1
|
Quintiens J, Manske SL, Boyd SK, Coudyzer W, Bevers M, Vereecke E, van den Bergh J, van Lenthe GH. Accuracy and precision of segmentation and quantification of wrist bone microarchitecture using photon-counting computed tomography ex vivo. Bone 2025; 194:117443. [PMID: 40032018 DOI: 10.1016/j.bone.2025.117443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The quantification of bone microarchitecture provides insight into bone health and the effects of disease or treatment, and is therefore highly relevant clinical information. Nonetheless, in vivo quantification of bone microarchitecture is mostly limited to high-resolution peripheral quantitative CT (HR-pQCT). This is a small field of view CT modality of which the gantry size only allows scanning of distal radius and tibia. Photon-counting CT (PCCT) is a novel clinical full-body CT with improved image resolution and quality compared to other clinical CT modalities, yet data on its capabilities in quantifying bone microarchitecture are limited. The aim of this study was to quantify the accuracy of two methods for trabecular bone segmentation on PCCT images as compared to the segmentations on micro-CT (μCT) and to use these segmentations to quantify the accuracy and agreement of trabecular bone morphometry measurements as compared to μCT, as well as the short-term precision. This study analysed multimodal CT data, obtained from eight cadaveric forearms; the data includes two repeated PCCT scans, as well as a single HR-pQCT scan from the forearm, and μCT scans of all individual carpal bones. For each carpal bone, trabecular volumes of interest (VOI) were delineated on the μCT images, and the μCT reference segmentations and VOIs were resampled onto the PCCT and HR-pQCT images. HR-pQCT images were segmented with a global threshold of 320 mgHA/cm3; PCCT images were segmented with either an identical global threshold or with an adaptive thresholding algorithm. Trabecular bone-volume fraction (Tb.BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) were quantified for all segmented VOIs. Accuracy and agreement were calculated relative to μCT as the gold standard, short-term precision was calculated from the repeated PCCT scan. For PCCT, adaptive threshold segmentation had significantly increased sensitivity compared to global threshold segmentation, along with a lower variance in its sensitivity and specificity. Concerning the microarchitecture quantification, for global threshold segmentation of PCCT images, correlations with μCT were significant, except for Tb.Sp. Correlation coefficients of Tb.BV/TV and Tb.N were not significantly different from those between HR-pQCT and μCT. Adaptive threshold segmentation led to higher correlation coefficients between PCCT and μCT of Tb.Th, Tb.N and Tb.Sp, although correlations of Tb.N remained poor for both PCCT and HR-pQCT. Moreover, adaptive thresholding led to a constant bias of Tb.BV/TV, Tb.Th and Tb.Sp, unlike the bias of HR-pQCT which was proportionally increasing with the size of the measurement. Finally, adaptive threshold segmentation led to a higher short-term precision than global threshold segmentation, with a root-mean-squared coefficient of variation below 0.65 % for all parameters. We conclude that adaptive threshold segmentation is well-suited for the segmentation of PCCT images. Despite measurement error, our results indicate that these segmentations can be used for bone microarchitecture analyses of carpal bones with agreement and short-term precision comparable to HR-pQCT.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Belgium; McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - Sarah L Manske
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Canada
| | - Walter Coudyzer
- Department of Radiology, University Hospital Leuven, Belgium
| | - Melissa Bevers
- Department of Internal Medicine, VieCuri Medical Center, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - Evie Vereecke
- Department of Development and Regeneration, KU Leuven, Belgium
| | - Joop van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, the Netherlands
| | | |
Collapse
|
2
|
Dong W, Wang L, Zheng Y, Yang X, Shen L, Yang F, Zheng Y. Effect of Bone Microstructure Derived From CBCT on the Accuracy of Robot-Assisted Implant Surgery: A Retrospective Study. Clin Oral Implants Res 2025. [PMID: 39912590 DOI: 10.1111/clr.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVE The aim of this study was to investigate the influence of bone microstructure on the accuracy of robot-assisted dental implant surgery. MATERIALS AND METHODS This retrospective study analyzed 52 patients who received robot-assisted implant surgery between January 2023 and October 2023. Cone beam computed tomography (CBCT) scans were used to evaluate bone microstructural parameters, including the bone volume (BV), tissue volume (TV), bone volume fraction (BV/TV), bone surface (BS), bone surface fraction (BS/BV), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp). Preoperative and postoperative CBCT data were used to evaluate implant accuracy, and the relationship between bone microstructure parameters and implant deviation including platform deviation, apex deviation, and angular deviation was statistically analyzed. RESULTS In robot-assisted implant surgery, BS/BV was a potential facilitator of several implant deviations, while BV/TV and Tb.Th were potential inhibitors of apex global deviation and angular deviation, respectively. Implant deviations were divided into two groups of large and small deviations by median, and the receiver operating characteristic (ROC) curve analysis showed that Tb.Th had the largest area under the ROC for predicting large apex global deviation, 0.711 (p < 0.001), with an optimal cutoff value > 0.179, a sensitivity and specificity of 70.37% and 76.92%. CONCLUSION The study concluded that bone microstructure might affect the accuracy of dental implant placement in robotic surgeries. Incorporating bone quality assessments into preoperative planning may enhance the precision and outcomes of implant procedures, highlighting the potential for further refinement in robotic-assisted dental surgery techniques. TRIAL REGISTRATION ClinicalTrials.gov identifier: ChiCTR2400085813.
Collapse
Affiliation(s)
- Wenxi Dong
- Center for Plastic and Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linhong Wang
- Center for Plastic and Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuanna Zheng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Ningbo Dental Hospital, Ningbo, Zhejiang, China
| | - Xulan Yang
- Hangzhou Jianjia Medical Technology Co. Ltd., Hangzhou, Zhejiang, China
| | - Liheng Shen
- Center for Plastic and Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fan Yang
- Center for Plastic and Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Zheng
- Center for Plastic and Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wolffenbuttel T, Ajami S, Borghi A, Schievano S, Dunaway D, Jeelani NUO, Koudstaal M. Cone beam CT for the assessment of bone microstructure to predict head shape changes after spring-assisted craniosynostosis surgery. J Craniomaxillofac Surg 2025; 53:142-153. [PMID: 39603896 DOI: 10.1016/j.jcms.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Head shape changes following spring-cranioplasty for craniosynostosis (CS) can be difficult to predict. While previous research has indicated a connection between surgical outcomes and calvarial bone microstructure ex-vivo, there exists a demand for identifying imaging biomarkers that can be translated into clinical settings and assist in predicting these outcomes. In this study, ten parietal (8 males, age 157 ± 26 days) and two occipital samples (males, age 1066 and 1162 days) were collected from CS patients who underwent spring cranioplasty procedures. Samples' microstructure were examined using clinical imaging modalities (dental CBCT, C-arm CT) and micro-CT. Cranial index (CI) was measured to evaluate patients' head shape before and after surgery, with an investigation into their relationship with morphometric measurements. Bone cross-sectional thickness (CsTh) showed significant correlation to CI increase post-SAC for C-arm CT (ρ = -0.857, p = 0.014) and 8.9 μm micro-CT (ρ = -0.857, p = 0.014). In addition, bone volume (BV) was correlated to CI increase for CBCT (ρ = -0.643, p = 0.013), 50 μm micro-CT (ρ = -0.857, p < 0.001) and 90 μm micro-CT (ρ = -0.679, p = 0.008). High correlation with micro-CT resampled to match respective voxel sizes was demonstrated for both CBCT and C-arm CT measurements of CsTh and BV (ρ ≥ 0.860, p < 0.001). This preliminary study demonstrates the potential of clinical CT devices to aid in pre-surgical decision making in CS.
Collapse
Affiliation(s)
- Tanya Wolffenbuttel
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands.
| | - Sara Ajami
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alessandro Borghi
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Engineering, Durham University, Durham, UK
| | - Silvia Schievano
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David Dunaway
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Noor Ul Owase Jeelani
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Maarten Koudstaal
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Klintström B, Spångeus A, Malusek A, Synek A, Woisetschläger M, Pahr D, Klintström E. Automated bone property analysis using corrected in vivo dental cone-beam CT data of human wrists. Sci Rep 2024; 14:30466. [PMID: 39681574 DOI: 10.1038/s41598-024-75222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 12/18/2024] Open
Abstract
Fracture liaison services are essential to mitigate underdiagnosis and undertreatment of osteoporosis-related fractures. However, it often suffers from limited access to dual-energy X-ray absorptiometry (DXA) or high-resolution peripheral quantitative CT equipment. This in vivo study of 21 patients aims to evaluate the feasibility of dental cone beam CT (dCBCT) to analyse bone properties of human wrists, comparing with DXA and finite element (FE) analysis. dCBCT grey-scale values were transformed to HU using a phantom containing materials with known HU values. Strong correlations were found between bone mineral content (BMC) from dCBCT and DXA (r = 0.78 to 0.84, p < 0.001), as well as between BMC from dCBCT FE-predicted stiffness (r = 0.91) and maximum force (r = 0.93), p < 0.001. BMC values from dCBCT were higher than DXA measurements (2.34 g vs. 1.5 g, p < 0.001). Cortical thickness strongly correlated to bone mineral density (BMD) from dCBCT (r = 0.83, p < 0.001). No statistically significant correlations were found between trabecular bone microstructure and FE predictions. The results indicate the feasibility to analyse osteoporosis related bone properties of human wrists from corrected dCBCT data. The dCBCT values of BMD and BMC were strongly correlated with DXA.
Collapse
Affiliation(s)
- Benjamin Klintström
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden.
| | - Anna Spångeus
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Acute Internal Medicine and Geriatrics, Linköping University Hospital, Linköping, Sweden
- Center for Medical Image Science and Visualization, CMIV, Linköping, Sweden
| | - Alexandr Malusek
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, Vienna, 1060, Austria
| | - Mischa Woisetschläger
- Center for Medical Image Science and Visualization, CMIV, Linköping, Sweden
- Department of Radiology in Linköping and Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, Linköping, Sweden
| | - Dieter Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, Vienna, 1060, Austria
| | - Eva Klintström
- Center for Medical Image Science and Visualization, CMIV, Linköping, Sweden.
- Department of Radiology in Linköping and Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
5
|
Quintiens J, Coudyzer W, Bevers M, Vereecke E, van den Bergh JP, Manske SL, van Lenthe GH. The quantification of bone mineral density using photon counting computed tomography and its implications for detecting bone remodeling. J Bone Miner Res 2024; 39:1774-1782. [PMID: 39365940 DOI: 10.1093/jbmr/zjae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
HR-pQCT has become standard practice when quantifying volumetric BMD (vBMD) in vivo. Yet, it is only accessible to peripheral sites, with small fields of view and lengthy scanning times. This limits general applicability in clinical workflows. The goal of this study was to assess the potential of photon counting CT (PCCT) in quantitative bone imaging. Using the European Forearm Phantom, PCCT was calibrated to hydroxyapatite (HA) density. Eight cadaveric forearms were scanned twice with PCCT and once with HR-pQCT. The dominant forearm of two volunteers was scanned twice with PCCT. In each scan, the carpals were delineated. At bone level, accuracy was assessed with a paired measurement of total vBMD (Tt.vBMD) calculated with PCCT and HR-pQCT. At voxel-level, repeatability was assessed by image registration and voxel-wise subtraction of the ex vivo PCCT scans. In an ideal scenario, this difference would be zero; any deviation was interpreted as falsely detected remodeling. For clinical usage, the least detectable remodeling was determined by finding a threshold in the PCCT difference image that resulted in a classification of bone formation and resorption below acceptable noise levels (<0.5%). The paired measurement of Tt.vBMD had a Pearson correlation of 0.986. Compared to HR-pQCT, PCCT showed a bias of 7.46 mgHA/cm3. At voxel-level, the repeated PCCT scans showed a bias of 17.66 mgHA/cm3 and a standard error of 96.23 mgHA/cm3. Least detectable remodeling was found to be 250 mgHA/cm3, for which 0.37% of the voxels was incorrectly classified as newly added or resorbed bone. In vivo, this volume increased to 0.97%. Based on the cadaver data, we conclude that PCCT can be used to quantify vBMD and bone turnover. We provided proof of principle that this technique is also accurate in vivo, hence, that it has high potential for clinical applications.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, 3001 Heverlee, Belgium
| | - Walter Coudyzer
- Department of Radiology, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Melissa Bevers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Evie Vereecke
- Department of Development and Regeneration, KU Leuven, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Joop P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Sarah L Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - G Harry van Lenthe
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, 3001 Heverlee, Belgium
| |
Collapse
|
6
|
Quintiens J, van Lenthe GH. Photon-Counting Computed Tomography for Microstructural Imaging of Bone and Joints. Curr Osteoporos Rep 2024; 22:387-395. [PMID: 38833188 DOI: 10.1007/s11914-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Recently, photon-counting computed tomography (PCCT) has been introduced in clinical research and diagnostics. This review describes the technological advances and provides an overview of recent applications with a focus on imaging of bone. RECENT FINDINGS PCCT is a full-body scanner with short scanning times that provides better spatial and spectral resolution than conventional energy-integrating-detector CT (EID-CT), along with an up to 50% reduced radiation dose. It can be used to quantify bone mineral density, to perform bone microstructural analyses and to assess cartilage quality with adequate precision and accuracy. Using a virtual monoenergetic image reconstruction, metal artefacts can be greatly reduced when imaging bone-implant interfaces. Current PCCT systems do not allow spectral imaging in ultra-high-resolution (UHR) mode. Given its improved resolution, reduced noise and spectral imaging capabilities PCCT has diagnostic capacities in both qualitative and quantitative imaging that outperform those of conventional CT. Clinical use in monitoring bone health has already been demonstrated. The full potential of PCCT systems will be unlocked when UHR spectral imaging becomes available.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
7
|
Waungana TH, Qiu K, Tse JJ, Anderson DD, Emery CA, Boyd SK, Manske SL. Accuracy of Volumetric Bone Mineral Density Measurement in Weight Bearing, Cone Beam Computed Tomography. J Clin Densitom 2024; 27:101504. [PMID: 38897133 DOI: 10.1016/j.jocd.2024.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Weight bearing computed tomography (WBCT) utilizes cone beam CT technology to provide assessments of lower limb joint structures while they are functionally loaded. Grey-scale values indicative of X-ray attenuation that are output from cone beam CT are challenging to calibrate, and their use for bone mineral density (BMD) measurement remains debatable. To determine whether WBCT can be reliably used for cortical and trabecular BMD assessment, we sought to establish the accuracy of BMD measurements at the knee using modern WBCT by comparing them to measurements from conventional CT. METHODS A hydroxyapatite phantom with three inserts of varying densities was used to systematically quantify signal uniformity and BMD accuracy across the acquisition volume. We evaluated BMD in vivo (n = 5, female) using synchronous and asynchronous calibration techniques in WBCT and CT. To account for variation in attenuation along the height (z-axis) of acquisition volumes, we tested a height-dependent calibration approach for both WBCT and CT images. RESULTS Phantom BMD measurement error in WBCT was as high as 15.3% and consistently larger than CT (up to 5.6%). Phantom BMD measures made under synchronous conditions in WBCT improved measurement accuracy by up to 3% but introduced more variability in measured BMD. We found strong correlations (R = 0.96) as well as wide limits of agreement (-324 mgHA/cm3 to 183 mgHA/cm3) from Bland-Altman analysis between WBCT and CT measures in vivo that were not improved by height-dependent calibration. CONCLUSION Whilst BMD accuracy from WBCT was found to be dependent on apparent density, accuracy was independent of the calibration technique (synchronous or asynchronous) and the location of the measurement site within the field of view. Overall, we found strong correlations between BMD measures from WBCT and CT and in vivo measures to be more accurate in trabecular bone regions. Importantly, WBCT can be used to distinguish between anatomically relevant differences in BMD, however future work is necessary to determine the repeatability and sensitivity of BMD measures in WBCT.
Collapse
Affiliation(s)
- Tadiwa H Waungana
- Biomedical Engineering Graduate Program, University of Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Keven Qiu
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada; David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Justin J Tse
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Donald D Anderson
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, Iowa, United States
| | - Carolyn A Emery
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada; Faculty of Kinesiology, University of Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada; O'Brien Institute for Public Health, University of Calgary, Alberta, Canada
| | - Steven K Boyd
- Biomedical Engineering Graduate Program, University of Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sarah L Manske
- Biomedical Engineering Graduate Program, University of Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Klintström E, Klintström B, Smedby Ö, Moreno R. Automated region growing-based segmentation for trabecular bone structure in fresh-frozen human wrist specimens. BMC Med Imaging 2024; 24:101. [PMID: 38693510 PMCID: PMC11061919 DOI: 10.1186/s12880-024-01281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
Bone strength depends on both mineral content and bone structure. Measurements of bone microstructure on specimens can be performed by micro-CT. In vivo measurements are reliably performed by high-resolution peripheral computed tomography (HR-pQCT) using dedicated software. In previous studies from our research group, trabecular bone properties on CT data of defatted specimens from many different CT devices have been analyzed using an Automated Region Growing (ARG) algorithm-based code, showing strong correlations to micro-CT.The aim of the study was to validate the possibility of segmenting and measuring trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens. Data from micro-CT was used as reference. The hypothesis was that the ARG-based in-house built software could be used for such measurements.HR-pQCT image data at two resolutions (61 and 82 µm isotropic voxels) from 23 fresh-frozen human forearms were analyzed. Correlations to micro-CT were strong, varying from 0.72 to 0.99 for all parameters except trabecular termini and nodes. The bone volume fraction had correlations varying from 0.95 to 0.98 but was overestimated compared to micro-CT, especially at the lower resolution. Trabecular separation and spacing were the most stable parameters with correlations at 0.80-0.97 and mean values in the same range as micro-CT.Results from this in vitro study show that an ARG-based software could be used for segmenting and measuring 3D trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens using micro-CT data as reference. Over-and underestimation of several of the bone structure parameters must however be taken into account.
Collapse
Affiliation(s)
- Eva Klintström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, SE-58185, Sweden.
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SE-58185, Sweden.
| | - Benjamin Klintström
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, Huddinge, SE-14157, Sweden
| | - Örjan Smedby
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, Huddinge, SE-14157, Sweden
| | - Rodrigo Moreno
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, Huddinge, SE-14157, Sweden
| |
Collapse
|
9
|
Azari F, Uniyal P, Soete J, Coudyzer W, Wyers CE, Quintiens J, van den Bergh JP, van Lenthe GH. Accuracy of photon-counting computed tomography for the measurement of bone quality in the knee. Bone 2024; 181:117027. [PMID: 38309413 DOI: 10.1016/j.bone.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Visualization and quantification of bone microarchitecture in the human knee allows gaining insight into normal bone structure, and into the structural changes occurring in the onset and progression of bone diseases such as osteoporosis and osteoarthritis. However, current imaging modalities have limitations in capturing the intricacies of bone microarchitecture. Photon counting computed tomography (PCCT) is a promising imaging modality that presents high-resolution three-dimensional visualization of bone with a large field of view. However, the potential of PCCT in assessing trabecular microstructure has not been investigated yet. Therefore, this study aimed to evaluate the accuracy of PCCT in quantifying bone microstructure and bone mechanics in the knee. Five human cadaveric knees were scanned ex vivo using a PCCT scanner (Naetom alpha, Siemens, Germany) with an in-plane resolution of 146.5 μm and slice thickness of 100 μm. To assess accuracy, the specimens were also scanned with a high-resolution peripheral quantitative computed tomography (HR-pQCT; XtremeCT II, Scanco Medical, Switzerland) with a nominal isotropic voxel size of 60.7 μm as well as with micro-computed tomography (micro-CT; TESCAN UniTOM XL, Czech Republic) with a nominal isotropic voxel size of 25 μm which can be considered gold standards for in vivo and ex vivo scanning, respectively. The thickness and porosity of the subchondral bone and the microstructure of the underlying trabecular bone were assessed in the load bearing regions of the proximal tibia and distal femur. The apparent Young's modulus was determined by micro-finite element (μFE) analysis of subchondral trabecular bone (STB) in the load bearing regions of the proximal tibia using PCCT, HR-pQCT and micro-CT images. The correlation between PCCT measurements and micro-CT and HR-pQCT, respectively, was calculated. The coefficients of determination (R2) between PCCT and micro-CT based parameters, ranged from 0.69 to 0.87. The coefficients of determination between PCCT and HR-pQCT were slightly higher and ranged from 0.71 to 0.91. Apparent Young's modulus, assessed by μFE analysis of PCCT images, correlated well with that of micro-CT (R2 = 0.80, mean relative difference = 19 %). However, PCCT overestimated the apparent Young's modulus by 47 %, but the correlation (R2 = 0.84) remained strong when compared to HR-pQCT. The results of this study suggest that PCCT can be used to quantify bone microstructure in the knee.
Collapse
Affiliation(s)
- Fahimeh Azari
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Piyush Uniyal
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Jeroen Soete
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Walter Coudyzer
- Radiology Section, Faculty of Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Caroline E Wyers
- Department of Internal Medicine, VieCuri Medical Centre, Venlo, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Jilmen Quintiens
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Joop P van den Bergh
- Department of Internal Medicine, VieCuri Medical Centre, Venlo, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Hamard M, Sans Merce M, Gorican K, Poletti PA, Neroladaki A, Boudabbous S. The Role of Cone-Beam Computed Tomography CT Extremity Arthrography in the Preoperative Assessment of Osteoarthritis. Tomography 2023; 9:2134-2147. [PMID: 38133071 PMCID: PMC10747585 DOI: 10.3390/tomography9060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent disease and the leading cause of pain, disability, and quality of life deterioration. Our study sought to evaluate the image quality and dose of cone-beam computed tomography arthrography (CBCT-A) and compare them to digital radiography (DR) for OA diagnoses. Overall, 32 cases of CBCT-A and DR with OA met the inclusion criteria and were prospectively analyzed. The Kellgren and Lawrence classification (KLC) stage, sclerosis, osteophytes, erosions, and mean joint width (MJW) were compared between CBCT-A and DR. Image quality was excellent in all CBCT-A cases, with excellent inter-observer agreement. OA under-classification was noticed with DR for MJW (p = 0.02), osteophyte detection (<0.0001), and KLC (p < 0.0001). The Hounsfield Unit (HU) values obtained for the cone-beam computed tomography CBCT did not correspond to the values for multi-detector computed tomography (MDCT), with a greater mean deviation obtained with the MDCT HU for Modeled Based Iterative Reconstruction 1st (MBIR1) than for the 2nd generation (MBIR2). CBCT-A has been found to be more reliable for OA diagnosis than DR as revealed by our results using a three-point rating scale for the qualitative image analysis, with higher quality and an acceptable dose. Moreover, the use of this imaging technique permits the preoperative assessment of extremities in an OA diagnosis, with the upright position and bone microarchitecture analysis being two other advantages of CBCT-A.
Collapse
Affiliation(s)
| | | | | | | | | | - Sana Boudabbous
- Division of Radiology, Department of Diagnosis, Geneva University Hospitals, Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (M.H.); (M.S.M.); (K.G.); (P.-A.P.); (A.N.)
| |
Collapse
|
11
|
Gens L, Marchionatti E, Steiner A, Stoddart MJ, Thompson K, Mys K, Zeiter S, Constant C. Surgical technique and comparison of autologous cancellous bone grafts from various donor sites in rats. J Orthop Res 2023; 41:834-844. [PMID: 35953282 DOI: 10.1002/jor.25429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Autologous cancellous bone graft is the gold standard in large bone defect repair. However, studies using autologous bone grafting in rats are rare. To determine the feasibility of autologous cancellous bone graft harvest from different anatomical donor sites (humerus, ilium, femur, tibia, and tail vertebrae) in rats and compare their suitability as donor sites, a total of 13 freshly euthanized rats were used to describe the surgical technique, determine the cancellous bone volume and microstructure, and compare the cancellous bone collected quantitatively and qualitatively. It was feasible to harvest cancellous bone grafts from all five anatomical sites with the humerus and tail being more surgically challenging. The microstructural analysis using micro-computed tomography showed a significantly lower bone volume fraction, bone mineral density, and trabecular thickness of the humerus and iliac crest compared to the femur, tibia, and tail vertebrae. The harvested weight and volume did not differ between the donor sites. All donor sites apart from the femur yielded primary osteogenic cells confirmed by the presence of alkaline phosphatase and Alizarin Red S stain. Bone samples from the iliac crest showed the most consistent outgrowth of osteoprogenitor cells. In conclusion, the tibia and iliac crest may be the most favorable donor sites considering the surgical approach. However, due to the differences in microstructure of the cancellous bone and the consistency of outgrowth of osteoprogenitor cells, the donor sites may have different healing properties, that need further investigation in an in vivo study.
Collapse
Affiliation(s)
- Lena Gens
- AO Research Institute Davos, Davos, Switzerland
| | - Emma Marchionatti
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adrian Steiner
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Karen Mys
- AO Research Institute Davos, Davos, Switzerland
| | | | | |
Collapse
|
12
|
Uygur MM, Frara S, di Filippo L, Giustina A. New tools for bone health assessment in secreting pituitary adenomas. Trends Endocrinol Metab 2023; 34:231-242. [PMID: 36869001 DOI: 10.1016/j.tem.2023.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/05/2023]
Abstract
Pituitary hormones regulate skeletal physiology, and excess levels affect bone remodeling and alter bone microstructure. Vertebral fractures (VFs) are an early phenomenon of impaired bone health in secreting pituitary adenomas. However, they are not accurately predicted by areal bone mineral density (BMD). Emerging data demonstrate that a morphometric approach is essential for evaluating bone health in this clinical setting and is considered to be the gold standard method in acromegaly. Several novel tools have been proposed as alternative or additional methods for the prediction of fractures, particularly in pituitary-driven osteopathies. This review highlights the novel potential biomarkers and diagnostic methods for bone fragility, including their pathophysiological, clinical, radiological, and therapeutic implications in acromegaly, prolactinomas, and Cushing's disease.
Collapse
Affiliation(s)
- Meliha Melin Uygur
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy; Department of Endocrinology and Metabolism Disease, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey.
| | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
13
|
Mys K, Visscher L, van Knegsel KP, Gehweiler D, Pastor T, Bashardoust A, Knill AS, Danker C, Dauwe J, Mechkarska R, Raykov G, Karwacki GM, Knobe M, Gueorguiev B, Windolf M, Lambert S, Nijs S, Varga P. Statistical Morphology and Fragment Mapping of Complex Proximal Humeral Fractures. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020370. [PMID: 36837571 PMCID: PMC9966327 DOI: 10.3390/medicina59020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Background and Objectives: Proximal humerus fractures (PHFs) are common in the elderly, but the treatment results are often poor. A clear understanding of fracture morphology and distribution of cortical bone loss is important for improved surgical decision making, operative considerations, and new implant designs. The aim of this study was to develop a 3D segmentation fracture mapping technique to create a statistical description of the spatial pattern and cortical bone loss of complex PHFs. Materials and Methods: Fifty clinical computed tomography (CT) scans of complex PHFs and their contralateral intact shoulders were collected. In-house software was developed for semi-automated segmentation and fracture line detection and was combined with manual fracture reduction to the contralateral template in a commercial software. A statistical mean model of these cases was built and used to describe probability maps of the fracture lines and cortical fragments. Results: The fracture lines predominantly passed through the surgical neck and between the tuberosities and tendon insertions. The superior aspects of the tuberosities were constant fragments where comminution was less likely. Some fracture lines passed through the bicipital sulcus, but predominantly at its edges and curving around the tuberosities proximally and distally. Conclusions: A comprehensive and systematic approach was developed for processing clinical CT images of complex fractures into fracture morphology and fragment probability maps and applied on PHFs. This information creates an important basis for better understanding of fracture morphology that could be utilized in future studies for surgical training and implant design.
Collapse
Affiliation(s)
- Karen Mys
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Luke Visscher
- AO Research Institute Davos, 7270 Davos, Switzerland
- Royal Brisbane and Women’s Hospital, 4029 Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, 4000 Brisbane, Australia
| | - Kenneth Petrus van Knegsel
- AO Research Institute Davos, 7270 Davos, Switzerland
- Department of Orthopedic and Trauma Surgery, Lucerne Cantonal Hospital, 6000 Luzerne, Switzerland
| | | | - Torsten Pastor
- AO Research Institute Davos, 7270 Davos, Switzerland
- Department of Orthopedic and Trauma Surgery, Lucerne Cantonal Hospital, 6000 Luzerne, Switzerland
| | | | | | | | - Jan Dauwe
- AO Research Institute Davos, 7270 Davos, Switzerland
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rayna Mechkarska
- AO Research Institute Davos, 7270 Davos, Switzerland
- University Multiprofile Hospital for Active Treatment and Emergency Medicine “N. I. Pirogov”, 1606 Sofia, Bulgaria
| | - Georgi Raykov
- AO Research Institute Davos, 7270 Davos, Switzerland
- Medical University of Varna ‘‘Prof. Dr. Paraskev Stoyanov’’, 9002 Varna, Bulgaria
| | - Grzegorz Marek Karwacki
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, 6000 Luzerne, Switzerland
| | - Matthias Knobe
- Department of Orthopedic and Trauma Surgery, Lucerne Cantonal Hospital, 6000 Luzerne, Switzerland
| | | | | | - Simon Lambert
- University College London Hospital, London NW1 2BU, UK
| | - Stefaan Nijs
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Peter Varga
- AO Research Institute Davos, 7270 Davos, Switzerland
- Correspondence:
| |
Collapse
|
14
|
Ribeiro de Moura C, Campos Lopes S, Monteiro AM. Determinants of skeletal fragility in acromegaly: a systematic review and meta-analysis. Pituitary 2022; 25:780-794. [PMID: 35867180 DOI: 10.1007/s11102-022-01256-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Vertebral fractures (VFs) are a potential complication in acromegaly. However, the etiology of this skeletal fragility is unknown. This review aimed to evaluate the effect of acromegaly on VFs, bone turnover, areal bone mineral density (aBMD), and bone quality/microarchitecture. The effect of disease activity and gonadal status in these determinants of skeletal fragility was also evaluated. METHODS Articles published in English until September 6, 2020 on PubMed and Embase that reported at least one determinant of skeletal fragility in acromegalic patients, were included. Odds ratio (OR) to evaluate the risk of VFs and the standardized mean difference (SMD) to evaluate bone turnover, aBMD and bone quality/microarchitecture were calculated. RESULTS Fifty-eight studies met eligibility criteria, assembling a total of 2412 acromegalic patients. Of these, 49 studies were included in the meta-analysis. Acromegalic patients, when compared to non-acromegalic patients, had higher risk of VFs [OR 7.00; 95% confidence interval (CI) 2.80-17.52; p < 0.0001], higher bone formation (SMD 1.14; 95% CI 0.69-1.59; p < 0.00001), higher bone resorption (SMD 0.60; 95% CI 0.09-1.10; p = 0.02) and higher aBMD at the femoral neck (SMD 0.36; 95% CI 0.15-0.57; p = 0.0009). No significant differences were found regarding aBMD at lumbar spine. Considering the results of the different techniques evaluating bone quality/microarchitecture, the main reported alterations were a decrease in trabecular bone thickness and density, and an increase in trabecular separation. The presence of active disease and/or hypogonadism were associated with worst results. CONCLUSION Patients with acromegaly are at increased risk of VFs, mainly because of deterioration in bone microarchitecture.
Collapse
|
15
|
Gewiess J, Sprecher C, Milz S, Gleich J, Helfen T. Osseous microarchitecture in frequent fracture zones of the distal clavicle. JSES Int 2022; 7:98-103. [PMID: 36820417 PMCID: PMC9937850 DOI: 10.1016/j.jseint.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Fracture classifications of the distal clavicle are based on ligamentous integrity. The influence of osseous microarchitecture on fracture occurrence, morphology, and the lesion's stability has not yet been investigated. We aimed to characterize osseous microarchitecture according to common fracture classification systems based on ligamentous integrity and investigated the possible effects of age, gender, and osteoporosis in distal clavicle fractures. Methods N = 20 human cadaveric distal clavicles were scanned using XtremeCT with an isometric voxel size of 82 μm. In the sagittal plane, each data set was evaluated in 11 sections of approximately 7 mm thickness. Three topographic regions were defined: the bone lateral to the trapezoid (LTR), intertubercular (ITR), and medial to the conoid (MCR) ligament. Cortical bone mineral density (BMD) [mgHA/cm3] and cortical porosity (1- (BV/TV) [%]) were determined and evaluated relative to age and gender. Results Along the mediolateral axis, there was an >20-fold increase in median cortical porosity (P ≤ .001). There were significant differences in cortical porosity between LTR and ITR (P ≤ .001) but not between ITR and MCR (P = .09). In ITR, cortical porosity was significantly greater in >60-year-old compared to younger donors (P = .01). For BMD, there was an >2-fold decrease toward the distal apex (P ≤ .001). BMD was significantly greater in ITR compared to LTR (P ≤ .001) and in MCR compared to ITR (P = .02). In ITR and MCR, clavicles of >60-year-old donors had significantly lower BMD values compared to younger donors (P < .01). Across all 3 regions, frequency distribution of low bone mass did not significantly differ between <60-year-olds and >60-year-olds (P > .6). Conclusion The distal clavicle features a characteristic bony microarchitecture. The present study revealed a significant difference in bone quality of lateral, intertubercular, and medial zones of the distal clavicle and could specify target areas and strategies for surgical treatment of unstable fractures. Age, gender, and osteoporosis have a limited effect on bone quality and fracture genesis. In contrast, ligamentous quality is supposed to exert a substantial influence on fracture characteristics, especially in ITR. Fracture morphology of the distal clavicle is determined by a bony-ligamentous conjunction, which remains to be characterized.
Collapse
Affiliation(s)
- Jan Gewiess
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,AO Research Institute Davos, Davos, Switzerland,Corresponding author: Jan Gewiess, MD, Universitätsklinik, für Orthopädische Chirurgie und Traumatologie, Inselspital, Bern 3010, Switzerland.
| | | | - Stefan Milz
- Department of Anatomy II, Ludwig-Maximilians University, Munich, Germany
| | - Johannes Gleich
- Shoulder and Elbow Service, Department of General, Trauma and Reconstructive Surgery, Munich University Hospitals, Ludwig-Maximilians-University, Munich, Germany
| | - Tobias Helfen
- Shoulder and Elbow Service, Department of General, Trauma and Reconstructive Surgery, Munich University Hospitals, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
16
|
Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT study. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1037333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: This study aims to assess the effect of voxel size on trabecular microstructural evaluation onhuman cadaver mandiblesusing cone beam computed tomography (CBCT) images.
Methods: Twenty two Volumes of Interest were obtained from to human cadaver mandibles which were scanned in three different voxel sizes using CBCT. Scanning performed in 0.125 mm (Group 1), 0.2 mm (Group 2) and 0.3 mm (Group 3) voxel sizes. Regions of interest are calculated in both mandibles for both voxel sizes which are adjusted from apical third of all interdental alveolar trabecular bone from anterior and posterior mandible. Trabecular thickness (Tb. Th); trabecular separation (Tb. Sp); Bone Volume/Total Volume (BV/TV) values were obtained using plug in BoneJ of the software ImageJ. The results were evaluated statistically in software IBM SPSS Statistics 21.
Results: Trabecular thickness and trabecular separation showed significant difference between first and the third and the second and the third groups (p=0.000), while first and second group did not. BV/TV values showed no significant difference between whole groups.
Conclusion: Beside microstructural analysis is not their first purpose CBCT images carry knowledge about trabecular bone microstructure could be a valuable bone quality assessment tool. High correlation between values with 0.125 mm and 0.2 mm and low correlation between values with 0.125 mm and 0.3 mm voxel sizes suggest that; this knowledge is clinically more valuable when voxel size is 0.2 mm or thinner.
Collapse
|
17
|
Mys K, Stockmans F, Gueorguiev B, Wyers CE, van den Bergh JPW, van Lenthe GH, Varga P. Adaptive local thresholding can enhance the accuracy of HR-pQCT-based trabecular bone morphology assessment. Bone 2022; 154:116225. [PMID: 34634527 DOI: 10.1016/j.bone.2021.116225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) devices can scan extremities at bone microstructural level in vivo and are used mainly in research of bone diseases. Two HR-pQCT scanners are commercially available to date: XtremeCT (first generation) and XtremeCT-II (second generation) from Scanco Medical AG (Switzerland). Recently, we have proposed an adaptive local thresholding (AT) technique and showed that it can improve quantification accuracy of bone microstructural parameters, with visually less sharp cone-beam CT (CBCT) images providing a similar accuracy than XtremeCT. The aim of this study was to evaluate whether the AT segmentation technique could enhance the accuracy of HR-pQCT in quantifying bone microstructural images and to assess whether the agreement between XtremeCT and XtremeCT-II could be improved. Nineteen radii were scanned with three scanners from Scanco Medical AG: (1) XtremeCT at 82 μm, (2) XtremeCT-II at 60.7 μm and (3) the small animal microCT scanner VivaCT40 at 19 μm voxel size. The scans were segmented applying two different methods, once following the manufacturer standard technique (ST), and once by means of AT. Three-dimensional (3D) morphological analysis was performed on the trabecular volume of the segmented images using the manufacturer's standard software to calculate bone volume fraction (BV/TV), trabecular thickness (Tb.Th), separation (Tb.Sp) and number (Tb.N). The average accuracy of XtremeCT improved from R2 = 0.76 (ST) to 0.85 (AT) and reached the same level of accuracy as XtremeCT-II with ST (R2 = 0.86). The largest improvements were obtained for BV/TV and Tb.Th. For XtremeCT-II, mean accuracy improved slightly from R2 = 0.86 (ST) to 0.89 (AT). For both segmentations and both scanners, the standard section was quantified slightly more accurate than the subchondral section. The agreement between the scanners was enhanced from R2 = 0.89 (ST) to 0.98 (AT). In conclusion, AT can enhance the accuracy of XtremeCT to quantify distal radius bone microstructural parameters close to XtremeCT-II level and increases the agreement between the two HR-pQCT scanners. High-resolution peripheral quantitative computed tomography, segmentation, bone microstructural parameters.
Collapse
Affiliation(s)
- Karen Mys
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium; AO Research Institute Davos, Davos, Switzerland.
| | - Filip Stockmans
- Muscles & Movement, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | | | - Caroline E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Joop P W van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
18
|
New CBCT Indications in Musculoskeletal Imaging. J Belg Soc Radiol 2021. [DOI: 10.5334/jbsr.2649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32:1465-1485. [PMID: 34023944 PMCID: PMC8376700 DOI: 10.1007/s00198-021-05999-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
High-resolution peripheral computed tomography (HR-pQCT) was developed to image bone microarchitecture in vivo at peripheral skeletal sites. Since the introduction of HR-pQCT in 2005, clinical research to gain insight into pathophysiology of skeletal fragility and to improve prediction of fractures has grown. Meanwhile, the second-generation HR-pQCT device has been introduced, allowing novel applications such as hand joint imaging, assessment of subchondral bone and cartilage thickness in the knee, and distal radius fracture healing. This article provides an overview of the current clinical applications and guidance on interpretation of results, as well as future directions. Specifically, we provide an overview of (1) the differences and reference data for HR-pQCT variables by age, sex, and race/ethnicity; (2) fracture risk prediction using HR-pQCT; (3) the ability to monitor response of anti-osteoporosis therapy with HR-pQCT; (4) the use of HR-pQCT in patients with metabolic bone disorders and diseases leading to secondary osteoporosis; and (5) novel applications of HR-pQCT imaging. Finally, we summarize the status of the application of HR-pQCT in clinical practice and discuss future directions. From the clinical perspective, there are both challenges and opportunities for more widespread use of HR-pQCT. Assessment of bone microarchitecture by HR-pQCT improves fracture prediction in mostly normal or osteopenic elderly subjects beyond DXA of the hip, but the added value is marginal. The prospects of HR-pQCT in clinical practice need further study with respect to medication effects, metabolic bone disorders, rare bone diseases, and other applications such as hand joint imaging and fracture healing. The mostly unexplored potential may be the differentiation of patients with only moderately low BMD but severe microstructural deterioration, which would have important implications for the decision on therapeutical interventions.
Collapse
Affiliation(s)
- J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Medicine, Hasselt University, Hasselt, Belgium.
| | - P Szulc
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| | - A M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network; and Department of Medicine and Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Ontario, Canada
| | - M Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| |
Collapse
|
20
|
Schader JF, Zderic I, Gehweiler D, Dauwe J, Mys K, Danker C, Acklin YP, Sommer C, Gueorguiev B, Stoffel K. Standardized artificially created stable pertrochanteric femur fractures present more homogenous results compared to osteotomies for orthopaedic implant testing. BMC Musculoskelet Disord 2021; 22:371. [PMID: 33879133 PMCID: PMC8058974 DOI: 10.1186/s12891-021-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022] Open
Abstract
Background With regard to biomechanical testing of orthopaedic implants, there is no consensus on whether artificial creation of standardized bone fractures or their simulation by means of osteotomies result in more realistic outcomes. Therefore, the aim of this study was to artificially create and analyze in an appropriate setting the biomechanical behavior of standardized stable pertrochanteric fractures versus their simulation via osteotomizing. Methods Eight pairs of fresh-frozen human cadaveric femora aged 72.7 ± 14.9 years (range 48–89 years) were assigned in paired fashion to two study groups. In Group 1, stable pertrochanteric fractures AO/OTA 31-A1 were artificially created via constant force application on the anterior cortex of the femur through a blunt guillotine blade. The same fracture type was simulated in Group 2 by means of osteotomies. All femora were implanted with a dynamic hip screw and biomechanically tested in 20° adduction under progressively increasing physiologic cyclic axial loading at 2 Hz, starting at 500 N and increasing at a rate of 0.1 N/cycle. Femoral head fragment movements with respect to the shaft were monitored by means of optical motion tracking. Results Cycles/failure load at 15° varus deformation, 10 mm leg shortening and 15° femoral head rotation around neck axis were 11324 ± 848/1632.4 ± 584.8 N, 11052 ± 1573/1605.2 ± 657.3 N and 11849 ± 1120/1684.9 ± 612.0 N in Group 1, and 10971 ± 2019/1597.1 ± 701.9 N, 10681 ± 1868/1568.1 ± 686.8 N and 10017 ± 4081/1501.7 ± 908.1 N in Group 2, respectively, with no significant differences between the two groups, p ≥ 0.233. Conclusion From a biomechanical perspective, by resulting in more consistent outcomes under dynamic loading, standardized artificial stable pertrochanteric femur fracture creation may be more suitable for orthopaedic implant testing compared to osteotomizing the bone.
Collapse
Affiliation(s)
- J F Schader
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland. .,University of Basel, Basel, Switzerland. .,Department of Surgery, Cantonal Hospital Graubuenden, Chur, Switzerland.
| | - I Zderic
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - D Gehweiler
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - J Dauwe
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland.,Department of Trauma Surgery, UZ Leuven, Leuven, Belgium
| | - K Mys
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - C Danker
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Y P Acklin
- University Hospital Basel, Basel, Switzerland
| | - C Sommer
- Department of Surgery, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - B Gueorguiev
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - K Stoffel
- University of Basel, Basel, Switzerland.,University Hospital Basel, Basel, Switzerland
| |
Collapse
|
21
|
Muthukrishnan G, Wallimann A, Rangel-Moreno J, Bentley KLDM, Hildebrand M, Mys K, Kenney HM, Sumrall ET, Daiss JL, Zeiter S, Richards RG, Schwarz EM, Moriarty TF. Humanized Mice Exhibit Exacerbated Abscess Formation and Osteolysis During the Establishment of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:651515. [PMID: 33815412 PMCID: PMC8012494 DOI: 10.3389/fimmu.2021.651515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the predominant pathogen causing osteomyelitis. Unfortunately, no immunotherapy exists to treat these very challenging and costly infections despite decades of research, and numerous vaccine failures in clinical trials. This lack of success can partially be attributed to an overreliance on murine models where the immune correlates of protection often diverge from that of humans. Moreover, S. aureus secretes numerous immunotoxins with unique tropism to human leukocytes, which compromises the targeting of immune cells in murine models. To study the response of human immune cells during chronic S. aureus bone infections, we engrafted non-obese diabetic (NOD)-scid IL2Rγnull (NSG) mice with human hematopoietic stem cells (huNSG) and analyzed protection in an established model of implant-associated osteomyelitis. The results showed that huNSG mice have increases in weight loss, osteolysis, bacterial dissemination to internal organs, and numbers of Staphylococcal abscess communities (SACs), during the establishment of implant-associated MRSA osteomyelitis compared to NSG controls (p < 0.05). Flow cytometry and immunohistochemistry demonstrated greater human T cell numbers in infected versus uninfected huNSG mice (p < 0.05), and that T-bet+ human T cells clustered around the SACs, suggesting S. aureus-mediated activation and proliferation of human T cells in the infected bone. Collectively, these proof-of-concept studies underscore the utility of huNSG mice for studying an aggressive form of S. aureus osteomyelitis, which is more akin to that seen in humans. We have also established an experimental system to investigate the contribution of specific human T cells in controlling S. aureus infection and dissemination.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Alexandra Wallimann
- AO Research Institute Davos, Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Karen Mys
- AO Research Institute Davos, Davos, Switzerland
| | - H Mark Kenney
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | |
Collapse
|
22
|
Mys K, Varga P, Stockmans F, Gueorguiev B, Neumann V, Vanovermeire O, Wyers CE, van den Bergh JPW, van Lenthe GH. High-Resolution Cone-Beam Computed Tomography is a Fast and Promising Technique to Quantify Bone Microstructure and Mechanics of the Distal Radius. Calcif Tissue Int 2021; 108:314-323. [PMID: 33452889 DOI: 10.1007/s00223-020-00773-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/27/2020] [Indexed: 10/22/2022]
Abstract
Obtaining high-resolution scans of bones and joints for clinical applications is challenging. HR-pQCT is considered the best technology to acquire high-resolution images of the peripheral skeleton in vivo, but a breakthrough for widespread clinical applications is still lacking. Recently, we showed on trapezia that CBCT is a promising alternative providing a larger FOV at a shorter scanning time. The goals of this study were to evaluate the accuracy of CBCT in quantifying trabecular bone microstructural and predicted mechanical parameters of the distal radius, the most often investigated skeletal site with HR-pQCT, and to compare it with HR-pQCT. Nineteen radii were scanned with four scanners: (1) HR-pQCT (XtremeCT, Scanco Medical AG, @ (voxel size) 82 μm), (2) HR-pQCT (XtremeCT-II, Scanco, @60.7 μm), (3) CBCT (NewTom 5G, Cefla, @75 μm) reconstructed and segmented using in-house developed software and (4) microCT (VivaCT40, Scanco, @19 μm-gold standard). The following parameters were evaluated: predicted stiffness, strength, bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), separation (Tb.Sp) and number (Tb.N). The overall accuracy of CBCT with in-house optimized algorithms in quantifying bone microstructural parameters was comparable (R2 = 0.79) to XtremeCT (R2 = 0.76) and slightly worse than XtremeCT-II (R2 = 0.86) which were both processed with the standard manufacturer's technique. CBCT had higher accuracy for BV/TV and Tb.Th but lower for Tb.Sp and Tb.N compared to XtremeCT. Regarding the mechanical parameters, all scanners had high accuracy (R2 [Formula: see text] 0.96). While HR-pQCT is optimized for research, the fast scanning time and good accuracy renders CBCT a promising technique for high-resolution clinical scanning.
Collapse
Affiliation(s)
- Karen Mys
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium.
- AO Research Institute Davos, Davos, Switzerland.
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| | - Filip Stockmans
- Muscles & Movement, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | | | | | | | - Caroline E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joop P W van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Rheumatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Mys K, Varga P, Stockmans F, Gueorguiev B, Wyers CE, van den Bergh JPW, van Lenthe GH. Quantification of 3D microstructural parameters of trabecular bone is affected by the analysis software. Bone 2021; 142:115653. [PMID: 33059103 DOI: 10.1016/j.bone.2020.115653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Over the last decades, the use of high-resolution imaging systems to assess bone microstructural parameters has grown immensely. Yet, no standard defining the quantification of these parameters exists. It has been reported that different voxel size and/or segmentation techniques lead to different results. However, the effect of the evaluation software has not been investigated so far. Therefore, the aim of this study was to compare the bone microstructural parameters obtained with two commonly used commercial software packages, namely IPL (Scanco, Switzerland) and CTan (Bruker, Belgium). We hypothesized that even when starting from the same segmented scans, different software packages will report different results. Nineteen trapezia and nineteen distal radii were scanned at two resolutions (20 μm voxel size with microCT and HR-pQCT 60 μm). The scans were segmented using the scanners' default protocol. The segmented images were analyzed twice, once with IPL and once with CTan, to quantify bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N) and specific bone surface (BS/BV). Only small differences between IPL and CTan were found for BV/TV. For Tb.Th, Tb.Sp and BS/BV high correlations (R2 ≥ 0.99) were observed between the two software packages, but important relative offsets were observed. For microCT scans, the offsets were relative constant, e.g., around 15% for Tb.Th. However, for the HR-pQCT scans the mean relative offsets ranged over the different bone samples (e.g., for Tb.Th from 14.5% to 19.8%). For Tb.N, poor correlations (0.43 ≤ R2 ≤ 0.81) for all tested cases were observed. We conclude that trabecular bone microstructural parameters obtained with IPL and CTan cannot be directly compared except for BV/TV. For Tb.Th, Tb.Sp and BS/BV, correction factors can be determined, but these depend on both the image voxel size and specific anatomic location. The two software packages did not produce consistent data on Tb.N. The development of a universal standard seems desirable.
Collapse
Affiliation(s)
- Karen Mys
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium; AO Research Institute Davos, Davos, Switzerland.
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| | - Filip Stockmans
- Muscles & Movement, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | | | - Caroline E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Joop P W van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Otto S, Pautke C, Arens D, Poxleitner P, Eberli U, Nehrbass D, Zeiter S, Stoddart MJ. A Drug Holiday Reduces the Frequency and Severity of Medication-Related Osteonecrosis of the Jaw in a Minipig Model. J Bone Miner Res 2020; 35:2179-2192. [PMID: 32568416 PMCID: PMC7689727 DOI: 10.1002/jbmr.4119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023]
Abstract
Treatment of medication-related osteonecrosis of the jaw (MRONJ) is challenging and no clear consensus has been achieved. This study investigated preventive measures recommended for tooth extractions under antiresorptive (AR) treatment and the role of discontinuation of AR therapy to avoid the onset of MRONJ in a minipig model. Thirty-six Göttingen minipigs were divided into four groups. Group 1 (negative control): tooth extractions but no zoledronate (ZOL). Group 2 (positive control): weekly ZOL infusions for 12 weeks followed by tooth extractions without wound management followed by 8 weeks of ZOL treatment. Group 3: weekly ZOL infusions for 12 weeks followed by tooth extractions; surgical wound management (resection of sharp bone edges, mucoperiosteal coverage); and continuation of ZOL infusions for 8 weeks plus antibiotic treatment. Group 4: 12 weeks of ZOL infusions followed by a drug holiday for 6 weeks. Tooth extractions with preventive wound management followed by antibiotic treatment for 8 weeks but no ZOL infusions. Jawbones were subjected to macroscopic, radiological (CT and micro-CT) and histopathological investigations. No clinical cases of MRONJ were observed in the negative group, in the positive control all animals developed MRONJ. Group 3 developed MRONJ in 83% of cases. With a drug holiday, 40% developed MRONJ in areas of tooth extraction. This is the first large animal model that reduces the occurrence of MRONJ following tooth extraction by the implementation of a drug holiday combined with antibiotic prophylaxis and smoothening of sharp bony edges. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research..
Collapse
Affiliation(s)
- Sven Otto
- Department of Oral and Maxillofacial Surgery, Ludwig Maximilians University, Munich, Germany
| | - Christoph Pautke
- Department of Oral and Maxillofacial Surgery, Ludwig Maximilians University, Munich, Germany
| | | | - Philipp Poxleitner
- Department of Oral and Maxillofacial Surgery, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | - Martin J Stoddart
- AO Research Institute Davos, Davos, Switzerland.,Department of Oral and Maxillofacial Surgery, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
25
|
Besler BA, Michalski AS, Kuczynski MT, Abid A, Forkert ND, Boyd SK. Bone and joint enhancement filtering: Application to proximal femur segmentation from uncalibrated computed tomography datasets. Med Image Anal 2020; 67:101887. [PMID: 33181434 DOI: 10.1016/j.media.2020.101887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023]
Abstract
Methods for reliable femur segmentation enable the execution of quality retrospective studies and building of robust screening tools for bone and joint disease. An enhance-and-segment pipeline is proposed for proximal femur segmentation from computed tomography datasets. The filter is based on a scale-space model of cortical bone with properties including edge localization, invariance to density calibration, rotation invariance, and stability to noise. The filter is integrated with a graph cut segmentation technique guided through user provided sparse labels for rapid segmentation. Analysis is performed on 20 independent femurs. Rater proximal femur segmentation agreement was 0.21 mm (average surface distance), 0.98 (Dice similarity coefficient), and 2.34 mm (Hausdorff distance). Manual segmentation added considerable variability to measured failure load and volume (CVRMS > 5%) but not density. The proposed algorithm considerably improved inter-rater reproducibility for all three outcomes (CVRMS < 0.5%). The algorithm localized the periosteal surface accurately compared to manual segmentation but with a slight bias towards a smaller volume. Hessian-based filtering and graph cut segmentation localizes the periosteal surface of the proximal femur with comparable accuracy and improved precision compared to manual segmentation.
Collapse
Affiliation(s)
- Bryce A Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Andrew S Michalski
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Michael T Kuczynski
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Aleena Abid
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada.
| |
Collapse
|
26
|
Klose-Jensen R, Tse JJ, Keller KK, Barnabe C, Burghardt AJ, Finzel S, Tam LS, Hauge EM, Stok KS, Manske SL. High-Resolution Peripheral Quantitative Computed Tomography for Bone Evaluation in Inflammatory Rheumatic Disease. Front Med (Lausanne) 2020; 7:337. [PMID: 32766262 PMCID: PMC7381125 DOI: 10.3389/fmed.2020.00337] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
High resolution peripheral quantitative computed tomography (HR-pQCT) is a 3-dimensional imaging modality with superior sensitivity for bone changes and abnormalities. Recent advances have led to increased use of HR-pQCT in inflammatory arthritis to report quantitative volumetric measures of bone density, microstructure, local anabolic (e.g., osteophytes, enthesiophytes) and catabolic (e.g., erosions) bone changes and joint space width. These features may be useful for monitoring disease progression, response to therapy, and are responsive to differentiating between those with inflammatory arthritis conditions and healthy controls. We reviewed 69 publications utilizing HR-pQCT imaging of the metacarpophalangeal (MCP) and/or wrist joints to investigate arthritis conditions. Erosions are a marker of early inflammatory arthritis progression, and recent work has focused on improvement and application of techniques to sensitively identify erosions, as well as quantifying erosion volume changes longitudinally using manual, semi-automated and automated methods. As a research tool, HR-pQCT may be used to detect treatment effects through changes in erosion volume in as little as 3 months. Studies with 1-year follow-up have demonstrated progression or repair of erosions depending on the treatment strategy applied. HR-pQCT presents several advantages. Combined with advances in image processing and image registration, individual changes can be monitored with high sensitivity and reliability. Thus, a major strength of HR-pQCT is its applicability in instances where subtle changes are anticipated, such as early erosive progression in the presence of subclinical inflammation. HR-pQCT imaging results could ultimately impact decision making to uptake aggressive treatment strategies and prevent progression of joint damage. There are several potential areas where HR-pQCT evaluation of inflammatory arthritis still requires development. As a highly sensitive imaging technique, one of the major challenges has been motion artifacts; motion compensation algorithms should be implemented for HR-pQCT. New research developments will improve the current disadvantages including, wider availability of scanners, the field of view, as well as the versatility for measuring tissues other than only bone. The challenge remains to disseminate these analysis approaches for broader clinical use and in research.
Collapse
Affiliation(s)
- Rasmus Klose-Jensen
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Justin J Tse
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Cheryl Barnabe
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Medical Centre - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ellen-Margrethe Hauge
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah L Manske
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol 2019; 15:533-549. [PMID: 31395974 DOI: 10.1038/s41584-019-0274-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Bone is organized in a hierarchical 3D architecture. Traditionally, analysis of the skeletal system was based on bone mass assessment by radiographic methods or on the examination of bone structure by 2D histological sections. Advanced imaging technologies and big data analysis now enable the unprecedented examination of bone and provide new insights into its 3D macrostructure and microstructure. These technologies comprise ex vivo and in vivo methods including high-resolution computed tomography (CT), synchrotron-based imaging, X-ray microscopy, ultra-high-field magnetic resonance imaging (MRI), light-sheet fluorescence microscopy, confocal and intravital two-photon imaging. In concert, these techniques have been used to detect and quantify a novel vascular system of trans-cortical vessels in bone. Furthermore, structures such as the lacunar network, which harbours and connects osteocytes, become accessible for 3D imaging and quantification using these methods. Next-generation imaging of the skeletal system and its blood supply are anticipated to contribute to an entirely new understanding of bone tissue composition and function, from macroscale to nanoscale, in health and disease. These insights could provide the basis for early detection and precision-type intervention of bone disorders in the future.
Collapse
|
28
|
Mys K, Varga P, Gueorguiev B, Hemmatian H, Stockmans F, van Lenthe GH. Correlation Between Cone-Beam Computed Tomography and High-Resolution Peripheral Computed Tomography for Assessment of Wrist Bone Microstructure. J Bone Miner Res 2019; 34:867-874. [PMID: 30912861 DOI: 10.1002/jbmr.3673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/10/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is considered as the best technique to measure bone microarchitecture in vivo. However, a breakthrough for medical applications is inhibited because of the restricted field of view (∼9 mm) and a relatively long acquisition time (∼3 minutes). The goal of this study was to compare the accuracy of cone-beam computed tomography (CBCT) and HR-pQCT and to determine the agreement between CBCT and HR-pQCT in quantifying bone structural parameters. Nineteen trapezia of arthritic patients were scanned four times ex vivo: 1) CBCT (NewTom 5G, Cefla, at 75 μm); 2) HR-pQCT (XTremeCT-I, Scanco, at 82 μm); 3) HR-pQCT (XTremeCT-II, Scanco, at 60.7 μm); and 4) microCT (SkyScan1172, Bruker, at 19.84 μm). XTremeCT-I and XtremeCT-II were reconstructed, segmented, and analyzed following the manufacturer's guidelines. CBCT was reconstructed with in-house developed software and analyzed twice: once with an adaptive segmentation technique combined with a direct analysis method (AT-DM) and once with a Laplace-Hamming filtering technique combined with an indirect analysis method (LH-IM). Parameters of interest included bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), separation (Tb.Sp), and number (Tb.N). The analyses of the CBCT data showed that the AT-DM analysis correlated better with microCT for BV/TV, Tb.Sp, and Tb.N, whereas the LH-IM technique correlated better for Tb.Th. Evaluated over all parameters, the coefficient of determination for XtremeCT-I, XtremeCT-II, and CBCT were higher as R2 = 0.68, 0.72, and 0.67, respectively. For CBCT, the correlations improved when three samples with very thin trabeculae close to each other were excluded and became similar to those for XtremeCT-I and XtremeCT-II. Interesting for clinical practice is that those bones could be identified automatically with the CBCT scanner. We conclude that CBCT produced similar accuracy as HR-pQCT in bone morphometric analyses of trapezia. The broader range of application, larger field of view, and shorter acquisition time make CBCT a valuable alternative to HR-pQCT. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Karen Mys
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium.,Biomedical Development AO Research Institute Davos, Davos, Switzerland
| | - Peter Varga
- Biomedical Development AO Research Institute Davos, Davos, Switzerland
| | - Boyko Gueorguiev
- Biomedical Development AO Research Institute Davos, Davos, Switzerland
| | - Haniyeh Hemmatian
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Filip Stockmans
- Muscles and Movement, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - G Harry van Lenthe
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|