1
|
Raffaele B, Nicola M, Cinzia R, Valeria R, Paolo CF, Addolorata C. Mechanisms of ossification of the entheses in spondyloarthritis physiopathogenic aspects and possible therapeutic implication. Tissue Cell 2025; 94:102803. [PMID: 39983384 DOI: 10.1016/j.tice.2025.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
This review examines the molecular mechanisms driving structural damage in Spondyloarthritis (SpA), a chronic inflammatory condition characterized by new bone formation that can lead to partial or complete spinal ankylosis. We explore the complex interplay between inflammation, mechanical stress, and bone metabolism in SpA, focusing on key signaling pathways and cytokines that contribute to disease progression. The review analyzes both structural and inflammatory aspects, particularly the role of enthesis biology and the impact of mechanical factors. Additionally, we assess how current therapeutic approaches, including biologic treatments targeting specific inflammatory pathways such as tumor necrosis factor inhibitors, affect disease progression. While these treatments can reduce inflammation and manage clinical symptoms, their limited ability to completely prevent new bone formation highlights the complexity of the underlying pathological processes. We also evaluate emerging therapeutic strategies targeting specific molecular pathways involved in bone formation. Understanding these intricate molecular mechanisms and their interactions is crucial for developing more effective targeted therapies that could potentially not only manage symptoms but also prevent or reverse structural damage in SpA patients.
Collapse
Affiliation(s)
- Barile Raffaele
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| | - Maruotti Nicola
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| | - Rotondo Cinzia
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| | - Rella Valeria
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| | - Cantatore Francesco Paolo
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| | - Corrado Addolorata
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| |
Collapse
|
2
|
Yamada C, Akkaoui J, Morozov A, Movila A. Role of Canonical and Non-Canonical Sphingolipids and their Metabolic Enzymes in Bone Health. Curr Osteoporos Rep 2025; 23:21. [PMID: 40266422 PMCID: PMC12018623 DOI: 10.1007/s11914-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW This review summarizes the recently published scientific evidence regarding the role of enzymes engaged in de novo anabolic biosynthesis, catabolic, and salvage pathways of ceramide bioactive sphingolipids in bone dynamics and skeletal health. RECENT FINDINGS Ceramides are precursors for bioactive sphingolipids, including sphingosine, sphingosine-1-phosphate, and others. Studies of bone metabolism and bone-related cells demonstrated that ceramide and sphingosine-1-phosphate control levels of bone remodeling and resorption generated by osteoblasts and osteoclasts. Multiple published studies demonstrated the critical role of enzymes in regulating the ceramide/sphingosine-1-phosphate ratio relative to bone physiology and the promotion of inflammatory osteolysis. Accordingly, emerging evidence suggests that targeting sphingolipid metabolism has the potential to alleviate inflammatory osteolysis and accelerate bone regeneration. Therefore, this study aimed to discuss current knowledge about crosstalk between sphingolipids and their metabolic enzymes within osteoclast and osteoblast coupling in bone remodeling and pathogenic osteolysis. This review highlights the complexity of de novo sphingolipid biosynthesis and knowledge gaps in bone physiology and pathology. We also discuss the importance of canonical and non-canonical mammalian and bacterial-derived sphingolipids relative to bone health.
Collapse
Affiliation(s)
- Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN, USA
| | - Juliet Akkaoui
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alexandr Morozov
- Institute of Zoology, Moldova State University, Chisinau, Republic of Moldova
- Medpark International Hospital, Chisinau, Republic of Moldova
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
4
|
Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A, Brizuela L, Corti G, Collacchi F, Anghieri G, Magrini A, Ciancaglini P, Millan JL, Davies O, Bottini M. Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles? Biomolecules 2023; 14:42. [PMID: 38254642 PMCID: PMC10813234 DOI: 10.3390/biom14010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.
Collapse
Affiliation(s)
- Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Rene Buchet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Federica Collacchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Genevieve Anghieri
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| | - Owen Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| |
Collapse
|
5
|
Yi X, Tang X, Li T, Chen L, He H, Wu X, Xiang C, Cao M, Wang Z, Wang Y, Wang Y, Huang X. Therapeutic potential of the sphingosine kinase 1 inhibitor, PF-543. Biomed Pharmacother 2023; 163:114401. [PMID: 37167721 DOI: 10.1016/j.biopha.2023.114401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 05/13/2023] Open
Abstract
PF-543 is a sphingosine kinase 1(SPHK1)inhibitor developed by Pfizer and is currently considered the most potent selective SPHK1 inhibitor. SPHK1 catalyses the production of sphingosine 1-phosphate (S1P) from sphingosine. It is the rate-limiting enzyme of S1P production, and there is substantial evidence to support a very important role for sphingosine kinase in health and disease. This review is the first to summarize the role and mechanisms of PF-543 as an SPHK1 inhibitor in anticancer, antifibrotic, and anti-inflammatory processes, providing new therapeutic leads and ideas for future research and clinical trials.
Collapse
Affiliation(s)
- Xueliang Yi
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China
| | - Xuemei Tang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianlong Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- University of Electronic Science and Technology of China, China
| | - Hongli He
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China
| | - Xiaoxiao Wu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunlin Xiang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Cao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zixiang Wang
- University of Electronic Science and Technology of China, China
| | - Yi Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| | - Yiping Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| |
Collapse
|
6
|
Feng X, Tong W, Li J, Xu Y, Zhu S, Xu W. Diagnostic value of anti-Kaiso autoantibody in axial spondyloarthritis. Front Immunol 2023; 14:1156350. [PMID: 37063878 PMCID: PMC10098150 DOI: 10.3389/fimmu.2023.1156350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Objective Axial spondyloarthritis (axSpA) is a chronic rheumatic disease predominantly characterized by inflammation and progressive structural damage. Patients are often diagnosed very late, which delays the optimal treatment period. Early diagnosis of axSpA, especially non-radiographic axSpA (nr-axSpA), remains a major challenge. This study aimed to investigate the diagnostic value of anti-Kaiso autoantibodies in axSpA and their correlation with clinical disease indicators. Methods Two pooled serum samples (seven patients with nr-axSpA and seven healthy controls) were profiled using HuProt arrays to investigate the diagnostic value of autoantibodies in nr-axSpA. Levels of anti-Kaiso autoantibodies in patients with axSpA and controls were determined using the Meso Scale Discovery assay system. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic performance of anti-Kaiso autoantibodies in axSpA. Pearson's correlation was used to assess the correlation between anti-Kaiso autoantibodies and clinical parameters. Results Seven candidate autoantibodies were present in the serum of patients with nr-axSpA. The levels of anti-Kaiso autoantibodies were significantly higher in the nr-axSpA group than in the other groups. It can differentiate nr-axSpA from ankylosing spondylitis (AS), healthy controls, and rheumatoid arthritis. The level of early-stage AS among patients with nr-axSpA decreased when they progressed to the late stage. Of all patients with axSpA, serum anti-Kaiso autoantibody levels were positively correlated with the C-reactive protein level and the Bath Ankylosing Spondylitis Disease Activity Index score and negatively correlated with disease duration. Conclusion Anti-Kaiso autoantibody may be a valuable diagnostic biomarker for early-stage AS in the nr-axSpA period and may be a potential therapeutic target.
Collapse
|
7
|
Massimini M, Bachetti B, Dalle Vedove E, Benvenga A, Di Pierro F, Bernabò N. A Set of Dysregulated Target Genes to Reduce Neuroinflammation at Molecular Level. Int J Mol Sci 2022; 23:ijms23137175. [PMID: 35806178 PMCID: PMC9266409 DOI: 10.3390/ijms23137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds’ screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.
Collapse
Affiliation(s)
- Marcella Massimini
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Benedetta Bachetti
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Elena Dalle Vedove
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Alessia Benvenga
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Francesco Di Pierro
- Velleja Research, 20125 Milan, Italy;
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| |
Collapse
|
8
|
Bu Y, Wu H, Deng R, Wang Y. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Front Pharmacol 2021; 12:733387. [PMID: 34737701 PMCID: PMC8560647 DOI: 10.3389/fphar.2021.733387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sphingosine kinase 1(SphK1) a key enzyme that catalyzes the conversion of sphingosine (Sph) to sphingosine 1-phosphate (S1P), so as to maintain the dynamic balance of sphingolipid-rheostat in cells and participate in cell growth and death, proliferation and migration, vasoconstriction and remodeling, inflammation and metabolism. The normal expression of SphK1 maintains the balance of physiological and pathological states, which is reflected in the regulation of inflammatory factor secretion, immune response in traditional immune cells and non-traditional immune cells, and complex signal transduction. However, abnormal SphK1 expression and activity are found in various inflammatory and immune related-diseases, such as hypertension, atherosclerosis, Alzheimer’s disease, inflammatory bowel disease and rheumatoid arthritis. In view of the therapeutic potential of regulating SphK1 and its signal, the current research is aimed at SphK1 inhibitors, such as SphK1 selective inhibitors and dual SphK1/2 inhibitor, and other compounds with inhibitory potency. This review explores the regulatory role of over-expressed SphK1 in inflammatory and immune related-diseases, and investigate the latest progress of SphK1 inhibitors and the improvement of disease or pathological state.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Shamshiddinova M, Gulyamov S, Kim HJ, Jung SH, Baek DJ, Lee YM. A Dansyl-Modified Sphingosine Kinase Inhibitor DPF-543 Enhanced De Novo Ceramide Generation. Int J Mol Sci 2021; 22:ijms22179190. [PMID: 34502095 PMCID: PMC8431253 DOI: 10.3390/ijms22179190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase of S1P is linked to a pathological outcome with inflammation, cancer metastasis, or angiogenesis, etc. In this regard, SPHK/S1P axis regulation has been a specific issue in the anticancer strategy to turn accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs). DPF-543 exhibited dual actions on Cers synthesis by enhancing serine palmitoyltransferase (SPT) activity, and by inhibiting SPHKs, which eventually induced an unusual environment with a high amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition, DPF-543 mildly activates acid sphingomyelinase (aSMase), which contributes a partial increase in Cers. Collectively, a dansyl-modified DPF-543 relatively enhanced Cers accumulation via de novo pathway which was not observed in PF-543. Our results demonstrated that the structural modification on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Maftuna Shamshiddinova
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Shokhid Gulyamov
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Hee-Jung Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Seo-Hyeon Jung
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Dong-Jae Baek
- College of Pharmacy, Mokpo National University, Jeonnam 58628, Korea;
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
- Correspondence: ; Tel.: +82-43-261-2825
| |
Collapse
|
10
|
Moritz E, Jedlitschky G, Negnal J, Tzvetkov MV, Daum G, Dörr M, Felix SB, Völzke H, Nauck M, Schwedhelm E, Meisel P, Kocher T, Rauch BH, Holtfreter B. Increased Sphingosine-1-Phosphate Serum Concentrations in Subjects with Periodontitis: A Matter of Inflammation. J Inflamm Res 2021; 14:2883-2896. [PMID: 34234513 PMCID: PMC8256099 DOI: 10.2147/jir.s302117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Periodontitis is an inflammatory disease of the oral cavity with an alarmingly high prevalence within the adult population. The signaling lipid sphingosine-1-phosphate (S1P) plays a crucial role in inflammatory and immunomodulatory responses. In addition to cardiovascular disease, sepsis and tumor entities, S1P has been recently identified as both mediator and biomarker in osteoporosis. We hypothesized that S1P may play a role in periodontitis as an inflammation-prone bone destructive disorder. The goal of our study was to evaluate associations between periodontitis and S1P serum concentrations in the Study of Health in Pomerania (SHIP)-Trend cohort. In addition, we investigated the expression of S1P metabolizing enzymes in inflamed gingival tissue. PATIENTS AND METHODS We analyzed data from 3371 participants (51.6% women) of the SHIP-Trend cohort. Periodontal parameters and baseline characteristics were assessed. Serum S1P was measured by liquid chromatography tandem mass spectrometry. The expression of S1P metabolizing enzymes was determined by immunofluorescence staining of human gingival tissue. RESULTS S1P serum concentrations were significantly increased in subjects with both moderate and severe periodontitis, assessed as probing depth and clinical attachment loss. In contrast, no significant association of S1P was seen with caries variables (number and percentage of decayed or filled surfaces). S1P concentrations significantly increased with increasing high-sensitivity C-reactive protein (hs-CRP) levels. Interestingly, inflamed compared to normal human gingival tissue exhibited elevated expression levels of the S1P-generating enzyme sphingosine kinase 1 (SphK1). CONCLUSION We report an intriguingly significant association of various periodontal parameters with serum levels of the inflammatory lipid mediator S1P. Our data point towards a key role of S1P during periodontitis pathology. Modulation of local S1P levels or its signaling properties may represent a potential future therapeutic strategy to prevent or to retard periodontitis progression and possibly reduce periodontitis-related tooth loss.
Collapse
Affiliation(s)
- Eileen Moritz
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Gabriele Jedlitschky
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Josefine Negnal
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Günter Daum
- Clinic and Polyclinic for Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Edzard Schwedhelm
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Humburg, Germany
| | - Peter Meisel
- Dental Clinics, Department of Periodontology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Dental Clinics, Department of Periodontology, University Medicine Greifswald, Greifswald, Germany
| | - Bernhard H Rauch
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Carl von Ossietzky Universität Oldenburg, Department of Human Medicine, Section of Pharmacology and Toxicology, Oldenburg, Germany
| | - Birte Holtfreter
- Dental Clinics, Department of Periodontology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Fang L, Hou J, Cao Y, Shan JJ, Zhao J. Spinster homolog 2 in cancers, its functions and mechanisms. Cell Signal 2020; 77:109821. [PMID: 33144184 DOI: 10.1016/j.cellsig.2020.109821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022]
Abstract
Spinster homolog 2 (SPNS2) is a multi-transmembrane transporter, widely located in the cell membrane and organelle membranes. It transports sphingosine-1-phosphate (S1P) into the extracellular space and the circulatory system, thus alters the concentration and the distribution of S1P, sphingosine-1-phosphate receptor (S1PRs) and S1P related enzymes, meaning that it exerts its functions via S1P signaling pathways. Studies also show that ectopic SPNS2 mediates parts of the physiological process of the cells. As of now, SPNS2 has been reported to participate in physiological processes such as angiogenesis, embryonic development, immune response and metabolisms. It is also associated with the transformation from inflammation to cancer as well as the proliferation and metastasis of cancer cells. In this review, we summarize the functions and the mechanisms of SPNS2 in the pathogenesis of cancer to provide new insights for the diagnosis and the treatments of cancer.
Collapse
Affiliation(s)
- Lian Fang
- School of Medicine, South China University of Technology, Guangzhou, Guandong, 510006, PR China
| | - Jiangtao Hou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guandong, 510006, PR China
| | - Yihui Cao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guandong 510006, PR China
| | - Jia-Jie Shan
- School of Medicine, South China University of Technology, Guangzhou, Guandong, 510006, PR China
| | - Jie Zhao
- School of Medicine, South China University of Technology, Guangzhou, Guandong, 510006, PR China.
| |
Collapse
|
12
|
Briolay A, El Jamal A, Arnolfo P, Le Goff B, Blanchard F, Magne D, Bougault C. Enhanced BMP-2/BMP-4 ratio in patients with peripheral spondyloarthritis and in cytokine- and stretch-stimulated mouse chondrocytes. Arthritis Res Ther 2020; 22:234. [PMID: 33046134 PMCID: PMC7552569 DOI: 10.1186/s13075-020-02330-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
Background Excessive bone formation in the entheses is one of the features of peripheral spondyloarthritis (SpA). Complex pathological mechanisms connecting inflammation, mechanical stress, and ossification are probably involved. We focused on bone morphogenetic protein (BMP)-2, -4, and -7 as possible mediators of this process. Methods BMP-2, -4, and -7 concentration was measured by ELISA in synovial fluids (SFs) of SpA (n = 56) and osteoarthritic (n = 21) patients. Mouse organotypic ankle cultures were challenged by a pro-inflammatory cocktail. Mouse primary chondrocytes, osteoblasts, or tenocytes were treated with TNF-α, interleukin (IL)-17, or IL-22 and/or subjected to cyclic stretch, or with recombinant BMP-2 or -4. Results In SpA SFs, if BMP-7 was barely detectable, BMP-2 concentration was higher and BMP-4 was lower than in osteoarthritic samples, so that BMP-2/BMP-4 ratio augmented 6.5 folds (p < 0.001). In SpA patients, TNF-α, IL-6, and IL-17 levels correlated this ratio (n = 21). Bmp-2/Bmp-4 ratio was similarly enhanced by cytokine treatment in explant and cell cultures, at mRNA level. In particular, simultaneous application of TNF-α and cyclical stretch induced a 30-fold increase of the Bmp-2/Bmp-4 ratio in chondrocytes (p = 0.027). Blockade of prostaglandin E2 and IL-6 production had almost no effect on the stretch-induced regulation of Bmp-2 or -4. Osteoinductive effects of BMP-4, and to a lesser extend BMP-2, were identified on cultured chondrocytes and tenocytes. Conclusions Our results first settle that BMP factors are locally deregulated in the SpA joint. An unexpected decrease in BMP-4 could be associated to an increase in BMP-2, possibly in response to mechanical and/or cytokine stimulations.
Collapse
Affiliation(s)
- Anne Briolay
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Alaeddine El Jamal
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Paul Arnolfo
- INSERM UMR1238, Nantes University, Nantes, France.,Rheumatology Department, CHU Nantes, Nantes, France
| | - Benoît Le Goff
- INSERM UMR1238, Nantes University, Nantes, France.,Rheumatology Department, CHU Nantes, Nantes, France
| | | | - David Magne
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Carole Bougault
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France.
| |
Collapse
|
13
|
Liu J, Sugimoto K, Cao Y, Mori M, Guo L, Tan G. Serum Sphingosine 1-Phosphate (S1P): A Novel Diagnostic Biomarker in Early Acute Ischemic Stroke. Front Neurol 2020; 11:985. [PMID: 33013650 PMCID: PMC7505997 DOI: 10.3389/fneur.2020.00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Sphingosine 1-phosphate (S1P) is a lipid metabolite that mediates various physiological processes, including vascular endothelial cell function, inflammation, coagulation/thrombosis, and angiogenesis. As a result, S1P may contribute to the pathogenesis of stroke. Objective: This study aimed to evaluate the diagnostic value of serum S1P in acute stroke. Method: A total of 72 patients with ischemic stroke, 36 patients with hemorrhagic stroke, and 65 controls were enrolled. Serum S1P was detected by enzyme-linked immunosorbent assay (ELISA). Results: Receiver operating characteristic curve analysis demonstrated that serum S1P could discriminate ischemic stroke from hemorrhagic stroke in both total population and subgroup analyses of samples obtained within 24 h of symptom onset (subgroup < 24h) (area under curve, AUCTotal = 0.64, P = 0.017; AUCSubgroup < 24h = 0.91, P < 0.001) and controls (AUCTotal = 0.62, P = 0.013; AUCSubgroup <24h = 0.83, P < 0.001). Furthermore, S1P showed higher efficacy than high-density lipoprotein cholesterol (HDL-C) in discriminating ischemic stroke from controls in the total population (PS1P = 0.013, PHDL−C = 0.366) and in the subgroup analysis (i.e., <24 h; PS1P < 0.001, PHDL−C = 0.081). Additionally, lower serum S1P was associated with cervical artery plaques (P = 0.021) in controls and with dyslipidemia (P = 0.036) and milder neurological impairment evaluated by the National Institute of Health Stroke Scale (NIHSS, P = 0.047) in the ischemic stroke group. Conclusions: The present study preliminarily investigated the diagnostic value of serum S1P in acute stroke. Decreased serum S1P may become a potential biomarker for early acute ischemic stroke and can indicate disease severity.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuanbo Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
14
|
Borel M, Lollo G, Magne D, Buchet R, Brizuela L, Mebarek S. Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165919. [PMID: 32800947 DOI: 10.1016/j.bbadis.2020.165919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most frequent cancer in men aged 65 and over. PCa mainly metastasizes in the bone, forming osteosclerotic lesions, inducing pain, fractures, and nerve compression. Cancer cell-derived exosomes participate in the metastatic spread, ranging from oncogenic reprogramming to the formation of pre-metastatic niches. Moreover, exosomes were recently involved in the dialog between PCa cells and the bone metastasis microenvironment. Phospholipase D (PLD) isoforms PLD1/2 catalyze the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA), regulating tumor progression and metastasis. PLD is suspected to play a role in exosomes biogenesis. We aimed to determine whether PCa-derived exosomes, through PLD, interact with the bone microenvironment, especially osteoblasts, during the metastatic process. Here we demonstrate for the first time that PLD2 is present in exosomes of C4-2B and PC-3 cells. C4-2B-derived exosomes activate proliferation and differentiation of osteoblasts models, by stimulating ERK 1/2 phosphorylation, by increasing the tissue-nonspecific alkaline phosphatase activity and the expression of osteogenic differentiation markers. Contrariwise, when C4-2B exosomes are generated in the presence of halopemide, a PLD pan-inhibitor, they lose their ability to stimulate osteoblasts. Furthermore, the number of released exosomes diminishes significantly (-40%). When the PLD product PA is combined with halopemide, exosome secretion is fully restored. Taken together, our results indicate that PLD2 stimulates exosome secretion in PCa cell models as well as their ability to increase osteoblast activity. Thus, PLD2 could be considered as a potent player in the establishment of PCa bone metastasis acting through tumor cell derived-exosomes.
Collapse
Affiliation(s)
- Mathieu Borel
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5007, LAGEPP, F-69622 Lyon, France
| | - David Magne
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - René Buchet
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France
| | - Saida Mebarek
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Lyon, France.
| |
Collapse
|
15
|
Bessueille L, Briolay A, Como J, Mebarek S, Mansouri C, Gleizes M, El Jamal A, Buchet R, Dumontet C, Matera EL, Mornet E, Millan JL, Fonta C, Magne D. Tissue-nonspecific alkaline phosphatase is an anti-inflammatory nucleotidase. Bone 2020; 133:115262. [PMID: 32028019 PMCID: PMC7185042 DOI: 10.1016/j.bone.2020.115262] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is necessary for skeletal mineralization by its ability to hydrolyze the mineralization inhibitor inorganic pyrophosphate (PPi), which is mainly generated from extracellular ATP by ectonucleotide pyrophosphatase phosphodiesterase 1 (NPP1). Since children with TNAP deficiency develop bone metaphyseal auto-inflammations in addition to rickets, we hypothesized that TNAP also exerts anti-inflammatory effects relying on the hydrolysis of pro-inflammatory adenosine nucleotides into the anti-inflammatory adenosine. We explored this hypothesis in bone metaphyses of 7-day-old Alpl+/- mice (encoding TNAP), in mineralizing hypertrophic chondrocytes and osteoblasts, and non-mineralizing mesenchymal stem cells (MSCs) and neutrophils, which express TNAP and are present, or can be recruited in the metaphysis. Bone metaphyses of 7-day-old Alpl+/- mice had significantly increased levels of Il-1β and Il-6 and decreased levels of the anti-inflammatory Il-10 cytokine as compared with Alpl+/+ mice. In bone metaphyses, murine hypertrophic chondrocytes and osteoblasts, Alpl mRNA levels were much higher than those of the adenosine nucleotidases Npp1, Cd39 and Cd73. In hypertrophic chondrocytes, inhibition of TNAP with 25 μM of MLS-0038949 decreased the hydrolysis of AMP and ATP. However, TNAP inhibition did not significantly modulate ATP- and adenosine-associated effects in these cells. We observed that part of TNAP proteins in hypertrophic chondrocytes was sent from the cell membrane to matrix vesicles, which may explain why TNAP participated in the hydrolysis of ATP but did not significantly modulate its autocrine pro-inflammatory effects. In MSCs, TNAP did not participate in ATP hydrolysis nor in secretion of inflammatory mediators. In contrast, in neutrophils, TNAP inhibition with MLS-0038949 significantly exacerbated ATP-associated activation and secretion of IL-1β, and extended cell survival. Collectively, these results demonstrate that TNAP is a nucleotidase in both hypertrophic chondrocytes and neutrophils, and that this nucleotidase function is associated with autocrine effects on inflammation only in neutrophils.
Collapse
Affiliation(s)
- L Bessueille
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - A Briolay
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - J Como
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - S Mebarek
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - C Mansouri
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - M Gleizes
- Centre de recherche cerveau et cognition (CERCO), UMR CNRS 5549 université de Toulouse, UPS, France
| | - A El Jamal
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - R Buchet
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - C Dumontet
- Anticancer Antibodies, CRCL, INSERM U1052, CNRS UMR 5286, CLB, UCBL, Lyon, France
| | - E L Matera
- Anticancer Antibodies, CRCL, INSERM U1052, CNRS UMR 5286, CLB, UCBL, Lyon, France
| | - E Mornet
- Service de biologie, unité de génétique constitutionnelle, centre hospitalier de Versailles, Le Chesnay, France
| | - J L Millan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - C Fonta
- Centre de recherche cerveau et cognition (CERCO), UMR CNRS 5549 université de Toulouse, UPS, France
| | - D Magne
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France.
| |
Collapse
|
16
|
El Jamal A, Bougault C, Mebarek S, Magne D, Cuvillier O, Brizuela L. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone 2020; 130:115087. [PMID: 31648078 DOI: 10.1016/j.bone.2019.115087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023]
Abstract
Sphingolipids display important functions in various pathologies such as cancer, obesity, diabetes, cardiovascular or neurodegenerative diseases. Sphingosine, sphingosine 1-phosphate (S1P), and ceramide are the central molecules of sphingolipid metabolism. Sphingosine kinases 1 and 2 (SK1 and SK2) catalyze the conversion of the sphingolipid metabolite sphingosine into S1P. The balance between the levels of S1P and its metabolic precursors ceramide and sphingosine has been considered as a switch that could determine whether a cell proliferates or dies. This balance, also called « sphingolipid rheostat », is mainly under the control of SKs. Several studies have recently pointed out the contribution of SK/S1P metabolic pathway in skeletal development, mineralization and bone homeostasis. Indeed, SK/S1P metabolism participates in different diseases including rheumatoid arthritis, spondyloarthritis, osteoarthritis, osteoporosis, cancer-derived bone metastasis or calcification disorders as vascular calcification. In this review, we will summarize the most important data regarding the implication of SK/S1P axis in bone and joint diseases and ectopic calcification, and discuss the therapeutic potential of targeting SK/S1P metabolism for the treatment of these pathologies.
Collapse
Affiliation(s)
- Alaeddine El Jamal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Carole Bougault
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Saida Mebarek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - David Magne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS UMR 5089, F-31077, Toulouse, France
| | - Leyre Brizuela
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France.
| |
Collapse
|
17
|
El Jamal A, Briolay A, Mebarek S, Le Goff B, Blanchard F, Magne D, Brizuela L, Bougault C. Cytokine-Induced and Stretch-Induced Sphingosine 1-Phosphate Production by Enthesis Cells Could Favor Abnormal Ossification in Spondyloarthritis. J Bone Miner Res 2019; 34:2264-2276. [PMID: 31373726 DOI: 10.1002/jbmr.3844] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Spondyloarthritis (SpA) is a common rheumatic disease characterized by enthesis inflammation (enthesitis) and ectopic ossification (enthesophytes). The current pathogenesis model suggests that inflammation and mechanical stress are both strongly involved in SpA pathophysiology. We have previously observed that the levels of sphingosine 1-phosphate (S1P), a bone anabolic molecule, were particularly high in SpA patients' serum compared to healthy donors. Therefore, we wondered how this deregulation was related to SpA molecular mechanisms. Mouse primary osteoblasts, chondrocytes, and tenocytes were used as cell culture models. The sphingosine kinase 1 (Sphk1) gene expression and S1P secretion were significantly enhanced by cyclic stretch in osteoblasts and chondrocytes. Further, TNF-α and IL-17, cytokines implicated in enthesitis, increased Sphk1 mRNA in chondrocytes in an additive manner when combined to stretch. The immunochemistry on mouse ankles showed that sphingosine kinase 1 (SK1) was localized in some chondrocytes; the addition of a pro-inflammatory cocktail augmented Sphk1 expression in cultured ankles. Subsequently, fingolimod was used to block S1P metabolism in cell cultures. It inhibited S1P receptors (S1PRs) signaling and SK1 and SK2 activity in both osteoblasts and chondrocytes. Fingolimod also reduced S1PR-induced activation by SpA patients' synovial fluid (SF), demonstrating that the stimulation of chondrocytes by SFs from SpA patients involves S1P. In addition, when the osteogenic culture medium was supplemented with fingolimod, alkaline phosphatase activity, matrix mineralization, and bone formation markers were significantly reduced in osteoblasts and hypertrophic chondrocytes. Osteogenic differentiation was accompanied by an increase in S1prs mRNA, especially S1P1/3 , but their contribution to S1P-impact on mineralization seemed limited. Our results suggest that S1P might be overproduced in SpA enthesis in response to cytokines and mechanical stress, most likely by chondrocytes. Moreover, S1P could locally favor the abnormal ossification of the enthesis; therefore, blocking the S1P metabolic pathway could be a potential therapeutic approach for the treatment of SpA. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alaeddine El Jamal
- Univ Lyon, Univ Claude Bernard Lyon 1 (UCBL), CNRS, UMR5246, Lyon, France
| | - Anne Briolay
- Univ Lyon, Univ Claude Bernard Lyon 1 (UCBL), CNRS, UMR5246, Lyon, France
| | - Saida Mebarek
- Univ Lyon, Univ Claude Bernard Lyon 1 (UCBL), CNRS, UMR5246, Lyon, France
| | - Benoit Le Goff
- INSERM UMR1238, Nantes University, Nantes, France.,Rheumatology Department, Nantes University, Nantes, France
| | | | - David Magne
- Univ Lyon, Univ Claude Bernard Lyon 1 (UCBL), CNRS, UMR5246, Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Univ Claude Bernard Lyon 1 (UCBL), CNRS, UMR5246, Lyon, France
| | - Carole Bougault
- Univ Lyon, Univ Claude Bernard Lyon 1 (UCBL), CNRS, UMR5246, Lyon, France
| |
Collapse
|
18
|
Du Y, Hou L, Chu C, Jin Y, Sun W, Zhang R. Characterization of serum metabolites as biomarkers of carbon black nanoparticles-induced subchronic toxicity in rats by hybrid triple quadrupole time-of-flight mass spectrometry with non-targeted metabolomics strategy. Toxicology 2019; 426:152268. [PMID: 31437482 DOI: 10.1016/j.tox.2019.152268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022]
Abstract
Carbon black nanoparticles (CBNPs) are one of atmospheric particles components and have been closely related with a series of lung diseases. It can reach the depths of the respiratory tract or even alveolar more easily than those micro-particles. Although some of its toxicities have been confirmed in animals or human bodies, the subchronic toxicity mechanism of CBNPs has been uncertain so far. Therefore, it is very necessary to establish a novel method and clarify the mechanism of subchronic toxicity caused by concentration adjustments of small molecule metabolites in vivo. In animal experiments, CB exposure, recovery and control group were set up. The concentration of CBNPs in chamber was 30.06 ± 4.42 mg/m3. We developed a UHPLC-Q-TOF-MS/MS-based non-targeted metabolomic analysis strategy to analyze serum samples of rats. Then, differential metabolites in serum were found by multivariate data analysis and 39 potential biomarkers were identified. It was showed that main metabolic pathways associated with CBNPs exposure were hormones metabolism, amino acid metabolism, nucleotide metabolism and lipid metabolism. It is worth noting that long-term exposure to CBNPs had the greatest impact on steroid hormones biosynthesis so that the risk of infertility could increase. The results provided a new mechanistic insight into the metabolic alterations owing to CBNPs induced subchronic toxicity.
Collapse
Affiliation(s)
- Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Ludan Hou
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Chen Chu
- Department of Occupational and Environmental Health, the School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Yiran Jin
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China; The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Wenjing Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Rong Zhang
- Department of Occupational and Environmental Health, the School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China.
| |
Collapse
|
19
|
Xiao L, Zhou Y, Friis T, Beagley K, Xiao Y. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology. Front Immunol 2019; 10:1409. [PMID: 31293578 PMCID: PMC6603153 DOI: 10.3389/fimmu.2019.01409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling via modulating the immune system. Therefore, it could be likely that S1P-S1PR1 signaling might take part in the maintenance of continuous bone turnover under physiological conditions, while lead to the pathogenesis of bone deformities during inflammation. In this review, we summarized the immunological regulation of S1P-S1PR1 signal axis during bone remodeling with an emphasis on how osteo-immune regulators are affected by inflammation, an issue with relevance to chronical bone disorders such as rheumatoid arthritis, spondyloarthritis and periodontitis.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Spiegel S, Maczis MA, Maceyka M, Milstien S. New insights into functions of the sphingosine-1-phosphate transporter SPNS2. J Lipid Res 2019; 60:484-489. [PMID: 30655317 DOI: 10.1194/jlr.s091959] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/09/2019] [Indexed: 01/29/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent bioactive signaling molecule that regulates many physiological processes important for development, epithelial and endothelial barrier integrity, and the immune system, as well as for pathologies, such as autoimmune diseases, cancer, and metastasis. Most of the well-known actions of S1P are mediated by five specific G protein-coupled receptors located on the plasma membrane. Because S1P is synthesized intracellularly by two sphingosine kinase isoenzymes, we have proposed the paradigm of inside-out signaling by S1P, suggesting that S1P must be exported out of cells to interact with its receptors. While several transporters of S1P have previously been identified, spinster homologue 2 (SPNS2), a member of the large family of non-ATP-dependent organic ion transporters, has recently attracted much attention as an S1P transporter. Here, we discuss recent advances in understanding the physiological actions of SPNS2 in regulating levels of S1P and the S1P gradient that exists between the high circulating concentrations of S1P and low tissue levels that control lymphocyte trafficking. Special emphasis is on the functions of SPNS2 in inflammatory and autoimmune diseases and its recently discovered unexpected importance in metastasis.
Collapse
Affiliation(s)
- Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
21
|
Zheng Z, Zeng YZ, Ren K, Zhu X, Tan Y, Li Y, Li Q, Yi GH. S1P promotes inflammation-induced tube formation by HLECs via the S1PR1/NF-κB pathway. Int Immunopharmacol 2018; 66:224-235. [PMID: 30476824 DOI: 10.1016/j.intimp.2018.11.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Inflammation-induced lymphangiogenesis is a widely accepted concept. However, most of the inflammatory factors and their related mechanisms have not been clarified. It has been reported that sphingosine-1-phosphate (S1P) is not only closely related to the chronic inflammatory process but also affects angiogenesis. Therefore, we investigated the inflammatory effects of S1P on human lymphatic endothelial cells (HLECs). Our results showed that S1P promotes tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) secretion in HLECs. We also confirmed that S1P-stimulated TNF-α and IL-1β secretion is mediated through S1P receptor 1 (S1PR1). Using TNF-α siRNA and IL-1β siRNA, we found that TNF-α and IL-1β play essential roles in S1P-induced HLEC proliferation, migration, and tube formation. S1P induces phosphorylation of NF-κB p65 and activation of NF-κB nuclear translocation. A S1PR1 antagonist (W146) and NF-κB inhibitor (BAY11-7082) inhibited S1P-induced TNF-α and IL-1β secretion and prevented NF-κB nuclear translocation. Taken together, the results demonstrated for the first time that S1P promotes the secretion of TNF-α and IL-1β in HLECs via S1PR1-mediated NF-κB signaling pathways, thus affecting lymphangiogenesis. The study provides a new strategy for finding treatments for lymphangiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhi Zheng
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yong-Zhi Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Kun Ren
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Xiao Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Ying Tan
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yi Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Qian Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
22
|
Biological function of SPNS2: From zebrafish to human. Mol Immunol 2018; 103:55-62. [DOI: 10.1016/j.molimm.2018.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023]
|
23
|
Barra G, Lepore A, Gagliardi M, Somma D, Matarazzo MR, Costabile F, Pasquale G, Mazzoni A, Gallo C, Nuzzo G, Annunziato F, Fontana A, Leonardi A, De Palma R. Sphingosine Kinases promote IL-17 expression in human T lymphocytes. Sci Rep 2018; 8:13233. [PMID: 30185808 PMCID: PMC6125344 DOI: 10.1038/s41598-018-31666-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) has a role in many cellular processes. S1P is involved in cell growth and apoptosis, regulation of cell trafficking, production of cytokines and chemokines. The kinases SphK1 and SphK2 (SphKs) phosphorilate Sphingosine (Sph) to S1P and several phosphatases revert S1P to sphingosine, thus assuring a balanced pool that can be depleted by a Sphingosine lyase in hexadecenal compounds and aldehydes. There are evidences that SphK1 and 2 may per se control cellular processes. Here, we report that Sph kinases regulate IL-17 expression in human T cells. SphKs inhibition impairs the production of IL-17, while their overexpression up-regulates expression of the cytokine through acetylation of IL-17 promoter. SphKs were up-regulated also in PBMCs of patients affected by IL-17 related diseases. Thus, S1P/S1P kinases axis is a mechanism likely to promote IL-17 expression in human T cells, representing a possible therapeutic target in human inflammatory diseases.
Collapse
Affiliation(s)
- Giusi Barra
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Alessio Lepore
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | - Miriam Gagliardi
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Napoli, 80131, Italy
| | - Domenico Somma
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | | | - Francesca Costabile
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Giuseppe Pasquale
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Antonio Leonardi
- Univeristy of Naples "Federico II", Department of Molecular Medicine and Medical Biotechnology, Napoli, Italy
| | - Raffaele De Palma
- Department of Precision Medicine, Università della Campania "L. Vanvitelli", Napoli, Italy. .,Institute of Protein Biochemistry-CNR, via P. Castellino, 111, 80131, Napoli, Italy.
| |
Collapse
|