1
|
Chen NX, O’Neill KD, Wilson HE, Srinivasan S, Bonewald L, Moe SM. The uremic toxin indoxyl sulfate decreases osteocyte RANKL/OPG and increases Wnt inhibitor RNA expression that is reversed by PTH. JBMR Plus 2025; 9:ziae136. [PMID: 39664935 PMCID: PMC11631378 DOI: 10.1093/jbmrpl/ziae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 12/13/2024] Open
Abstract
Renal osteodystrophy (ROD) leads to increased fractures, potentially due to underlying low bone turnover in chronic kidney disease (CKD). We hypothesized that indoxyl sulfate (IS), a circulating toxin elevated in CKD and a ligand for the aryl hydrocarbon receptor (AhR), may target the osteocytes leading to bone cell uncoupling in ROD. The IDG-SW3 osteocytes were cultured for 14 days (early) and 35 days (mature osteocytes) and incubated with 500 μM of IS after dose finding studies to confirm AhR activation. Long-term incubation of IS for 14 days led to decreased expression of Tnfsf11/Tnfrsf11b ratio (RANKL/OPG), which would increase osteoclast activity, and increased expression of Wnt inhibitors Sost and Dkk1, which would decrease bone formation in addition to decreased mineralization and alkaline phosphatase (ALP) activity. When osteocytes were incubated with IS and the AhR translocation inhibitor CH223191, mineralization and ALP activity were restored. However, the Tnfsf11/Tnfrsf11b ratio and Sost, Dkk1 expression were not altered compared with IS alone, suggesting more complex signaling. In both early and mature osteocytes, co-culture with parathyroid hormone (PTH) and IS reversed the IS-induced upregulation of Sost and Dkk1, and IS enhanced the PTH-induced increase of the Tnfsf11/Tnfrsf11b ratio. Co-culture of IS with PTH additively enhanced the AhR activity assessed by Cyp1a1 and Cyp1b1 expression. In summary, IS in the absence of PTH increased osteocyte messenger RNA (mRNA) Wnt inhibitor expression in both early and mature osteocytes, decreased mRNA expression ofTnfsf11/Tnfrsf11b ratio and decreased mineralization in early osteocytes. These changes would lead to decreased resorption and formation resulting in low bone remodeling. These data suggest IS may be important in the underlying low turnover bone disease observed in CKD when PTH is not elevated. In addition, when PTH is elevated, IS interacts to further increase Tnfsf11/Tnfrsf11b ratio for osteoclast activity in both early and mature osteocytes, which would worsen bone resorption.
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Kalisha D O’Neill
- Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Hannah E Wilson
- Department of Anatomy, Cell Biology and Physiology Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shruthi Srinivasan
- Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Lynda Bonewald
- Department of Anatomy, Cell Biology and Physiology Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sharon M Moe
- Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology and Physiology Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
2
|
Vahidi G, Boone C, Hoffman F, Heveran C. Aging decreases osteocyte peri-lacunar-canalicular system turnover in female C57BL/6JN mice. Bone 2024; 186:117163. [PMID: 38857854 PMCID: PMC11227388 DOI: 10.1016/j.bone.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Osteocytes engage in bone resorption and mineralization surrounding their expansive lacunar-canalicular system (LCS) through peri-LCS turnover. However, fundamental questions persist about where, when, and how often osteocytes engage in peri-LCS turnover and how these processes change with aging. Furthermore, whether peri-LCS turnover is associated with natural variation in cortical tissue strain remains unexplored. To address these questions, we utilized confocal scanning microscopy, immunohistochemistry, and scanning electron microscopy to characterize osteocyte peri-LCS turnover in the cortical (mid-diaphysis) and cancellous (metaphysis) regions of femurs from young adult (5 mo) and early-old-age (22 mo) female C57BL/6JN mice. LCS bone mineralization was measured by the presence of perilacunar fluorochrome labels. LCS bone resorption was measured by immunohistochemical marker of bone resorption. The dynamics of peri-LCS turnover were estimated from serial fluorochrome labeling, where each mouse was administered two labels between 2 and 16 days before euthanasia. Osteocyte participation in mineralizing their surroundings is highly abundant in both cortical and cancellous bone of young adult mice but significantly decreases with aging. LCS bone resorption also decreases with aging. Aging has a greater impact on peri-LCS turnover dynamics in cancellous bone than in cortical bone. Lacunae with recent peri-LCS turnover are larger in both age groups. While peri-LCS turnover is associated with variation in tissue strain between cortical quadrants and intracortical location for 22 mo mice, these associations were not seen for 5 mo mice. The impact of aging on decreasing peri-LCS turnover may have significant implications for bone quality and mechanosensation.
Collapse
Affiliation(s)
- Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Connor Boone
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Fawn Hoffman
- Department of Biomedical Sciences, College of Idaho, Caldwell, ID, USA
| | - Chelsea Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
3
|
Blouin S, Misof BM, Mähr M, Fratzl-Zelman N, Roschger P, Lueger S, Messmer P, Keplinger P, Rauch F, Glorieux FH, Berzlanovich A, Gruber GM, Brugger PC, Shane E, Recker RR, Zwerina J, Hartmann MA. Osteocyte lacunae in transiliac bone biopsy samples across life span. Acta Biomater 2023; 157:275-287. [PMID: 36549635 DOI: 10.1016/j.actbio.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Osteocytes act as bone mechanosensors, regulators of osteoblast/osteoclast activity and mineral homeostasis, however, knowledge about their functional/morphological changes throughout life is limited. We used quantitative backscattered electron imaging (qBEI) to investigate osteocyte lacunae sections (OLS) as a 2D-surrogate characterizing the osteocytes. OLS characteristics, the density of mineralized osteocyte lacunae (i.e., micropetrotic osteocytes, md.OLS-Density in nb/mm2) and the average degree of mineralization (CaMean in weight% calcium) of cortex and spongiosa were analyzed in transiliac biopsy samples from healthy individuals under 30 (n=59) and over 30 years (n=50) (i.e., before and after the age of peak bone mass, respectively). We found several differences in OLS-characteristics: 1). Inter-individually between the age groups: OLS-Density and OLS-Porosity were reduced by about 20% in older individuals in spongiosa and in cortex versus younger probands (both, p < 0.001). 2). Intra-individually between bone compartments: OLS-Density was higher in the cortex, +18.4%, p < 0.001 for younger and +7.6%, p < 0.05 for older individuals. Strikingly, the most frequent OLS nearest-neighbor distance was about 30 µm in both age groups and at both bone sites revealing a preferential organization of osteocytes in clusters. OLS-Density was negatively correlated with CaMean in both spongiosa and cortex (both, p < 0.001). Few mineralized OLS were found in young individuals along with an increase of md.OLS-Density with age. In summary, this transiliac bone sample analysis of 200000 OLS from 109 healthy individuals throughout lifespan reveals several age-related differences in OLS characteristics. Moreover, our study provides reference data from healthy individuals for different ages to be used for diagnosis of bone abnormalities in diseases. STATEMENT OF SIGNIFICANCE: Osteocytes are bone cells embedded in lacunae within the mineralized bone matrix and have a key role in the bone metabolism and the mineral homeostasis. Not easily accessible, we used quantitative backscattered electron imaging to determine precisely number and shape descriptors of the osteocyte lacunae in 2D. We analyzed transiliac biopsy samples from 109 individuals with age distributed from 2 to 95 years. Compact cortical bone showed constantly higher lacunar density than cancellous bone but the lacunar density in both bone tissue decreased with age before the peak bone mass age at 30 years and stabilized or even increased after this age. This extensive study provides osteocyte lacunae reference data from healthy individuals usable for bone pathology diagnosis.
Collapse
Affiliation(s)
- Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria.
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Matthias Mähr
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Sonja Lueger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Petra Keplinger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, ON QC, H4A 0A9, Canada
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Montreal, ON QC, H4A 0A9, Canada
| | - Andrea Berzlanovich
- Unit of Forensic Gerontology, Center of Forensic Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Peter C Brugger
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Elizabeth Shane
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, USA
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| |
Collapse
|
4
|
Heveran CM, Boerckel JD. Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name? Curr Osteoporos Rep 2023; 21:11-20. [PMID: 36512204 PMCID: PMC11223162 DOI: 10.1007/s11914-022-00766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Osteocytes directly modify the bone surrounding the expansive lacunar-canalicular system (LCS) through both resorption and deposition. The existence of this phenomenon is now widely accepted, but is referred to as "osteocyte osteolysis," "LCS remodeling," and "perilacunar remodeling," among other names. The uncertainty in naming this physiological process reflects the many persistent questions about why and how osteocytes interact with local bone matrix. The goal of this review is to examine the purpose and nature of LCS remodeling and its impacts on multiscale bone quality. RECENT FINDINGS While LCS remodeling is clearly important for systemic calcium mobilization, this process may have additional potential drivers and may impact the ability of bone to resist fracture. There is abundant evidence that the osteocyte can resorb and replace bone mineral and does so outside of extreme challenges to mineral homeostasis. The impacts of the osteocyte on organic matrix are less certain, especially regarding whether osteocytes produce osteoid. Though multiple lines of evidence point towards osteocyte production of organic matrix, definitive work is needed. Recent high-resolution imaging studies demonstrate that LCS remodeling influences local material properties. The role of LCS remodeling in the maintenance and deterioration of bone matrix quality in aging and disease are active areas of research. In this review, we highlight current progress in understanding why and how the osteocyte removes and replaces bone tissue and the consequences of these activities to bone quality. We posit that answering these questions is essential for evaluating whether, how, when, and why LCS remodeling may be manipulated for therapeutic benefit in managing bone fragility.
Collapse
Affiliation(s)
- C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - J D Boerckel
- Department of Orthopaedic Surgery, Department of Bioengineering, University of Pennsylvania School of Medicine, Philadelphia, USA.
| |
Collapse
|
5
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Yajima A, Tsuchiya K, Kuro-O M, Urena P, Tominaga Y, Okada M, Ichimori T, Tomosugi T, Hiramitsu T, Murata T, Nakamura M, Sasaki M, Ito A, Nitta K. Renal hyperparathyroidism. VITAMINS AND HORMONES 2022; 120:305-343. [PMID: 35953115 DOI: 10.1016/bs.vh.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The number of the patients with chronic kidney disease is now increasing in the world. The pathophysiology of renal hyperparathyroidism is closely associated with Klotho-FGF-endocrine axes, which must be solved definitively as early as possible. It was revealed that the expression of fgf23 is activated by calciprotein particles, which induces vascular ossification. And it is well known that phosphorus overload directly increases parathyroid hormone and hyperparathyroid bone disease develops in those subjects. On the other hand, low turnover bone disease is often recently. Both the patients with chronic kidney disease suffering from hyperparathyroid bone disease or low turnover bone disease are associated with increased fracture risk. Micropetrosis may be one of the causes of increased fracture risk in the subjects with low turnover bone disease. In this chapter, we now describe the diagnosis, pathophysiology and treatments of renal hyperparathyroidism.
Collapse
Affiliation(s)
- Aiji Yajima
- Department of Anatomy, Cell Biology and Physiology, Indiana University, School of Medicine, Indianapolis, IN, United States; Department of Urology, Tokyo, Teishin Hospital, Tokyo, Japan; Department Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.
| | - Ken Tsuchiya
- Department Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Pablo Urena
- Division of Nephrology, Clinique du Landy, Saint Ouen, France
| | - Yoshihiro Tominaga
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Manabu Okada
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Toshihiro Ichimori
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Toshihide Tomosugi
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Takahisa Hiramitsu
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Taro Murata
- Department of Urology, Tokyo, Teishin Hospital, Tokyo, Japan
| | - Masaki Nakamura
- Department of Nephrology and Urology, NTT East Kanto Hospital, Tokyo, Japan
| | - Masahiko Sasaki
- Department of Urology, Tokyo, Teishin Hospital, Tokyo, Japan
| | - Akemi Ito
- Ito Bone Histomorphometry Institute, Niigata, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
7
|
Rux CJ, Vahidi G, Darabi A, Cox LM, Heveran CM. Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice. Bone 2022; 157:116327. [PMID: 35026452 PMCID: PMC8858864 DOI: 10.1016/j.bone.2022.116327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes resorb and replace bone local to the lacunar-canalicular system (LCS). However, whether osteocyte remodeling impacts bone quality adjacent to the LCS is not understood. Further, while aging is well-established to decrease osteocyte viability and truncate LCS geometry, it is unclear if aging also decreases perilacunar bone quality. To address these questions, we employed atomic force microscopy (AFM) to generate nanoscale-resolution modulus maps for cortical femur osteocyte lacunae from young (5-month) and early-old-age (22-month) female C57Bl/6 mice. AFM-mapped lacunae were also imaged with confocal laser scanning microscopy to determine which osteocytes recently deposited bone as determined by the presence of fluorochrome labels administered 2d and 8d before euthanasia. Modulus gradation with distance from the lacunar wall was compared for labeled (i.e., bone forming) and non-labeled lacunae in both young and aged mice. All mapped lacunae showed sub-microscale modulus gradation, with peak modulus values 200-400 nm from the lacunar wall. Perilacunar modulus gradations depended on the recency of osteocyte bone formation (i.e., the presence of labels). For both ages, 2d-labeled perilacunar bone had lower peak and bulk modulus compared to non-labeled perilacunar bone. Lacunar length reduced with age, but lacunar shape and size were not strong predictors of modulus gradation. Our findings demonstrate for the first time that osteocyte perilacunar remodeling impacts bone tissue modulus, one contributor to bone quality. Given the immense scale of the LCS, differences in perilacunar modulus resulting from osteocyte remodeling activity may affect the quality of a substantial amount of bone tissue.
Collapse
Affiliation(s)
- Caleb J Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America; UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| | - Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Amir Darabi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Lewis M Cox
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
8
|
Yajima A, Tsuchiya K, Burr DB, Murata T, Nakamura M, Inaba M, Tominaga Y, Tanizawa T, Nakayama T, Ito A, Nitta K. Micropetrosis in hemodialysis patients. Bone Rep 2021; 15:101150. [PMID: 34926729 PMCID: PMC8649646 DOI: 10.1016/j.bonr.2021.101150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
Micropetrosis develops as a result of stagnation of calcium, phosphorus and bone fluid, which appears as highly mineralized bone area in the osteocytic perilacunar/canalicular system regardless of bone turnover of the patients. And microcracks are predisposed to increase in these areas, which leads to increased bone fragility. However, micropetrosis of hemodialysis (HD) patients has not been discussed at all. Micropetrosis area per bone area (Mp.Ar/B·Ar) and osteocyte number per micropetrosis area (Ot.N/Mp.Ar) were measured in nine HD patients with renal hyperparathyroidism (Group I), twelve patients with hypoparathyroidism within 1 year after the treatment of renal hyperparathyroidism (Group II) and seven patients suffering from hypoparathyroidism for over two years (Group III). And bone mineral density (BMD) and tissue mineral density (TMD) were calculated using μCT to evaluate bone mineral content of iliac bone of the patients. These parameters were compared among the three groups. Only Mp.Ar/B·Ar was statistically greater in Group II and III compared to Group I in the parameters of bone mineral content and micropetrosis. However, the other parameters were not statistically different among the three groups. In long-term HD patients, BMD and TMD may be modified by the causes of renal insufficiency and the treatment of renal bone disease. We concluded that Mp.Ar/B·Ar was greater in patients with long-term hypoparathyroidism than both those with short-term hypoparathyroidism and with renal hyperparathyroidism. Special attention should be paid to avoid long-term hypoparathyroidism of the patients from the view point of increased fracture risk caused by increased micropetrosis area.
Collapse
Affiliation(s)
- Aiji Yajima
- Department of Anatomy, Cell Biology and Physiology, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Urology, Tokyo Teishin Hospital, Tokyo, Japan.,Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - David B Burr
- Department of Anatomy, Cell Biology and Physiology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Taro Murata
- Department of Urology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Masaki Nakamura
- Department of Nephrology and Urology, NTT East Kanto Hospital, Tokyo, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Tominaga
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | | | | | - Akemi Ito
- Ito Bone Histomorphometry Institute, Niigata, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Vahidi G, Rux C, Sherk VD, Heveran CM. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment. Bone 2021; 143:115663. [PMID: 32987198 PMCID: PMC7769905 DOI: 10.1016/j.bone.2020.115663] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Osteocytes can resorb as well as replace bone adjacent to the expansive lacunar-canalicular system (LCS). Suppressed LCS remodeling decreases bone fracture toughness, but it is unclear how altered LCS remodeling impacts bone quality. The first goal of this review is to assess how LCS remodeling impacts LCS morphology as well as the composition and mechanical properties of surrounding bone tissue. The second goal is to compare tools available for the assessment of bone quality at length-scales that are physiologically-relevant to LCS remodeling. We find that changes to LCS morphology occur in response to a variety of physiological conditions and diseases and can be classified in two general phenotypes. In the 'aging phenotype', seen in aging and in some disuse models, the LCS is truncated and osteocytes apoptosis is increased. In the 'osteocytic osteolysis' phenotype, which is adaptive in some physiological settings and possibly maladaptive in others, the LCS enlarges and osteocytes generally maintain viability. Bone composition and mechanical properties vary near the osteocyte and change with at least some conditions that alter LCS morphology. However, few studies have evaluated bone composition and mechanical properties close to the LCS and so the impacts of LCS remodeling phenotypes on bone tissue quality are still undetermined. We summarize the current understanding of how LCS remodeling impacts LCS morphology, tissue-scale bone composition and mechanical properties, and whole-bone material properties. Tools are compared for assessing tissue-scale bone properties, as well as the resolution, advantages, and limitations of these techniques.
Collapse
Affiliation(s)
- G Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - C Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - V D Sherk
- Department of Orthopedics, University of Colorado Anschutz School of Medicine, United States of America
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
10
|
Dole NS, Yee CS, Mazur CM, Acevedo C, Alliston T. TGFβ Regulation of Perilacunar/Canalicular Remodeling Is Sexually Dimorphic. J Bone Miner Res 2020; 35:1549-1561. [PMID: 32282961 PMCID: PMC9126317 DOI: 10.1002/jbmr.4023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Bone fragility is the product of defects in bone mass and bone quality, both of which show sex-specific differences. Despite this, the cellular and molecular mechanisms underpinning the sexually dimorphic control of bone quality remain unclear, limiting our ability to effectively prevent fractures, especially in postmenopausal osteoporosis. Recently, using male mice, we found that systemic or osteocyte-intrinsic inhibition of TGFβ signaling, achieved using the 9.6-kb DMP1 promoter-driven Cre recombinase (TβRIIocy-/- mice), suppresses osteocyte perilacunar/canalicular remodeling (PLR) and compromises bone quality. Because systemic TGFβ inhibition more robustly increases bone mass in female than male mice, we postulated that sex-specific differences in bone quality could likewise result, in part, from dimorphic regulation of PLR by TGFβ. Moreover, because lactation induces PLR, we examined the effect of TGFβ inhibition on the female skeleton during lactation. In contrast to males, female mice that possess an osteocyte-intrinsic defect in TGFβ signaling were protected from TGFβ-dependent defects in PLR and bone quality. The expression of requisite PLR enzymes, the lacunocanalicular network (LCN), and the flexural strength of female TβRIIocy-/- bone was intact. With lactation, however, bone loss and induction in PLR and osteocytic parathyroid hormone type I receptor (PTHR1) expression, were suppressed in TβRIIocy-/- bone, relative to the control littermates. Indeed, differential control of PTHR1 expression, by TGFβ and other factors, may contribute to dimorphism in PLR regulation in male and female TβRIIocy-/- mice. These findings provide key insights into the sex-based differences in osteocyte PLR that underlie bone quality and highlight TGFβ signaling as a crucial regulator of lactation-induced PLR. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Neha S Dole
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Cristal S Yee
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA.,University of California (UC) Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
11
|
Yajima A, Tsuchiya K, Burr DB, Wallace JM, Damrath JD, Inaba M, Tominaga Y, Satoh S, Nakayama T, Tanizawa T, Ogawa H, Ito A, Nitta K. The Importance of Biologically Active Vitamin D for Mineralization by Osteocytes After Parathyroidectomy for Renal Hyperparathyroidism. JBMR Plus 2019; 3:e10234. [PMID: 31768492 PMCID: PMC6874232 DOI: 10.1002/jbm4.10234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 11/10/2022] Open
Abstract
Hypomineralized matrix is a factor determining bone mineral density. Increased perilacunar hypomineralized bone area is caused by reduced mineralization by osteocytes. The importance of vitamin D in the mineralization by osteocytes was investigated in hemodialysis patients who underwent total parathyroidectomy (PTX) with immediate autotransplantation of diffuse hyperplastic parathyroid tissue. No previous reports on this subject exist. The study was conducted in 19 patients with renal hyperparathyroidism treated with PTX. In 15 patients, the serum calcium levels were maintained by subsequent administration of alfacalcidol (2.0 μg/day), i.v. calcium gluconate, and oral calcium carbonate for 4 weeks after PTX (group I). This was followed in a subset of 4 patients in group I by a reduced dose of 0.5 μg/day until 1 year following PTX; this was defined as group II. In the remaining 4 patients, who were not in group I, the serum calcium (Ca) levels were maintained without subsequent administration of alfacalcidol (group III). Transiliac bone biopsy specimens were obtained in all groups before and 3 or 4 weeks after PTX to evaluate the change of the hypomineralized bone area. In addition, patients from group II underwent a third bone biopsy 1 year following PTX. A significant decrease of perilacunar hypomineralized bone area was observed 3 or 4 weeks after PTX in all group I and II patients. The area was increased again in the group II patients 1 year following PTX. In group III patients, an increase of the hypomineralized bone area was observed 4 weeks after PTX. The maintenance of a proper dose of vitamin D is necessary for mineralization by osteocytes, which is important to increase bone mineral density after PTX for renal hyperparathyroidism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Aiji Yajima
- Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA.,Department of Medicine, Kidney Center Tokyo Women's Medical University Shinjuku-ku, Tokyo Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center Tokyo Women's Medical University, Shinjuku-ku Tokyo Japan
| | - David B Burr
- Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA
| | - Joseph M Wallace
- Department of Biomedical Engineering Indiana University, Purdue University Indianapolis IN USA
| | - John D Damrath
- Department of Biomedical Engineering Indiana University, Purdue University Indianapolis IN USA
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine Osaka City University Graduate School of Medicine Osaka Japan
| | - Yoshihiro Tominaga
- Department of Transplant Surgery Nagoya Second Red Cross Hospital Nagoya, Aichi Japan
| | - Shigeru Satoh
- Center for Kidney Disease and Transplantation Akita University Hospital Akita Japan
| | - Takashi Nakayama
- Department of Orthopedic Surgery Towa Hospital Adachi-ku, Tokyo Japan
| | | | - Hajime Ogawa
- Department of Medicine, Division of Nephrology Ogawa Clinic Shinagawa-ku, Tokyo Japan
| | - Akemi Ito
- Ito Bone Histomorphometry Institute Niigata Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center Tokyo Women's Medical University Shinjuku-ku, Tokyo Japan
| |
Collapse
|