espi
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69000 Lyon, France;
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
| | - Laetitia Koppe
- Département de Néphrologie-Dialyse-Nutrition, Centre Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (L.K.); (D.F.)
- CarMeN, INSERM U1060, INRA 1397, 69310 Pierre-Bénite, France
- Lyon-Sud Medical Faculty, Université de Lyon, 69000 Lyon, France
| | - Denis Fouque
- Département de Néphrologie-Dialyse-Nutrition, Centre Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (L.K.); (D.F.)
- CarMeN, INSERM U1060, INRA 1397, 69310 Pierre-Bénite, France
- Lyon-Sud Medical Faculty, Université de Lyon, 69000 Lyon, France
| | - Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69000 Lyon, France;
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
- Lyon-Est Medical Faculty, Université de Lyon, 69000 Lyon, France
- Correspondence:
| |
Collapse
|
14
|
Rodrigues GGC, Dellê H, Brito RBO, Cardoso VO, Fernandes KPS, Mesquita-Ferrari RA, Cunha RS, Stinghen AEM, Dalboni MA, Barreto FC. Indoxyl Sulfate Contributes to Uremic Sarcopenia by Inducing Apoptosis in Myoblasts. Arch Med Res 2020; 51:21-29. [PMID: 32086105 DOI: 10.1016/j.arcmed.2019.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/28/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023]
Abstract
OBJETIVE Uremic sarcopenia is a complication of chronic kidney disease, particularly in its later stages, which leads to musculoskeletal disability. Uremic toxins have been linked to the pathogenesis of several manifestations of uremic syndrome. We sought to investigate whether indoxyl sulphate (IS), a protein-bound uremic toxin, is implicated in the development of uremic sarcopenia. MATERIAL AND METHODS Myoblasts were exposed to IS at normal (0.6 mg/L, IS0.6), uremic (53 mg/L, IS53) or maximum uremic (236 mg/L, IS236) concentrations for 24, 48 and 72 h. Cell viability was evaluated by MTT assay and by 7-aminoactinomycin D staining. ROS generation and apoptosis were evaluated by flow cytometry. MyoD and myogenin mRNA expression was evaluated by qRT-PCR and myosin heavy chain expression by immunocytochemistry. RESULTS Myoblast viability was reduced by IS236 in a time-dependent pattern (p <0.05; 84.4, 68.0, and 63.6%). ROS production was significantly higher (p <0.05) in cells exposed to IS53 and IS236 compared to control (untreated cells). The apoptosis rate was significantly higher in cells treated with IS53 and IS236 than in control after 48h (p <0.05; 4.7 ± 0.1% and 4.6 ± 0.3% vs. 3.1 ± 0.1%, respectively) and 72h (p <0.05; 9.6 ± 1.1% and 10.4 ± 0.3% vs. 3.1 ± 0.7%, respectively). No effect was observed on MyoD, myogenin, myosin heavy chain expression, and markers of myoblast differentiation at any IS concentration tested or time-point experiment. CONCLUSIONS These data indicate that IS has direct toxic effects on myoblast by decreasing its viability and increasing cell apoptosis. IS may be a potential target for treating uremic sarcopenia.
Collapse
Affiliation(s)
| | - Humberto Dellê
- Postgraduate Program in Medicine, Universidade Nove de Julho, São Paulo, Brazil.
| | | | | | | | | | - Regiane Stafim Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Fellype Carvalho Barreto
- Nephrology Service, Department of Internal Medicine, Universidade Federal do Paraná, Paraná, Brazil
| |
Collapse
|
15
|
|
16
|
Metabolic alterations in the bone tissues of aged osteoporotic mice. Sci Rep 2018; 8:8127. [PMID: 29802267 PMCID: PMC5970270 DOI: 10.1038/s41598-018-26322-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Age-related osteoporosis is characterized by reduced bone mineralization and reduced bone strength, which increases the risk of fractures. We examined metabolic changes associated with age-related bone loss by profiling lipids and polar metabolites in tibia and femur bone tissues from young (5 months old) and old (28 months old) male C57BL/6J mice using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. Partial least-squares discriminant analysis showed clear differences in metabolite levels in bone tissues of young and old mice. We identified 93 lipid species, including free fatty acids, sphingolipids, phospholipids, and glycerolipids, that were significantly altered in bone tissues of old mice. In addition, the expression of 26 polar metabolites differed significantly in bone tissues of old mice and young mice. Specifically, uremic toxin metabolite levels (p-cresyl sulfate, hippuric acid, and indoxylsulfate) were higher in bone tissues of old mice than in young mice. The increase in p-cresyl sulfate, hippuric acid, and indoxylsulfate levels were determined using targeted analysis of plasma polar extracts to determine whether these metabolites could serve as potential osteoporosis biomarkers. This study demonstrates that LC-MS-based global profiling of lipid and polar metabolites can elucidate metabolic changes that occur during age-related bone loss and identify potential biomarkers of osteoporosis.
Collapse
|
17
|
Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins (Basel) 2018; 10:toxins10050202. [PMID: 29772660 PMCID: PMC5983258 DOI: 10.3390/toxins10050202] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
With decreasing kidney function, cardiovascular disease (CVD) and mineral bone disorders frequently emerge in patients with chronic kidney disease (CKD). For these patients, in addition to the traditional risk factors, non-traditional CKD-specific risk factors are also associated with such diseases and conditions. One of these non-traditional risk factors is the accumulation of uremic toxins (UTs). In addition, the accumulation of UTs further deteriorates kidney function. Recently, a huge number of UTs have been identified. Although many experimental and clinical studies have reported associations between UTs and the progression of CKD, CVD, and bone disease, these relationships are very complex and have not been fully elucidated. Among the UTs, indoxyl sulfate, asymmetric dimethylarginine, and p-cresylsulfate have been of particular focus, up until now. In this review, we summarize the pathophysiological influences of these UTs on the kidney, cardiovascular system, and bone, and discuss the clinical data regarding the harmful effects of these UTs on diseases and conditions.
Collapse
|
18
|
Abstract
In chronic kidney disease (CKD), influx of urea and other retained toxins exerts a change in the gut microbiome. There is decreased number of beneficial bacteria that produce short-chain fatty acids, an essential nutrient for the colonic epithelium, concurrent with an increase in bacteria that produce uremic toxins such as indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide (TMAO). Due to intestinal wall inflammation and degradation of intercellular tight junctions, gut-derived uremic toxins translocate into the bloodstream and exert systemic effects. In this review, we discuss the evidence supporting a role for gut-derived uremic toxins in promoting multiorgan dysfunction via inflammatory, oxidative stress, and apoptosis pathways. End-organ effects include vascular calcification, kidney fibrosis, anemia, impaired immune system, adipocyte dysfunction with insulin resistance, and low turnover bone disease. Higher blood levels of gut-derived uremic toxins are associated with increased cardiovascular events and mortality in the CKD population. Clinical trials that have examined interventions to trap toxic products or reverse gut microbial dysbiosis via oral activated charcoal AST-120, prebiotics and probiotics have not shown impact on cardiovascular or survival outcomes but were limited by sample size and short trials. In summary, the gut microbiome is a major contributor to adverse cardiovascular outcomes and progression of CKD.
Collapse
|
19
|
Pan W, Kang Y. Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int Urol Nephrol 2018; 50:289-299. [PMID: 28849345 DOI: 10.1007/s11255-017-1689-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/23/2017] [Indexed: 02/05/2023]
Abstract
The complicated communities of microbiota colonizing the human gastrointestinal tract exert a strong function in health maintenance and disease prevention. Indeed, accumulating evidence has indicated that the intestinal microbiota plays a key role in the pathogenesis and development of chronic kidney disease (CKD). Modulation of the gut microbiome composition in CKD may contribute to the accumulation of gut-derived uremic toxins, high circulating level of lipopolysaccharides and immune deregulation, all of which play a critical role in the pathogenesis of CKD and CKD-associated complications. In this review, we discuss the recent findings on the potential impact of gut microbiota in CKD and the underlying mechanisms by which microbiota can influence kidney diseases and vice versa. Additionally, the potential efficacy of pre-, pro- and synbiotics in the restoration of healthy gut microbia is described in detail to provide future directions for research.
Collapse
Affiliation(s)
- Wei Pan
- Faculty of Foreign Languages and Cultures, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
20
|
Watanabe K, Tominari T, Hirata M, Matsumoto C, Hirata J, Murphy G, Nagase H, Miyaura C, Inada M. Indoxyl sulfate, a uremic toxin in chronic kidney disease, suppresses both bone formation and bone resorption. FEBS Open Bio 2017; 7:1178-1185. [PMID: 28781957 PMCID: PMC5536993 DOI: 10.1002/2211-5463.12258] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/02/2017] [Accepted: 05/27/2017] [Indexed: 01/19/2023] Open
Abstract
Abnormalities of bone turnover are commonly observed in patients with chronic kidney disease (CKD), and the low‐turnover bone disease is considered to be associated with low serum parathyroid hormone (PTH) levels and skeletal resistance to PTH. Indoxyl sulfate (IS) is a representative uremic toxin that accumulates in the blood of patients with CKD. Recently, we have reported that IS exacerbates low bone turnover induced by parathyroidectomy (PTX) in adult rats, and suggested that IS directly induces low bone turnover through the inhibition of bone formation by mechanisms unrelated to skeletal resistance to PTH. To define the direct action of IS in bone turnover, we examined the effects of IS on bone formation and bone resorption in vitro. In cultures of mouse primary osteoblasts, IS suppressed the expression of osterix, osteocalcin, and bone morphogenetic protein 2 (BMP2) mRNA and clearly inhibited the formation of mineralized bone nodules. Therefore, IS directly acts on osteoblastic cells to suppress bone formation. On the other hand, IS suppressed interleukin (IL)‐1‐induced osteoclast formation in cocultures of bone marrow cells and osteoblasts, and IL‐1‐induced bone resorption in calvarial organ cultures. In cultures of osteoblasts, IS suppressed the mRNA expression of RANKL, the receptor activator of NF‐κB ligand, which is a pivotal factor for osteoclast differentiation. Moreover, IS acted on osteoclast precursor, bone marrow‐derived macrophages and RAW264.7 cells, and suppressed RANKL‐dependent differentiation into mature osteoclasts. IS may induce low‐turnover bone disease in patients with CKD by its direct action on both osteoblasts and osteoclast precursors to suppress bone formation and bone resorption.
Collapse
Affiliation(s)
- Kenta Watanabe
- Cooperative Major of Advanced Health ScienceTokyo University of Agriculture and Technology Koganei Japan
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei Japan.,Institute of Global Innovation Research Tokyo University of Agriculture and Technology Koganei Japan
| | - Michiko Hirata
- Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei Japan
| | - Junya Hirata
- Safety Research Center Kureha Corporation Tokyo Japan
| | - Gillian Murphy
- Institute of Global Innovation Research Tokyo University of Agriculture and Technology Koganei Japan.,Department of Oncology Cancer Research UK Li Ka Shing Centre Cambridge Institute University of Cambridge UK
| | - Hideaki Nagase
- Institute of Global Innovation Research Tokyo University of Agriculture and Technology Koganei Japan.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Kennedy Institute of Rheumatology University of Oxford UK
| | - Chisato Miyaura
- Cooperative Major of Advanced Health ScienceTokyo University of Agriculture and Technology Koganei Japan.,Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei Japan.,Institute of Global Innovation Research Tokyo University of Agriculture and Technology Koganei Japan
| | - Masaki Inada
- Cooperative Major of Advanced Health ScienceTokyo University of Agriculture and Technology Koganei Japan.,Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei Japan.,Institute of Global Innovation Research Tokyo University of Agriculture and Technology Koganei Japan
| |
Collapse
|
21
|
Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW, Fliser D, Fouque D, Heine GH, Jager KJ, Kanbay M, Mallamaci F, Parati G, Rossignol P, Wiecek A, London G. The systemic nature of CKD. Nat Rev Nephrol 2017; 13:344-358. [PMID: 28435157 DOI: 10.1038/nrneph.2017.52] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The accurate definition and staging of chronic kidney disease (CKD) is one of the major achievements of modern nephrology. Intensive research is now being undertaken to unravel the risk factors and pathophysiologic underpinnings of this disease. In particular, the relationships between the kidney and other organs have been comprehensively investigated in experimental and clinical studies in the last two decades. Owing to technological and analytical limitations, these links have been studied with a reductionist approach focusing on two organs at a time, such as the heart and the kidney or the bone and the kidney. Here, we discuss studies that highlight the complex and systemic nature of CKD. Energy balance, innate immunity and neuroendocrine signalling are highly integrated biological phenomena. The diseased kidney disrupts such integration and generates a high-risk phenotype with a clinical profile encompassing inflammation, protein-energy wasting, altered function of the autonomic and central nervous systems and cardiopulmonary, vascular and bone diseases. A systems biology approach to CKD using omics techniques will hopefully enable in-depth study of the pathophysiology of this systemic disease, and has the potential to unravel critical pathways that can be targeted for CKD prevention and therapy.
Collapse
Affiliation(s)
- Carmine Zoccali
- CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension Unit, Ospedali Riuniti 89124 Reggio Calabria, Italy
| | - Raymond Vanholder
- Ghent University Hospital, Department of Nephrology, Department of Internal Medicine, University Hospital Gent, De Pintelaan 185, B9000 Ghent, Belgium
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, Assistance Publique Hôpitaux de Paris, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, Paris.,University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), 55 Avenue de Paris, 78000 Versailles, France.,Inserm U-1018, Centre de recherche en épidémiologie et santé des populations (CESP), Equipe 5, Hôpital Paul-Brousse, 16 avenue Paul Vaillant-Couturier, 94807 Villejuif Cedex, France.,Paris-Sud University (PSU), 15 Rue Georges Clemenceau, 91400 Orsay, France.,French-Clinical Research Infrastructure Network (F-CRIN), Pavillon Leriche 2è étage CHU de Toulouse, Place Dr Baylac TSA40031, 31059 TOULOUSE Cedex 3, France
| | - Alberto Ortiz
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Thessaloniki, Konstantinoupoleos 49, Thessaloniki 546 42, Greece
| | - Friedo W Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Danilo Fliser
- Department Internal Medicine IV-Renal and Hypertensive Disease-Saarland University Medical Centre Kirrberger Straß 66421 Homburg, Saar, Germany
| | - Denis Fouque
- Université de Lyon, UCBL, Carmen, Department of Nephrology, Centre Hospitalier Lyon-Sud, F-69495 Pierre Bénite, France
| | - Gunnar H Heine
- Department Internal Medicine IV-Renal and Hypertensive Disease-Saarland University Medical Centre Kirrberger Straß 66421 Homburg, Saar, Germany
| | - Kitty J Jager
- European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, Department of Medical Informatics, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine,Koç University, Rumelifeneri Yolu 34450 Sarıyer Istanbul, Turkey
| | - Francesca Mallamaci
- CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension Unit, Ospedali Riuniti 89124 Reggio Calabria, Italy.,Nephrology, Dialysis and Transplantation Unit Ospedali Riuniti, 89124 Reggio Calabria Italy
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital, Istituto Auxologico Italiano &Department of Medicine and Surgery, University of Milan-Bicocca, Piazzale Brescia 20, Milan 20149, Italy
| | - Patrick Rossignol
- French-Clinical Research Infrastructure Network (F-CRIN), Pavillon Leriche 2è étage CHU de Toulouse, Place Dr Baylac TSA40031, 31059 TOULOUSE Cedex 3, France.,Inserm, Centre d'Investigations Cliniques-Plurithématique 1433, Cardiovascular and Renal Clinical Trialists (INI-CRCT), Institut Lorrain du Cœur et des Vaisseaux Louis Mathieu, 4 rue Morvan, 54500 Vandoeuvre-les-Nancy, France.,Inserm U1116, Faculté de Médecine, Bâtiment D 1er étage, 9 avenue de la forêt de Haye - BP 184, 54500 Vandœuvre-lès-Nancy Cedex, France.,CHU Nancy, Département de Cardiologie, Institut Lorrain du Cœur et des Vaisseaux, 5 Rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 34 Cours Léopold, 54000 Nancy, France
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24 Street, Pl-40-027 Katowice, Poland
| | - Gerard London
- INSERM U970, Hopital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | | |
Collapse
|
22
|
Leong SC, Sirich TL. Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. Toxins (Basel) 2016; 8:toxins8120358. [PMID: 27916890 PMCID: PMC5198552 DOI: 10.3390/toxins8120358] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/12/2023] Open
Abstract
Indoxyl sulfate is an extensively studied uremic solute. It is a small molecule that is more than 90% bound to plasma proteins. Indoxyl sulfate is derived from the breakdown of tryptophan by colon microbes. The kidneys achieve high clearances of indoxyl sulfate by tubular secretion, a function not replicated by hemodialysis. Clearance by hemodialysis is limited by protein binding since only the free, unbound solute can diffuse across the membrane. Since the dialytic clearance is much lower than the kidney clearance, indoxyl sulfate accumulates to relatively high plasma levels in hemodialysis patients. Indoxyl sulfate has been most frequently implicated as a contributor to renal disease progression and vascular disease. Studies have suggested that indoxyl sulfate also has adverse effects on bones and the central nervous system. The majority of studies have assessed toxicity in cultured cells and animal models. The toxicity in humans has not yet been proven, as most data have been from association studies. Such toxicity data, albeit inconclusive, have prompted efforts to lower the plasma levels of indoxyl sulfate through dialytic and non-dialytic means. The largest randomized trial showed no benefit in renal disease progression with AST-120. No trials have yet tested cardiovascular or mortality benefit. Without such trials, the toxicity of indoxyl sulfate cannot be firmly established.
Collapse
Affiliation(s)
- Sheldon C Leong
- The Departments of Medicine, VA Palo Alto HCS and Stanford University, Nephrology 111R, Palo Alto VAHCS, 3801 Miranda Ave., Palo Alto, CA 94304, USA.
| | - Tammy L Sirich
- The Departments of Medicine, VA Palo Alto HCS and Stanford University, Nephrology 111R, Palo Alto VAHCS, 3801 Miranda Ave., Palo Alto, CA 94304, USA.
| |
Collapse
|
23
|
Tan X, Cao X, Zou J, Shen B, Zhang X, Liu Z, Lv W, Teng J, Ding X. Indoxyl sulfate, a valuable biomarker in chronic kidney disease and dialysis. Hemodial Int 2016; 21:161-167. [PMID: 27616754 DOI: 10.1111/hdi.12483] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/10/2016] [Indexed: 02/04/2023]
Abstract
Chronic kidney disease (CKD) is an increasingly recognized disease with high global incidence and mortality. Yet, the existing diagnostic tools are not sufficient enough to predict prognosis of CKD and CKD comorbidities. Indoxyl sulfate, a typical uremic toxin, is of great importance in the development of CKD with its nephrotoxicity, cardiovascular toxicity, and bone toxicity. Some reports suggest that indoxyl sulfate directly associate with renal function loss and mortality in CKD patients. This review discusses the diagnostic value of indoxyl sulfate from its biological characteristics, pathophysiological effects, related therapies, and its diagnostic value in clinical studies.
Collapse
Affiliation(s)
- Xiao Tan
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhonghua Liu
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Wenlv Lv
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Xiaoqiang Ding
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| |
Collapse
|
24
|
Cigarran Guldris S, González Parra E, Cases Amenós A. Gut microbiota in chronic kidney disease. Nefrologia 2016; 37:9-19. [PMID: 27553986 DOI: 10.1016/j.nefro.2016.05.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal microflora maintains a symbiotic relationship with the host under normal conditions, but its imbalance has recently been associated with several diseases. In chronic kidney disease (CKD), dysbiotic intestinal microflora has been reported with an increase in pathogenic flora compared to symbiotic flora. An enhanced permeability of the intestinal barrier, allowing the passage of endotoxins and other bacterial products to the blood, has also been shown in CKD. By fermenting undigested products that reach the colon, the intestinal microflora produce indoles, phenols and amines, among others, that are absorbed by the host, accumulate in CKD and have harmful effects on the body. These gut-derived uraemic toxins and the increased permeability of the intestinal barrier in CKD have been associated with increased inflammation and oxidative stress and have been involved in various CKD-related complications, including cardiovascular disease, anaemia, mineral metabolism disorders or the progression of CKD. The use of prebiotics, probiotics or synbiotics, among other approaches, could improve the dysbiosis and/or the increased permeability of the intestinal barrier in CKD. This article describes the situation of the intestinal microflora in CKD, the alteration of the intestinal barrier and its clinical consequences, the harmful effects of intestinal flora-derived uraemic toxins, and possible therapeutic options to improve this dysbiosis and reduce CKD-related complications.
Collapse
Affiliation(s)
| | - Emilio González Parra
- Servicio de Nefrología, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, España
| | - Aleix Cases Amenós
- Servicio de Nefrología, Hospital Clinic, Universitat de Barcelona, Barcelona, España
| |
Collapse
|
25
|
Zheng CM, Zheng JQ, Wu CC, Lu CL, Shyu JF, Yung-Ho H, Wu MY, Chiu IJ, Wang YH, Lin YF, Lu KC. Bone loss in chronic kidney disease: Quantity or quality? Bone 2016; 87:57-70. [PMID: 27049042 DOI: 10.1016/j.bone.2016.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) patients experience bone loss and fracture because of a specific CKD-related systemic disorder known as CKD-mineral bone disorder (CKD-MBD). The bone turnover, mineralization, and volume (TMV) system describes the morphological bone lesions in renal osteodystrophy related to CKD-MBD. Bone turnover and bone volume are defined as high, normal, or low, and bone mineralization is classified as normal or abnormal. All types of bone histology related to TMV are responsible for both bone quantity and bone quality losses in CKD patients. This review focuses on current bone quantity and bone quality losses in CKD patients and finally discusses potential therapeutic measures.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Jin-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Pulmonary and Critical Care, Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Lin Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsu Yung-Ho
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - I-Jen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kuo-Cheng Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City,Taiwan.
| |
Collapse
|