1
|
Michaëlsson K, Zheng R, Baron JA, Fall T, Wolk A, Lind L, Höijer J, Brunius C, Warensjö Lemming E, Titova OE, Svennblad B, Larsson SC, Yuan S, Melhus H, Byberg L, Brooke HL. Cardio-metabolic-related plasma proteins reveal biological links between cardiovascular diseases and fragility fractures: a cohort and Mendelian randomisation investigation. EBioMedicine 2025; 113:105580. [PMID: 39919333 PMCID: PMC11848109 DOI: 10.1016/j.ebiom.2025.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND How cardiovascular diseases (CVD) predispose to a higher risk of fragility fractures is not well understood. Both contribute to significant components of disease burden and health expenditure. Poor bone quality, central obesity, sarcopenia, falls, and low grip strength are independent risk factors for hip and other fragility fractures and also for CVD and early death. METHODS We used proteomics and a cohort design combined with Mendelian randomisation analysis to understand shared mechanisms for developing CVD and fragility fractures, two significant sources of disease burden and health expenditure. We primarily aimed to discover and replicate the association of 274 cardio-metabolic-related proteins with future rates of hip and any fracture in two separate population-based cohorts, with a total of 12,314 women and men. FINDINGS The average age at baseline was 68 years in the discovery cohort of women and 74 years in the mixed-sex replication cohort. During 100,619 person-years of follow-up, 2168 had any fracture, and 538 had a hip fracture. Our analysis resulted in 24 cardiometabolic proteins associated with fracture risk: 20 with hip fracture, 9 with any fracture, and 5 with both. The associations remained even if protein concentrations were measured from specimens taken during preclinical stages of cardio-metabolic diseases, and 19 associations remained after adjustment for bone mineral density. Twenty-two of the proteins were associated with total body fat mass or lean body mass. Mendelian randomisation (MR) analysis supported causality since genetically predicted levels of SOST (Sclerostin), CCDC80 (Coiled-coil domain-containing protein 80), NT-proBNP (N-terminal prohormone brain natriuretic peptide), and BNP (Brain natriuretic peptide) were associated with risk of hip fracture. MR analysis also revealed a possible negative impact on bone mineral density (BMD) by genetically predicted higher levels of SOST, CCDC80, and TIMP4 (Metalloproteinase inhibitor 4). The MR association with BMD was positive for PTX3 (Pentraxin-related protein) and SPP1 (Osteopontin). Genetically predicted higher concentrations of SOST and lower concentrations of SPP1 also conferred a higher risk of falls and lowered grip strength. The genetically determined concentration of nine proteins influenced fat mass, and one influenced lean body mass. INTERPRETATION These data reveal biological links between cardiovascular diseases and fragility fractures. The proteins should be further evaluated as shared targets for developing pharmacological interventions to prevent fractures and cardiovascular disease. FUNDING The study was supported by funding from the Swedish Research Council (https://www.vr.se; grants No. 2015-03257, 2017-00644, 2017-06100, and 2019-01291 to Karl Michaëlsson) and funding from Olle Engkvist Byggmästares stiftelse (SOEB).
Collapse
Affiliation(s)
- Karl Michaëlsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Rui Zheng
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John A Baron
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Tove Fall
- Molecular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Höijer
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Carl Brunius
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Warensjö Lemming
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Olga E Titova
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Bodil Svennblad
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susanna C Larsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Melhus
- Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hannah L Brooke
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Liang N, Ma X, Cao Y, Liu T, Fang JA, Zhang X. Mendelian Randomization Studies: Opening a New Window in the Study of Metabolic Diseases and Chronic Kidney Disease. Endocr Metab Immune Disord Drug Targets 2025; 25:442-457. [PMID: 39171476 DOI: 10.2174/0118715303288685240808073238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
It is widely recognized that a strong correlation exists between metabolic diseases and chronic kidney disease (CKD). Based on bibliometric statistics, the overall number of Mendelian randomization (MR) analysis in relation to metabolic diseases and CKD has increased since 2005. In recent years, this topic has emerged as a significant area of research interest. In clinical studies, RCTs are often limited due to the intricate causal interplay between metabolic diseases and CKD, which makes it difficult to ascertain the precise etiology of these conditions definitively. In MR studies, genetic variation is incorporated as an instrumental variable (IV). They elucidate the possible causal relationships between associated risk factors and disease risks by including individual innate genetic markers. It is widely believed that MR avoids confounding and can reverse effects to the greatest extent possible. As an increasingly popular technology in the medical field, MR studies have become a popular technology in causal relationships investigation, particularly in epidemiological etiology studies. At present, MR has been widely used for the investigation of medical etiologies, drug development, and decision-making in public health. The article aims to offer insights into the causal relationship between metabolic diseases and CKD, as well as strategies for prevention and treatment, through a summary of MR-related research on these conditions.
Collapse
Affiliation(s)
- Ning Liang
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaoqi Ma
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Yang Cao
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Ting Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing-Ai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Guo X, Zhang F, Hao G. Causal relationship between folic acid and prostate cancer risk: Insights from Mendelian randomization analysis. Int J Urol 2024; 31:1356-1364. [PMID: 39306731 DOI: 10.1111/iju.15565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/14/2024] [Indexed: 12/06/2024]
Abstract
OBJECTIVE Folic acid is a commonly used dietary supplement of trace element, but it may increase the risk of prostate cancer (PCa). The aim of this study was to investigate the causal relationship between PCa and folic acid supplementation, as well as dietary folate equivalents, using Mendelian randomization (MR) analysis. METHODS The Genome-Wide Association Study (GWAS) data of folic acid supplementation and dietary folate equivalents were selected from UK Biobank. Meta-analysis of GWASs of PCa was obtained from PCa Association Group to Investigate Cancer-Associated Alterations in the Genome consortium. MR analysis was performed with inverse variance weighted (IVW) method, MR-Egger regression, simple mode, weighted median, and weighted mode analysis. Heterogeneity and horizontal pleiotropy tests and reverse MR analysis were conducted to assess the robustness and reliability of the causal inference. RESULTS Six single nucleotide polymorphisms (SNPs) associated with folic acid supplementation and five SNPs associated with dietary folate equivalents were identified as instrumental variables. Genetically predicted folic acid supplementation was associated with an increased risk of PCa (OR 1.200, p < 0.001, by IVW method), and there was no evidence of heterogeneity, horizontal pleiotropy, or significant reverse causality (all p > 0.05). In contrast, dietary folate equivalents showed no significant correlation with PCa (p > 0.05 for all five MR methods). CONCLUSION This study demonstrated an association between increased risk of PCa and folic acid supplementation, but not with dietary folate equivalents. These findings have implications for public health interventions and personalized preventive strategies for PCa.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| | - Fengbo Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| | - Gangyue Hao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| |
Collapse
|
4
|
Wang P, Liu S, Kong LM, Qi N. Causal Relationship Between Childhood Obesity and Sleep Apnea Syndrome: Bidirectional Two-Sample Mendelian Randomization Analysis. Nat Sci Sleep 2024; 16:1713-1723. [PMID: 39464513 PMCID: PMC11512557 DOI: 10.2147/nss.s477435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Background Childhood obesity has become a global pandemic, leading to a range of diseases. Childhood obesity appears to be associated with an increased prevalence of sleep apnea syndrome. Sleep apnea is an inestimable risk factor for thrombosis, hypertension, cardiomyopathy and many other diseases. Therefore, exploring the relationship between childhood obesity and sleep apnea syndrome will help to understand the potential link between the two and provide research directions for future disease prevention and treatment. However, no studies have confirmed whether there is a causal relationship between childhood obesity and sleep apnea syndrome. Methods The IEU OpenGWAS project provided the GWAS-aggregated data for childhood obesity and sleep apnea syndrome. Inverse-variance weighted (IVW) was used as the main method to evaluate the causal relationship between childhood obesity and sleep apnea syndrome. Single nucleotide polymorphisms (SNPs) were regarded as instrumental variables, and the screening threshold was P <5.0×10-6. Leave-one-out method was performed to confirm the robustness of the results. Results IVW analysis confirmed a causal relationship between genetic susceptibility to childhood obesity and an increased risk of sleep apnea syndrome [odds ratio (OR)=1.12, 95% confidence interval (CI): 1.02-1.23, P=0.016]. However, two-sample MR results also showed no causal relationship between genetic susceptibility to sleep apnea syndrome and an increased risk of childhood obesity (OR=1.50, 95% CI: 0.95-2.38, P=0.083). The intercept of MR-Egger regression was close to 0, which implies that there are no confounding factors in the analysis to affect the results of two-sample MR analysis. The leave-one-out results show that the bidirectional two-sample MR analysis results were robust. Conclusion There is a causal relationship between genetic susceptibility to childhood obesity and increased risk of sleep apnea syndrome. People with a history of childhood obesity should pay more attention to physical examination to early prevention and management of sleep apnea syndrome.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, People’s Republic of China
| | - Shuli Liu
- Department of Pediatrics, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, People’s Republic of China
| | - Ling Min Kong
- Department of Pediatrics, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, People’s Republic of China
| | - Nannan Qi
- Department of Pediatrics, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, People’s Republic of China
| |
Collapse
|
5
|
Li X, Wu X, Zhou G, Mo D, Lin X, Wang P, Zeng Y, Luo M. Estimated bone mineral density and white matter hyperintensities: A bidirectional Mendelian randomization study. Bone 2024; 187:117138. [PMID: 38914213 DOI: 10.1016/j.bone.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Greater white matter hyperintensities (WMH) in older adults have been associated with reduced bone mineral density (BMD) and increased fractures and falls. However, it is unclear whether there is a causal relationship between BMD reduction and WMH. In this study, Mendelian randomization (MR) was used to find the causality between WMH and estimated BMD (eBMD). METHODS We performed a two-sample bidirectional MR analysis using statistical data obtained from publicly available genome-wide association studies (GWAS). The main method of MR analysis is the inverse-variance weighted (IVW) method. To identify and account for the impact of horizontal pleiotropy, we also employed MR-Egger regression, MR pleiotropy residual sum, and outlier (MR-PRESSO). RESULTS MR analysis found a causal relationship between eBMD and WMH (IVW OR = 0.938, 95 % CI: 0.889-0.990, p = 0.020). Our causal estimates are unlikely to be distorted by horizontal pleiotropy according to heterogeneity test (both p > 0.05) and MR-Egger regression (p > 0.05). However, in the reverse MR analysis, there was no evidence that WMH was causally correlated with eBMD (IVW OR = 0.979, 95 % CI: 0.954-1.005, p = 0.109). CONCLUSION Our results suggest that low eBMD increased the risk of WMH; conversely, no evidence that WMH causally affects eBMD was found.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Xiaoju Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guoqiu Zhou
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Dongcan Mo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaozuo Lin
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Pingkai Wang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Yinan Zeng
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Man Luo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China; Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China.
| |
Collapse
|
6
|
Li J, Liu L, Luo Q, Zhou W, Zhu Y, Jiang W. Exploring the causal relationship between immune cell and all-cause heart failure: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1363200. [PMID: 38938655 PMCID: PMC11210391 DOI: 10.3389/fcvm.2024.1363200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Background and objectives Heart failure (HF) is a disease with numerous genetic and environmental factors that affect it. The results of previous studies indicated that immune phenotypes are associated with HF, but there have been inconclusive studies regarding a causal relationship. Therefore, Mendelian randomization (MR) analyses were undertaken to confirm the causal connections between immune phenotypes and HF, providing genetic evidence supporting the association of immune cell factors with HF risk. Methods We selected instrumental variables that met the criteria based on data from the results of genome-wide association studies (GWAS) of immune phenotype and all-cause HF. An evaluation of the causal association between 731 immune cell factors and HF risk was carried out using the inverse variance weighted (IVW), MR-Egger regression (MR-Egger), and weighted median (WM) analysis methods. To determine the horizontal pleiotropy, heterogeneity, and stability of the genetic variants, the MR-Egger intercept test, Cochran's Q test, MR-PRESSO, and leave-one-out sensitivity analysis were performed. Results MR principal method (IVW) analysis showed that a total of 38 immune cell-related factors were significantly causally associated with HF. Further analyses combining three methods (IVW, MR-Egger and WME) showed that six exposure factors significantly associated with heart failure, as shown below. The effect of Dendritic cell Absolute Count, CD62l- CD86+ myeloid Dendritic cell Absolute Count, CD62l- CD86+ myeloid Dendritic cell% Dendritic cell, CD39+ CD8+ T cell% CD8+ T cell, CD3 on Central Memory CD4+ T cell on heart failure was positive. Whereas, a reverse effect was observed for CD14+ CD16+ monocyte% monocyte. Conclusion We investigated the causal relationship between immune phenotypes and all-cause HF. According to the results, Dendritic cell Absolute Count, CD62l- CD86+ myeloid Dendritic cell Absolute Count, CD62l- CD86+ myeloid Dendritic cell% Dendritic cell, CD39+ CD8+ T cell% CD8+ T cell, CD3 on Central Memory CD4+ T cell aggravate HF, and the risk of HF is decreased by CD14+ CD16+ monocyte% monocyte. These phenotypes may serve as new biomarkers, providing new therapeutic insights for the prevention and treatment of all-cause HF.
Collapse
Affiliation(s)
| | | | | | | | - Yao Zhu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Cai Y, Jun G, Zhuang X. Metformin treatment reduces the incidence of osteoporosis: a two-sample Mendelian randomized study. Osteoporos Int 2024; 35:1089-1098. [PMID: 38536446 PMCID: PMC11136748 DOI: 10.1007/s00198-023-07013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 05/30/2024]
Abstract
It remains unclear whether the association between metformin and osteoporosis (OP) risk is causal. This two-sample Mendelian randomization (MR) study suggests a causal relationship between metformin treatment and a decrease in OP and fracture incidence, as well as an increase in bone mineral density (BMD) in the lumbar spine, femoral neck, and heel. Nonetheless, no significant causal effect is observed on forearm BMD. PURPOSE We utilize a MR approach to investigate the association between metformin treatment and the risk of OP. METHODS Metformin treatment was selected as exposures. Outcomes included OP; BMD at the forearm (FA), femoral neck (FN), and lumbar spine (LS); estimated heel bone mineral density (eBMD); and fracture. Summary statistics for exposures and outcomes were obtained from corresponding genome-wide association studies. Inverse variance-weighted (IVW) analysis was mainly applied; the weighted median (WM), penalized weighted median (PWM), maximum likelihood (ML), and MR-Egger regression (MR-Egger) method were also used to obtain robust estimates. A series of sensitivity analyses including Cochran's Q test, MR-Egger regression, leave-one-out analysis, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) were used to detect pleiotropy or heterogeneity. RESULTS In the main analysis, IVW estimates demonstrated that metformin treatment had a definite causal effect on the risk of OP (odds ratio (OR): 0.859, 95% CI: 0.774-0.953, P = 0.004), LS-BMD (OR: 1.063, 95% CI: 1.023-1.105, P = 0.002), FN-BMD (OR: 1.034, 95% CI: 1.000-1.069, P = 0.049), eBMD (OR: 1.035, 95% CI: 1.023-1.047, P ≤ 0.001), and fracture(OR: 0.958, 95% CI: 0.928-0.989, P = 0.008). However, it did not have an effect on FA-BMD(OR: 1.050, 95% CI: 0.969-1.138, P = 0.237). CONCLUSIONS This study indicated that metformin treatment is significantly associated with a reduction in the risk of OP, fracture and higher LS-BMD, FN-BMD, and eBMD. However, there was no significant association with FA-BMD.
Collapse
Affiliation(s)
- Yaotian Cai
- Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Gao Jun
- Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China.
| | - Xiaojie Zhuang
- Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| |
Collapse
|
8
|
He L, Luo H, Li Y, Zhang Y, Peng L, Xu Y, Lu J, Li J, Liu H. The causal relationship between the gut microbiota and acute pancreatitis: A 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38331. [PMID: 39259083 PMCID: PMC11142829 DOI: 10.1097/md.0000000000038331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 09/12/2024] Open
Abstract
Several observational studies have reported a correlation between the gut microbiota (GM) and the risk of acute pancreatitis (AP). However, the causal relationship between them remains uncertain. We conducted a 2-sample Mendelian randomization (MR) study using pooled data from genome-wide association studies of 211 taxa (131 genera, 35 families, 20 orders, 16 classes, and 9 phyla) and AP patients. We evaluated the causal relationship between the GM and AP using methods such as inverse-variance weighting, MR-Egger, weighted medians, simple mode, and weighted mode. Cochran Q test, MR-Egger regression intercept analysis, and MR-PRESSO were used to examine the heterogeneity, multipotency, and outlier values of the variables, respectively. The reverse causal relationship between AP and the GM was assessed with reverse MR. In total, 5 gut microbial taxa were significantly associated with AP. The inverse-variance weighting results indicated that Acidaminococcaceae (odds ratio [OR]: 0.81, 95% confidence interval [CI]: 0.66-1.00, P = .045) and Ruminococcaceae UCG004 (OR: 0.85, 95% CI: 0.72-0.99, P = .040) were protective factors against the occurrence of AP. Coprococcus 3 (OR: 1.32, 95% CI: 1.03-1.70, P = .030), Eisenbergiella (OR: 1.13, 95% CI: 1.00-1.28, P = .043), and the Eubacterium fissicatena group (OR: 1.18, 95% CI: 1.05-1.33, P = .006) were risk factors for the development of AP. A comprehensive sensitivity analysis proved our results to be reliable. Reverse MR analysis did not indicate any causal relationship between AP and the GM. This study revealed a complex causal relationship between 5 GM taxa and AP, providing new insights into the diagnostic and therapeutic potential of the GM in AP patients.
Collapse
Affiliation(s)
- Lin He
- Department of Pancreatitis Treatment Center, People’s Hospital of Deyang City, Deyang, China
| | - Haojun Luo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Li
- Department of Pancreatitis Treatment Center, People’s Hospital of Deyang City, Deyang, China
| | - Yan Zhang
- Department of Pancreatitis Treatment Center, People’s Hospital of Deyang City, Deyang, China
| | - Li Peng
- Department of Pancreatitis Treatment Center, People’s Hospital of Deyang City, Deyang, China
| | - Yan Xu
- Department of Pancreatitis Treatment Center, People’s Hospital of Deyang City, Deyang, China
| | - Jing Lu
- Department of Pancreatitis Treatment Center, People’s Hospital of Deyang City, Deyang, China
| | - Jinzhi Li
- Department of Pancreatitis Treatment Center, People’s Hospital of Deyang City, Deyang, China
| | - Hang Liu
- Department of Pancreatitis Treatment Center, People’s Hospital of Deyang City, Deyang, China
| |
Collapse
|
9
|
Zhu R, Zhang N, Zhu H, Li F, Xu H. Major depressive disorder and the risk of irritable bowel syndrome: A Mendelian randomization study. Mol Genet Genomic Med 2024; 12:e2413. [PMID: 38439604 PMCID: PMC10912794 DOI: 10.1002/mgg3.2413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/08/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The association between major depressive disorder (MDD) and irritable bowel syndrome (IBS) has been found in observational research; however, the causative relationship between MDD and IBS remains uncertain. Using the two-sample Mendelian randomization (MR) approach, we attempted to examine the causal effect of MDD on IBS. METHODS Independent genetic variants for MDD identified by Howard et al. based on a genome-wide meta-analysis were selected for this study. Gene-Outcome associations for IBS were gathered from UK Biobank and FinnGen databases. The MR analysis included inverse variance weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-PRESSO sensitivity analyses. RESULTS FinnGen database subjected to inverse variance weighted (IVW) analysis revealed that MDD may be a risk factor for the development of IBS (OR = 1.356, 95% CI: 1.125-1.632, p = 0.0013). The same finding was reached in UK Biobank for IVW (OR = 1.011, 95% CI: 1.006-1.015, p = 3.18 × 10-7 ), MR-Egger progression (OR = 1.030, 95% CI: 1.008-1.051, p = 0.007), and weighted median (OR = 1.011, 95% CI: 1.005-1.016, p = 0.0001). CONCLUSION Our findings supported a causal relationship between MDD and IBS, which may have implications for the clinical management of IBS in individuals with MDD.
Collapse
Affiliation(s)
- Ruiming Zhu
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Nan Zhang
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - He Zhu
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Fudong Li
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Hong Xu
- Department of EndoscopyThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
10
|
Yan Z, Zheng Z, Xia T, Ni Z, Dou Y, Liu X. Causal relationship between gut microbiome and sex hormone-binding globulin: A bidirectional two-sample Mendelian randomization study. Am J Reprod Immunol 2024; 91:e13824. [PMID: 38356386 DOI: 10.1111/aji.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
PROBLEM Currently, there is a variety of evidence linking the gut microbiota to changes in sex hormones. In contrast, the causal relationship between SHBG, a carrier of sex hormones, and the gut microbiota is unclear. METHOD OF STUDY Bidirectional two-sample Mendelian randomization (MR) analysis was used to detect the causal effect between SHBG and the gut microbiome. Summary statistics of genome-wide association studies (GWASs) for the gut microbiome and SHBG were obtained from public datasets. Inverse-variance weighting (IVW), weighted median, weighted mode, MR-Egger and simple mode methods were used to operate the MR analysis. F-statistics and sensitivity analyses performed to evaluate bias and reliability. RESULTS When we set gut microbiome as exposure and SHBG as outcome, we identified nine causal relationships. In males, Coprobacter (PIVW = 2.01 × 10-6 ), Ruminococcus2 (PIVW = 3.40 × 10-5 ), Barnesiella (PIVW = 2.79 × 10-2 ), Actinobacteria (PIVW = 3.25 × 10-2 ) and Eubacterium fissicatena groups (PIVW = 3.64 × 10-2 ) were associated with lower SHBG levels; Alphaproteobacteria (PIVW = 1.61 × 10-2 ) is associated with higher SHBG levels. In females, Lachnoclostridium (PIVW = 9.75 × 10-3 ) and Defluviitaleaceae UCG011 (PIVW = 3.67 × 10-2 ) were associated with higher SHBG levels; Victivallaceae (PIVW = 2.23 × 10-2 ) was associated with lower SHBG levels. According to the results of reverse MR analysis, three significant causal effect of SHBG was found on gut microbiota. In males, Dorea (PIVW = 4.17 × 10-2 ) and Clostridiales (PIVW = 4.36 × 10-2 ) were associated with higher SHBG levels. In females, Lachnoclostridium (PIVW = 7.44 × 10-4 ) was associated with higherr SHBG levels. No signifcant heterogeneity of instrumental variables or horizontal pleiotropy was found in bidirectional two-sample MR analysis. CONCLUSIONS This study may provide new insights into the causal relationship between the gut microbiome and sex hormone-binding protein levels, as well as new treatment and prevention strategies for diseases such as abnormal changes in sex hormones.
Collapse
Affiliation(s)
- Ziqiao Yan
- Department of Traditional Chinese Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zheng Zheng
- Department of Gynecology, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Tiantian Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhexin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yongqi Dou
- Department of Traditional Chinese Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xinmin Liu
- Department of Gynecology, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Shen JX, Lu Y, Meng W, Yu L, Wang JK. Exploring causality between bone mineral density and frailty: A bidirectional Mendelian randomization study. PLoS One 2024; 19:e0296867. [PMID: 38271334 PMCID: PMC10810463 DOI: 10.1371/journal.pone.0296867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE The bidirectional correlation between low bone mineral density (BMD) and frailty, despite its extensive documentation, still lacks a conclusive understanding. The objective of this Mendelian randomization (MR) study is to investigate the bidirectional causal relationship between BMD and frailty. METHODS We utilized summary statistics data for BMD at different skeletal sites-including heel BMD (e-BMD, N = 40,613), forearm BMD (FA-BMD, N = 8,143), femoral neck BMD (FN-BMD, N = 32,735), and lumbar spine BMD (LS-BMD, N = 28,489), alongside frailty index (FI, N = 175,226) data in participants of European ancestry. MR analysis in our study was conducted using well-established analytical methods, including inverse variance weighted (IVW), weighted median (WM), and MR-Egger approaches. RESULTS We observed negative causal estimates between genetically predicted e-BMD (IVW β = - 0.020, 95% confidence interval (CI) = - 0.038, - 0.002, P = 0.029) and FA-BMD (IVW β = -0.035, 95% CI = -0.066, -0.004, P = 0.028) with FI. However, the results did not reach statistical significance after applying the Bonferroni correction, with a significance threshold set at P < 0.0125 (0.05/4). There was no causal effect of FN-BMD (IVW β = - 0.024, 95% CI = -0.052, 0.004, P = 0.088) and LS-BMD (IVW β = - 0.005, 95% CI = -0.034, 0.024, P = 0.749) on FI. In the reverse Mendelian randomization (MR) analysis, we observed no causal effect of FI on BMD at various skeletal sites. CONCLUSION Our study provides support for the hypothesis that low BMD may be a potential causal risk factor for frailty, but further research is needed to confirm this relationship. However, our findings did not confirm reverse causality.
Collapse
Affiliation(s)
- Jue-xin Shen
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Meng
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Yu
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun-kai Wang
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Chen G, Kuang Z, Li F, Li J. The causal relationship between gut microbiota and leukemia: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1293333. [PMID: 38075916 PMCID: PMC10703164 DOI: 10.3389/fmicb.2023.1293333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND The association between gut microbiota and leukemia has been established, but the causal relationship between the two remains unclear. METHODS A bidirectional two-sample Mendelian randomization (MR) was used to analyze the causal relationship between gut microbiota and leukemia. Microbiome data (n = 14,306) and leukemia (n = 1,145) data were both sourced from European populations. Single nucleotide polymorphisms (SNPs) were selected as instrumental variables based on several criteria. We employed various MR methods, such as the inverse variance weighted (IVW) method, to evaluate the causal effect between exposure and outcomes and conducted sensitivity analyses to validate the heterogeneity and pleiotropy of the instrumental variables. RESULTS 5,742 qualified instrumental variables were included. In the primary MR results, a total of 10 gut microbial taxa were associated with leukemia risk. Genus Blautia and genus Lactococcus are risk factors for acute lymphoblastic leukemia [genus Blautia odds ratio (OR): 1.643, 95% confidence interval (CI): 1.592 ~ 1.695, Adjusted p < 0.001; genus Lactococcus OR: 2.152, 95% CI: 1.447 ~ 3.199, Adjusted p = 0.011]. Genus Rikenellaceae RC9 gut group, genus Anaerostipes, genus Slackia, and genus Lachnospiraceae ND3007 group are risk factors for acute myeloid leukemia [genus Rikenellaceae RC9 gut group OR: 1.964, 95% CI: 1.573 ~ 2.453, Adjusted p < 0.001; genus Anaerostipes OR: 2.515, 95% CI: 1.503 ~ 4.209, Adjusted p = 0.017; genus Slackia OR: 2.553, 95% CI: 1.481 ~ 4.401, Adjusted p = 0.022; genus Lachnospiraceae ND3007 group OR: 3.417, 95% CI: 1.960 ~ 5.959, Adjusted p = 0.001]. Genus Ruminococcaceae UCG011 and genus Ruminococcaceae UCG014 were risk factors for chronic myeloid leukemia (genus Ruminococcaceae UCG011 OR: 2.010, 95% CI: 1.363 ~ 2.963, Adjusted p = 0.044; genus Ruminococcaceae UCG014 OR: 3.101, 95% CI: 1.626 ~ 5.915, Adjusted p = 0.044). Genus Slackia was a protective factor for acute lymphoblastic leukemia (genus Slackia OR: 0.166, 95% CI: 0.062 ~ 0.443, Adjusted p = 0.017). Family Acidaminococcaceae was a protective factor for acute myeloid leukemia (family Acidaminococcaceae OR: 0.208, 95% CI: 0.120 ~ 0.361, Adjusted p < 0.001). Genus Desulfovibrio was a protective factor for chronic lymphoblastic leukemia (genus Desulfovibrio OR: 0.581, 95% CI: 0.440 ~ 0.768, Adjusted p = 0.020). Sensitivity analysis revealed no heterogeneity or pleiotropy between SNPs. CONCLUSION This study revealed the causal relationship between the gut microbiota and leukemia, and identified potential pathogenic bacteria and probiotic taxa associated with the onset of leukemia. This research may aid in the early detection of various types of leukemia and offer a new direction for the prevention and treatment of leukemia.
Collapse
Affiliation(s)
- Guanjun Chen
- Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Zheshu Kuang
- Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianchang Li
- Affiliated Hospital of Binzhou Medical University, Binzhou, China
| |
Collapse
|
13
|
Huang G, Chen X, Chen Y, Liu W, Chen C, Song W, Zeng G. Causal relationship between type 2 diabetes mellitus and bone mineral density: a Mendelian randomization study in an East Asian population. Osteoporos Int 2023; 34:1719-1727. [PMID: 37306802 PMCID: PMC10511588 DOI: 10.1007/s00198-023-06807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
It remains unclear whether the relationship between type 2 diabetes mellitus (T2DM) and bone mineral density (BMD) reflects causality in East Asian populations. Herein, a Mendelian randomization study conducted in East Asian population enhances the current clinical cognition that T2DM is not associated with reduction in BMD. PURPOSE A Mendelian randomization (MR) approach was utilized to investigate the relationship between type 2 diabetes mellitus (T2DM) and bone mineral density (BMD) in East Asian populations. METHODS Genome-wide association study summary data from BioBank Japan were used to identify genetic variants strongly related to T2DM risk (36,614 cases and 155,150 controls) and osteoporosis (7788 cases and 204,665 controls). Heel BMD GWAS data of 1260 East Asian people from ieu open gwas project was considered as a second outcome. Inverse variance-weighted (IVW) analysis was mainly applied; MR-Egger and the weighted median were also used to obtain robust estimates. A series of sensitivity analyses including Cochran's Q test, MR-Egger regression, and leave-one-out analysis were used to detect pleiotropy or heterogeneity. RESULTS In the main analysis, IVW estimates indicated that T2DM significantly associated with the risk of osteoporosis (odds ratio = 0.92, 95% CI: 0.86-0.99, p = 0.016) and with higher BMD (OR: 1.25, 95% CI: 1.06-1.46, p = 6.49 × 10-3). Results of comprehensive sensitivity analysis were consistent with the main causality estimate. Horizontal pleiotropy and heterogeneity were absent in our MR study. CONCLUSIONS T2DM is not associated with reduction in BMD in terms of genetic polymorphism in East Asian populations.
Collapse
Affiliation(s)
- Guiwu Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Xiong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China
| | - Wenzhou Liu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China
| | - Chen Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China
| | - Weidong Song
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China.
| | - Gang Zeng
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
14
|
Liu R, Liu Q, Xu S, Mei R. Mood instability and low back pain: a mendelian randomization study. Front Neurol 2023; 14:1252329. [PMID: 37786864 PMCID: PMC10541504 DOI: 10.3389/fneur.2023.1252329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
Objective Low back pain is a prevalent and debilitating condition worldwide, with significant implications for individuals' quality of life and productivity. The aim of this study was to assess the relationship between mood instability and the risk of developing chronic low back pain, using a rigorously designed mendelian randomization methodology. Method The study incorporated both univariate and multivariate mendelian randomization to analysis the causal relationship between mood instability and the risk of developing chronic low back pain. The data on mood instability from the Integrative Epidemiology Unit (IEU) opened Genome-Wide Association Studies (GWAS) project (IEU-opened GWAS project). Data on low back pain were collected from two sources: One source is the IEU open GWAS project (discovery data). Another source is a GWAS meta-analysis (replication data). Inverse variance weighted method, weighted median method, MR-Egger regression, and mendelian randomization pleiotropy residual sum and outlier method were used for mendelian randomization analysis. Result The univariable mendelian randomization analysis shows a statistically significant correlation between mood instability and the risk of low back pain. Several methods were performed, including inverse variance weighting (discovery data: odds ratio = 3.544, 95% confidence interval = 1.785-7.039, p = 0.000; replication data: odds ratio = 3.167, 95% confidence interval = 2.476-4.052, p = 0.000), MR-Egger (discovery data: odds ratio = 7.178, 95% confidence interval = 0.057-909.525, p = 0.429; replication data: odds ratio = 2.262, 95% confidence interval = 0.580-8.825, p = 0.246), weighted median (discovery data: odds ratio = 2.730, 95% confidence interval = 1.112-6.702, p = 0.028; replication data: odds ratio = 3.243, 95% confidence interval = 2.378-4.422, p = 0.000), MR-PRESSO (discovery data: odds ratio = 3.544, 95% confidence interval = 1.785-7.039, p = 0.001; replication data: odds ratio = 3.167, 95% confidence interval = 2.476-4.052, p = 0.000) methods. The results were consistent across these methods. The results obtained from discovery data are consistent with those obtained from discovery data. In the multivariable mendelian randomization, after adjusting for various covariates such as body mass index, current tobacco smoking, alcohol intake frequency, Total body bone mineral density, and vigorous physical activity, there is a consistent correlation between mood instability and chronic low back pain. Conclusion This study provides robust evidence supporting a causal relationship between mood instability and the development of low back pain. Our findings suggest that addressing mood instability may play a crucial role in prevention and management strategies for individuals experiencing low back pain.
Collapse
Affiliation(s)
- Renyang Liu
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Center for Clinical Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qian Liu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Shaoyong Xu
- Center for Clinical Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Rongcheng Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
15
|
Lv X, Lin Y, Zhang Z, Li B, Zeng Z, Jiang X, Zhao Q, Li W, Wang Z, Yang C, Yan H, Wang Q, Huang R, Hu X, Gao L. Investigating the association between serum ADAM/ADAMTS levels and bone mineral density by mendelian randomization study. BMC Genomics 2023; 24:406. [PMID: 37468870 DOI: 10.1186/s12864-023-09449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) have been reported potentially involved in bone metabolism and related to bone mineral density. This Mendelian Randomization (MR) analysis was performed to determine whether there are causal associations of serum ADAM/ADAMTS with BMD in rid of confounders. METHODS The genome-wide summary statistics of four site-specific BMD measurements were obtained from studies in individuals of European ancestry, including forearm (n = 8,143), femoral neck (n = 32,735), lumbar spine (n = 28,498) and heel (n = 426,824). The genetic instrumental variables for circulating levels of ADAM12, ADAM19, ADAM23, ADAMTS5 and ADAMTS6 were retrieved from the latest genome-wide association study of European ancestry (n = 5336 ~ 5367). The estimated causal effect was given by the Wald ratio for each variant, the inverse-variance weighted model was used as the primary approach to combine estimates from multiple instruments, and sensitivity analyses were conducted to assess the robustness of MR results. The Bonferroni-corrected significance was set at P < 0.0025 to account for multiple testing, and a lenient threshold P < 0.05 was considered to suggest a causal relationship. RESULTS The causal effects of genetically predicted serum ADAM/ADAMTS levels on BMD measurements at forearm, femoral neck and lumbar spine were not statistically supported by MR analyses. Although causal effect of ADAMTS5 on heel BMD given by the primary MR analysis (β = -0.006, -0.010 to 0.002, P = 0.004) failed to reach Bonferroni-corrected significance, additional MR approaches and sensitivity analyses indicated a robust causal relationship. CONCLUSION Our study provided suggestive evidence for the causal effect of higher serum levels of ADAMTS5 on decreased heel BMD, while there was no supportive evidence for the associations of ADAM12, ADAM19, ADAM23, and ADAMTS6 with BMD at forearm, femoral neck and lumbar spine in Europeans.
Collapse
Affiliation(s)
- Xin Lv
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yuhong Lin
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhilei Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Ziliang Zeng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xu Jiang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiancheng Zhao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Wenpeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zheyu Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Canchun Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Haolin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiwei Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Renyuan Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xumin Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Liangbin Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
16
|
Du W, Wang T, Zhang W, Xiao Y, Wang X. Genetically supported causality between benign prostate hyperplasia and urinary bladder neoplasms: A mendelian randomization study. Front Genet 2022; 13:1016696. [PMID: 36468030 PMCID: PMC9713637 DOI: 10.3389/fgene.2022.1016696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2024] Open
Abstract
Background: Observational studies have suggested a possible association between benign prostate hyperplasia (BPH) and bladder cancer (BLCA). However, these studies are prone to errors and limitations or confounding factors, making them unsuitable for assessing the causal relationship between BPH and BLCA. Objective: Two-sample Mendelian randomization (MR) was performed to determine a possible association between genetically predicted BPH and the risk of BLCA. Methods: A two-sample MR analysis was performed utilizing the Integrative Epidemiology Unit genome-wide association (GWAS) database of the Medical Research Council, United Kingdom A series of control steps, including five primary methods, were performed to identify the most suitable instrumental variables (IVs) for MR analysis. Sensitivity analysis was conducted to avoid statistical errors, including heterogeneity and pleiotropic bias. Results: Genetic variants associated with BPH (P < 5 × 10-8) and BLCA (P < 5 × 10-6) were identified as instrumental variables and assessed using GWAS summary data (BPH, 4,670 cases vs. 458,340 controls; BLCA, 1,279 cases vs. 372,016 controls). BPH exhibited a positive effect on the occurrence of BLCA (inverse variance weighted (IVW), odds ratio (OR) = 1.095, 95% confidence interval (CI) = 1.030-1.165, p = 0.003), but there was no causal effect for BLCA on BPH (IVW, OR = 1.092, 95% CI = 0.814-1.465, p = 0.554). Conclusion: Genetically predicted BPH was associated with a higher risk of BLCA in all histological subtypes. In contrast, the evidence was not significant to back the causality of genetically induced BLCA on BPH. These findings indicate that BPH plays a key role in developing BLCA in the European population. Further studies are needed to uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Wenzhi Du
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianyi Wang
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenxiu Zhang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Hartley AE, Power GM, Sanderson E, Smith GD. A Guide for Understanding and Designing Mendelian Randomization Studies in the Musculoskeletal Field. JBMR Plus 2022; 6:e10675. [PMID: 36248277 PMCID: PMC9549705 DOI: 10.1002/jbm4.10675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Mendelian randomization (MR) is an increasingly popular component of an epidemiologist's toolkit, used to provide evidence of a causal effect of one trait (an exposure, eg, body mass index [BMI]) on an outcome trait or disease (eg, osteoarthritis). Identifying these effects is important for understanding disease etiology and potentially identifying targets for therapeutic intervention. MR uses genetic variants as instrumental variables for the exposure, which should not be influenced by the outcome or confounding variables, overcoming key limitations of traditional epidemiological analyses. For MR to generate a valid estimate of effect, key assumptions must be met. In recent years, there has been a rapid rise in MR methods that aim to test, or are robust to violations of, these assumptions. In this review, we provide an overview of MR for a non-expert audience, including an explanation of these key assumptions and how they are often tested, to aid a better reading and understanding of the MR literature. We highlight some of these new methods and how they can be useful for specific methodological challenges in the musculoskeletal field, including for conditions or traits that share underlying biological pathways, such as bone and joint disease. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- April E Hartley
- MRC‐Integrative Epidemiology UnitPopulation Health Sciences, Bristol Medical SchoolBristolUK
| | - Grace M Power
- MRC‐Integrative Epidemiology UnitPopulation Health Sciences, Bristol Medical SchoolBristolUK
| | - Eleanor Sanderson
- MRC‐Integrative Epidemiology UnitPopulation Health Sciences, Bristol Medical SchoolBristolUK
| | - George Davey Smith
- MRC‐Integrative Epidemiology UnitPopulation Health Sciences, Bristol Medical SchoolBristolUK
| |
Collapse
|
18
|
Wu K, Li A, Liu L, Shu T, Xia D, Sun X. Inflammatory bowel disease and cardiovascular disease: A two-sample Mendelian randomization analysis. Front Cardiovasc Med 2022; 9:927120. [PMID: 36119744 PMCID: PMC9478388 DOI: 10.3389/fcvm.2022.927120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAlthough epidemiological studies have shown a positive relationship between inflammatory bowel disease (IBD) and risk of cardiovascular disease (CVD) outcomes, a solid causal relationship has not been established. Thus, a two-sample Mendelian randomization (MR) study was conducted to explore the potential causal effect between IBD and CVD outcomes.MethodsWe performed a two-sample MR analysis to analyze the causal effect of the IBD on CVD outcome by using summary-level genome-wide association studies of European descent. The inverse-variance weighted (IVW) method was used as the main MR analysis, with complementary analyses of MR Egger, maximum likelihood, weighted median, penalized weighted media, simple mode, weighted mode, and MR-PRESSO methods. Multiple sensitivity analyses were used to evaluate the robustness of our results.ResultsAll P-values were greater than 0.05 in the IVW method, showing no evidence of a causal association between circulating IBD and CVD. Similar results were observed by using other MR methods. No evidence of heterogeneity, pleiotropy, or outlier single-nucleotide polymorphisms was detected. Sensitivity analyses demonstrated the robustness of the results.ConclusionThe findings of this study provided no evidence to support that IBD has a large effect on risk of CVD outcomes, which is in contrast to many previous observational reports. Further studies are needed to determine the potential mechanism of association identified in observational studies.
Collapse
Affiliation(s)
- Kaiwen Wu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Aoshuang Li
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tao Shu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Demeng Xia,
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- Xiaobin Sun,
| |
Collapse
|
19
|
Li F, Liu Y, Wang Z, Zhao Q, Li Y, Tang T. A mendelian randomization study with populations of European ancestry rules out a causal relationship between inflammatory bowel disease and colorectal cancer. Front Genet 2022; 13:949325. [PMID: 36092900 PMCID: PMC9449310 DOI: 10.3389/fgene.2022.949325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), has been found to be associated with colorectal cancer (CRC) in observational studies, but there is no evidence to support a causal relationship or reverse causality between the two diseases. Methods: We employed two-sample bidirectional Mendelian randomization to estimate an unconfounded bidirectional causal relationship between IBD (including UC and Crohn’s disease (CD)) and colorectal cancer. After searching IEU GWAS database and filtering SNPs, we applied a variety of MR methods including IVW method using qualified instrumental variables, and conducted sensitivity analysis to detect the heterogeneity and pleiotropy of instrumental variables. Results: After using three groups of SNPs (CD: 106, UC: 113, IBD: 70), the IVW method MR analysis showed that the results were not significant (result for UC: odds ratio (OR) [95% Confidence Interval (CI)]: 0.9998 [0.9991–1.0005], p value: 0.58; result for CD: OR [95%CI]: 0.99962 [0.99912–1.00012], p value: 0.14; results for IBD: OR [95%CI]: 0.99959 [0.99869–1.00048], p value: 0.36). MR-Egger regression, WM method and MR-RAPS method reached the same conclusion. Sensitivity analysis did not reveal heterogeneity and pleiotropy. Bidirectional MR analysis was performed using the same procedure, and the results of IVW MR analysis were also not significant (result for CD: OR [95%CI]: 1.07985 [0.00049–2372.38304], p value 0.98; result for UC: OR [95%CI]: 0.27117 [0.00014–528.3707], p value: 0.74; result for IBD: OR [95%CI]: 0.47101 [0.0001–2242.94159], p value: 0.86). MR-Egger regression, WM method and MR-RAPS method also reached the same conclusion. Sensitivity analysis did not find any evidence of heterogeneity and pleiotropy. Conclusion: Contrary to the conclusions of previous observational studies, a two-sample MR analysis did not find a causal relationship or reverse causal relationship between IBD and CRC. Sporadic CRC (sCRC) may differ in pathogenesis from IBD-related CRC.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuyuan Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Zhaodi Wang
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Qi Zhao
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yuqin Li, ; Tongyu Tang,
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yuqin Li, ; Tongyu Tang,
| |
Collapse
|
20
|
Duan C, Shi J, Yuan G, Shou X, Chen T, Zhu X, Yang Y, Hu Y. Causal Association Between Heart Failure and Alzheimer's Disease: A Two-Sample Bidirectional Mendelian Randomization Study. Front Genet 2022; 12:772343. [PMID: 35087565 PMCID: PMC8787319 DOI: 10.3389/fgene.2021.772343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Traditional observational studies have demonstrated an association between heart failure and Alzheimer's disease. The strengths of observational studies lie in their speed of implementation, cost, and applicability to rare diseases. However, observational studies have several limitations, such as uncontrollable confounders. Therefore, we employed Mendelian randomization of genetic variants to evaluate the causal relationships existing between AD and HF, which can avoid these limitations. Materials and Methods: A two-sample bidirectional MR analysis was employed. All datasets were results from the UK's Medical Research Council Integrative Epidemiology Unit genome-wide association study database, and we conducted a series of control steps to select the most suitable single-nucleotide polymorphisms for MR analysis, for which five primary methods are offered. We reversed the functions of exposure and outcomes to explore the causal direction of HF and AD. Sensitivity analysis was used to conduct several tests to avoid heterogeneity and pleiotropic bias in the MR results. Results: Our MR studies did not support a meaningful causal relationship between AD on HF (MR-Egger, p = 0.634 > 0.05; weighted median (WM), p = 0.337 > 0.05; inverse variance weighted (IVW), p = 0.471 > 0.05; simple mode, p = 0.454 > 0.05; weighted mode, p = 0.401 > 0.05). At the same time, we did not find a significant causal relationship between HF and AD with four of the methods (MR-Egger, p = 0.195 > 0.05; IVW, p = 0.0879 > 0.05; simple mode, p = 0.170 > 0.05; weighted mode, p = 0.110 > 0.05), but the WM method indicated a significant effect of HF on AD (p = 0.025 < 0.05). Because the statistical powers of IVW and MR-Egger are more than that of WM, we think that there is no causal effect of HF on AD. Sensitivity analysis and horizontal pleiotropy were not detected in the MR analysis. Conclusion: Our results did not provide significant evidence indicating any causal relationships between HF and AD in the European population. Therefore, more large-scale datasets or datasets related to similar factors are expected for further MR analysis.
Collapse
Affiliation(s)
- Chenglin Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xintian Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Ting Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Mendelian randomization analyses for PCOS: evidence, opportunities, and challenges. Trends Genet 2022; 38:468-482. [DOI: 10.1016/j.tig.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/21/2022]
|
22
|
Lv X, Wu P, Xiao S, Zhang W, Li Y, Ren B, Li Z, Xia K, Wang B. Matrix Metalloproteinases in Relation to Bone Mineral Density: A Two-Sample Mendelian Randomization Study. Front Genet 2021; 12:754795. [PMID: 34868227 PMCID: PMC8637623 DOI: 10.3389/fgene.2021.754795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: We aimed at investigating causal associations between matrix metalloproteinases (MMPs) and bone mineral density (BMD) by the Mendelian randomization (MR) analysis. Methods: From genome-wide association studies of European ancestry, we selected instrumental variables for MMP-1, MMP-3, MMP-7, MMP-8, MMP-10, and MMP-12. Accordingly, we retrieved summary statistics of three site-specific BMD, namely, forearm, femoral neck, and lumbar spine. We conducted an inverse variance weighted MR as the primary method to compute overall effects from multiple instruments, while additional MR approaches and sensitivity analyses were implemented. Bonferroni-adjusted significance threshold was set at p < 0.05/18 = 0.003. Results: Totally, there was no evidence for causal effects of genetically-predicted levels of MMPs on BMD measurement at three common sites. MR results indicated that there were no causal associations of circulating MMPs with forearm BMD (all p ≥ 0.023) by the inverse variance weighted method. Similarly, there were no causal effects of MMPs on femoral neck BMD (all p ≥ 0.120) and MR results did not support causal relationships between MMPs and lumbar spine BMD (all p ≥ 0.017). Multiple sensitivity analyses suggested the robustness of MR results, which were less likely to be biased by unbalanced pleiotropy or evident heterogeneity. Conclusion: We found no evidence for the causal relationship between MMPs and BMD in the European population.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Wu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Shipeng Xiao
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wan Zhang
- Department of Biology, Boston University, Boston, MA, United States
| | - Yawei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bolin Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hengyang Medical School, University of South China, Hengyang, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Yang J, Xu H, Cai B, Wei J, Sun L, Li Y, Wang T, Li Y. Genetically Predicted Longer Telomere Length May Reduce Risk of Hip Osteoarthritis. Front Genet 2021; 12:718890. [PMID: 34675961 PMCID: PMC8523818 DOI: 10.3389/fgene.2021.718890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
Objective: This two-sample Mendelian randomization (MR) study aimed to examine the potential causal association of telomere length (TL) with the risk of osteoarthritis (OA). Method: The summary-level data for OA was derived from the United Kingdom Biobank cohort, including 50,508 individuals of European descent. Eighteen single nucleotide polymorphisms associated with TL were identified as instrumental variables from the most up-to-date TL genome-wide association study (GWAS) involving over 78,592 individuals of European descent. Based on the GWASs data, MR was performed using established statistical analysis methods including the inverse variance weighted, weighted median, MR-Egger, and MR pleiotropy residual sum and outlier. Results: Genetically determined TL was not associated with the risk of total OA (IVW odds ratio [OR] = 1.00, 95% confidence interval [CI] = 0.83, 1.21). In subgroup analyses stratified by OA site, no evidence in favor of association between genetically determined TL and knee OA was found (IVW OR = 1.18, 95% CI = 0.89, 1.58). However, using WM method, we observed a limited protective effect of longer TL on the risk of hip OA (OR = 0.60, 95% CI = 0.36–0.99), whereas the results of the IVW (p = 0.931) and MR-PRESSO (p = 0.932) showed that TL had no effect on hip OA. Conclusions: This study does not support a causal association between TL and total OA. A potential protective association between longer TL and hip OA, though possible, remains less certain.
Collapse
Affiliation(s)
- Jing Yang
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Huiqing Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Bingyue Cai
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jiahe Wei
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lingling Sun
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yasong Li
- Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Tianle Wang
- Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
24
|
A Mendelian randomization study on the role of serum parathyroid hormone and 25-hydroxyvitamin D in osteoarthritis. Osteoarthritis Cartilage 2021; 29:1282-1290. [PMID: 33975017 DOI: 10.1016/j.joca.2021.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Serum parathyroid hormone (PTH) and 25-hydroxyvitamin D [25(OH)D] have been demonstrated to be associated with pathogenesis and progression of osteoarthritis (OA). This study aimed to determine the potential causal relationship between serum PTH and 25(OH)D levels and risk of OA. DESIGN We applied the two-sample Mendelian randomization (MR) approach to estimate the causal roles of serum PTH and 25(OH)D on OA. The instrumental variables for serum PTH and 25(OH)D were derived from two large genome-wide association studies (GWAS), which included 29,155 and 79,366 individuals, respectively. Summary-level data for overall, hip and knee OA were extracted from a GWAS meta-analysis, including 455,221 individuals. All participants included in this study were from the European population. RESULTS An inverse association was observed between serum PTH levels and risk of OA (random-effects: Effect = 0.71; 95% CI: 0.54 to 0.92; fixed-effects: Effect = 0.71; 95% CI: 0.61 to 0.82). Stratified by site, serum PTH levels were found to be inversely associated with knee OA (random-effects: Effect = 0.53; 95% CI: 0.41 to 0.68; fixed-effects: Effect = 0.53; 95% CI: 0.41 to 0.68). However, there was no evidence of the causal effect of serum 25(OH)D levels on OA. CONCLUSIONS The present study indicates an inverse causal relationship between serum PTH concentrations and development of OA. Moreover, a site-specific association was also observed between serum PTH levels and knee OA. The potential mechanisms by which serum PTH affects OA need to be further investigated.
Collapse
|
25
|
Ma B, Li C, Pan J, Zhang S, Dong H, Wu Y, Lv J. Causal Associations of Anthropometric Measurements With Fracture Risk and Bone Mineral Density: A Mendelian Randomization Study. J Bone Miner Res 2021; 36:1281-1287. [PMID: 33784428 DOI: 10.1002/jbmr.4296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023]
Abstract
Uncovering additional causal clinical traits and exposure variables is important when studying osteoporosis mechanisms and for the prevention of osteoporosis. Until recently, the causal relationship between anthropometric measurements and osteoporosis had not been fully revealed. In the present study, we utilized several state-of-the-art Mendelian randomization (MR) methods to investigate whether height, body mass index (BMI), waist-to-hip ratio (WHR), hip circumference (HC), and waist circumference (WC) are causally associated with two major characteristics of osteoporosis, bone mineral density (BMD) and fractures. Genomewide significant (p ≤ 5 × 10-8 ) single-nucleotide polymorphisms (SNPs) associated with the five anthropometric variables were obtained from previous large-scale genomewide association studies (GWAS) and were utilized as instrumental variables. Summary-level data of estimated bone mineral density (eBMD) and fractures were obtained from a large-scale UK Biobank GWAS. Of the MR methods utilized, the inverse-variance weighted method was the primary method used for analysis, and the weighted-median, MR-Egger, mode-based estimate, and MR pleiotropy residual sum and outlier methods were utilized for sensitivity analyses. The results of the present study indicated that each increase in height equal to a single standard deviation (SD) was associated with a 9.9% increase in risk of fracture (odds ratio [OR] = 1.099; 95% confidence interval [CI] 1.067-1.133; p = 8.793 × 10-10 ) and a 0.080 SD decrease of estimated bone mineral density (95% CI -0.106-(-0.054); p = 2.322 × 10-9 ). We also found that BMI was causally associated with eBMD (beta = 0.129, 95% CI 0.065-0.194; p = 8.113 × 10-5 ) but not associated with fracture. The WHR adjusted for BMI, HC adjusted for BMI, and WC adjusted for BMI were not found to be related to fracture occurrence or eBMD. In conclusion, the present study provided genetic evidence for certain causal relationships between anthropometric measurements and bone mineral density or fracture risk. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Baoshan Ma
- College of Information Science and Technology, Dalian Maritime University, Dalian, China
| | - Chongyang Li
- College of Information Science and Technology, Dalian Maritime University, Dalian, China
| | - Jianqiao Pan
- College of Information Science and Technology, Dalian Maritime University, Dalian, China
| | - Shuzheng Zhang
- College of Information Science and Technology, Dalian Maritime University, Dalian, China
| | - Heng Dong
- College of Information Science and Technology, Dalian Maritime University, Dalian, China
| | - Yiming Wu
- College of Information Science and Technology, Dalian Maritime University, Dalian, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
26
|
Circulating Alpha-Tocopherol Levels, Bone Mineral Density, and Fracture: Mendelian Randomization Study. Nutrients 2021; 13:nu13061940. [PMID: 34198753 PMCID: PMC8228419 DOI: 10.3390/nu13061940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022] Open
Abstract
Recent cohort studies indicate a potential role of the antioxidant α-tocopherol in reducing bone loss and risk of fractures, especially hip fractures. We performed a Mendelian randomization investigation of the associations of circulating α-tocopherol with estimated bone mineral density (eBMD) using heel ultrasound and fractures, identified from hospital records or by self-reports and excluding minor fractures. Circulating α-tocopherol was instrumented by three genetic variants associated with α-tocopherol levels at p < 5 × 10-8 in a genome-wide association meta-analysis of 7781 participants of European ancestry. Summary-level data for the genetic associations with eBMD in 426,824 individuals and with fracture (53,184 cases and 373,611 non-cases) were acquired from the UK Biobank. Two of the three genetic variants were strongly associated with eBMD. In inverse-variance weighted analysis, a genetically predicted one-standard-deviation increase of circulating α-tocopherol was associated with 0.07 (95% confidence interval, 0.05 to 0.09) g/cm2 increase in BMD, which corresponds to a >10% higher BMD. Genetically predicted circulating α-tocopherol was not associated with odds of any fracture (odds ratio 0.97, 95% confidence interval, 0.91 to 1.05). In conclusion, our results strongly strengthen a causal link between increased circulating α-tocopherol and greater BMD. Both an intervention study in those with a low dietary intake of α-tocopherol is warranted and a Mendelian randomization study with fragility fractures as an outcome.
Collapse
|
27
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
28
|
Sun L, Zhu J, Ling Y, Mi S, Li Y, Wang T, Li Y. Physical activity and the risk of rheumatoid arthritis: evidence from meta-analysis and Mendelian randomization. Int J Epidemiol 2021; 50:1593-1603. [PMID: 33760079 DOI: 10.1093/ije/dyab052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is very little information about the association between physical activity (PA) and the risk of rheumatoid arthritis (RA). The purpose of this study is to understand the effect of PA on subsequent risk of developing RA. METHODS A literature search was performed in PubMed and Web of Science up to 19 September 2020. Observational studies examining associations between PA and the RA development were identified. Categorical and dose-response meta-analyses were both performed. Then two-sample Mendelian randomization (MR) analysis was conducted to interrogate the causal relationship by utilizing genetic instruments identified from a genome-wide association study of self-reported and accelerometer-based PA traits. RESULTS Four eligible studies were included in the meta-analyses, involving 4213 RA cases among 255 365 participants. The summary relative risk (RR) of RA risk was 0.79 [95% confidence interval (CI): 0.72, 0.87] for the highest vs the lowest PA, and 0.85 (95% CI: 0.79, 0.92) for PA vs inactivity/occasional PA. However, we found no convincing evidence supporting a causal role of genetically predicted accelerometer-measured PA [odds ratio (OR): 0.97; 95% CI: 0.88, 1.08 per 1-SD unit increment], genetically predicted moderate-to-vigorous PA (OR: 1.08; 95% CI: 0.49, 2.39 per 1-SD unit increment) or genetically predicted vigorous PA ≥3 days/week (OR: 2.63; 95% CI: 0.05, 130.96) with RA risk. CONCLUSIONS The meta-analyses of the observational studies indicated that higher PA levels correlate with reduced risk of RA. In contrast to meta-analyses, the MR analyses reported here suggested PA may not help to prevent RA.
Collapse
Affiliation(s)
- Lingling Sun
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yuxiao Ling
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Shuai Mi
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yasong Li
- Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Tianle Wang
- Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
29
|
Qu Z, Jiang J, Yang F, Huang J, Zhao J, Yan S. Genetically Predicted Sex Hormone-Binding Globulin and Bone Mineral Density: A Mendelian Randomization Study. Calcif Tissue Int 2021; 108:281-287. [PMID: 33068140 DOI: 10.1007/s00223-020-00770-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Previous observational studies have identified various risk factors associated with the development of osteoporosis, including sex hormone-binding globulin (SHBG). The aim of this study was to determine the potential causal effects of circulating SHBG concentrations on bone mineral density (BMD). Two-sample Mendelian randomization (MR) approach was applied in analyses. From summary-level data of genome-wide association studies (GWAS), we selected 11 single-nucleotide polymorphisms (SNPs) associated with SHBG levels as instrumental variable, and used summary statistics for BMD at forearm (FA) (n = 8143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498) and heel (HL) (n = 394,929), and total-body BMD of different age-stages (15 or less, 15-30, 30-45, 45-60, 60 or more years old) (n = 67,358). Inverse causal associations was observed between SHBG levels and FA BMD (Effect = - 0.26; 95% CI - 0.49 to - 0.04; P = 0.022), HL eBMD (Effect = - 0.09; 95% CI - 0.12 to - 0.06; P = 3.19 × 10-9), and total-body BMD in people aged 45-60 years (Effect = - 0.16; 95% CI - 0.31 to - 2.4 × 10-3; P = 0.047) and over 60 years (Effect = - 0.19; 95% CI - 0.33 to - 0.05; P = 0.006). Our study demonstrates that circulating SHBG concentrations are inversely associated with FA and HL eBMD, and total-body BMD in people aged over 45 years, suggesting that the role of SHBG in the development of osteoporosis might be affected by chronological age of patients and skeletal sites.
Collapse
Affiliation(s)
- Zihao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Jiuzhou Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Fangkun Yang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiawei Huang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianqiang Zhao
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Orthopedic Research Institute of Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
30
|
Cui Z, Feng H, He B, Xing Y, Liu Z, Tian Y. Type 2 Diabetes and Glycemic Traits Are Not Causal Factors of Osteoarthritis: A Two-Sample Mendelian Randomization Analysis. Front Genet 2021; 11:597876. [PMID: 33519901 PMCID: PMC7838644 DOI: 10.3389/fgene.2020.597876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It remains unclear whether an increased risk of type 2 diabetes (T2D) affects the risk of osteoarthritis (OA). METHODS Here, we used two-sample Mendelian randomization (MR) to obtain non-confounded estimates of the effect of T2D and glycemic traits on hip and knee OA. We identified single-nucleotide polymorphisms (SNPs) strongly associated with T2D, fasting glucose (FG), and 2-h postprandial glucose (2hGlu) from genome-wide association studies (GWAS). We used the MR inverse variance weighted (IVW), the MR-Egger method, the weighted median (WM), and the Robust Adjusted Profile Score (MR.RAPS) to reveal the associations of T2D, FG, and 2hGlu with hip and knee OA risks. Sensitivity analyses were also conducted to verify whether heterogeneity and pleiotropy can bias the MR results. RESULTS We did not find statistically significant causal effects of genetically increased T2D risk, FG, and 2hGlu on hip and knee OA (e.g., T2D and hip OA, MR-Egger OR = 1.1708, 95% CI 0.9469-1.4476, p = 0.1547). It was confirmed that horizontal pleiotropy was unlikely to bias the causality (e.g., T2D and hip OA, MR-Egger, intercept = -0.0105, p = 0.1367). No evidence of heterogeneity was found between the genetic variants (e.g., T2D and hip OA, MR-Egger Q = 30.1362, I 2 < 0.0001, p = 0.6104). CONCLUSION Our MR study did not support causal effects of a genetically increased T2D risk, FG, and 2hGlu on hip and knee OA risk.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Hui Feng
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
| | - Baichuan He
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yong Xing
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Zhaorui Liu
- Peking University Sixth Hospital, Beijing, China
| | - Yun Tian
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
31
|
Cui Z, Hou G, Meng X, Feng H, He B, Tian Y. Bidirectional Causal Associations Between Inflammatory Bowel Disease and Ankylosing Spondylitis: A Two-Sample Mendelian Randomization Analysis. Front Genet 2020; 11:587876. [PMID: 33329731 PMCID: PMC7710797 DOI: 10.3389/fgene.2020.587876] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Associations between inflammatory bowel disease (IBD) [including ulcerative colitis (UC) and Crohn’s disease (CD)] and ankylosing spondylitis (AS) were discovered in observational studies, but no evidence supported the causal relationship between the two diseases. Methods We employed two-sample Mendelian randomization (MR) to estimate the unconfounded bidirectional causal associations between IBD (including UC and CD) and AS. We selected single-nucleotide polymorphisms (SNPs) from genome-wide association studies (GWAS) after strictly assessing the quality of the studies in the IEU GWAS database. Sensitivity analyses were also conducted to verify whether heterogeneity and pleiotropy can bias the MR results. Results We found positive causal effects of genetically increased UC, CD, and IBD risk on AS (e.g., UC and AS, IVW OR: 1.0256, 95% CI: 1.0130∼1.0385, p = 6.43E-05). However, we did not find significant causal associations of AS with UC, CD, or IBD (e.g., AS and UC, IVW OR: 1.1858, 95% CI: 0.8639∼1.6278, p = 0.2916). The sensitivity analysis also confirmed that horizontal pleiotropy was unlikely to bias the causality (e.g., UC and AS, MR-Egger: intercept p = 0.1326). The leave-one-out analysis also demonstrated that the observed links were not driven by SNP. No evidence of heterogeneity was found between the genetic variants (e.g., UC and AS, MR-Egger: Q statistic = 43.1297, I2<0.0001, p = 0.7434). Conclusion Our results provide new evidence indicating there are positive causal effects of IBD on AS in the European population. We suggest that the features of inflammatory bowel disease in particular should be assessed in the diagnosis of ankylosing spondylitis. We also provide some advice for preventing and treating the two diseases.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China.,Peking University Health Science Center, Beijing, China
| | - Guojin Hou
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
| | - Xiangyu Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Feng
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
| | - Baichuan He
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
| | - Yun Tian
- Department of Orthopedic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW We summarize recent evidence on the shared genetics within and outside the musculoskeletal system (mostly related to bone density and osteoporosis). RECENT FINDINGS Osteoporosis is determined by an interplay between multiple genetic and environmental factors. Significant progress has been made regarding its genetic background revealing a number of robustly validated loci and respective pathways. However, pleiotropic factors affecting bone and other tissues are not well understood. The analytical methods proposed to test for potential associations between genetic variants and multiple phenotypes can be applied to bone-related data. A number of recent genetic studies have shown evidence of pleiotropy between bone density and other different phenotypes (traits, conditions, or diseases), within and outside the musculoskeletal system. Power benefits of combining correlated phenotypes, as well as unbiased discovery, make these studies promising. Studies in humans are supported by evidence from animal models. Drug development and repurposing should benefit from the pleiotropic approach. We believe that future studies should take into account shared genetics between the bone and related traits.
Collapse
Affiliation(s)
- M A Christou
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - E E Ntzani
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
- Center for Research Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI, USA
| | - D Karasik
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
33
|
Cui Z, Meng X, Zhuang S, Liu Z, Zhou F, Tian Y. Schizophrenia, Bipolar Disorder, and Alzheimer's Disease are not Causal Factors of Bone Mineral Density: A Mendelian Randomization Analysis. Calcif Tissue Int 2020; 106:131-146. [PMID: 31679055 DOI: 10.1007/s00223-019-00625-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
Until recently, it remains unclear whether schizophrenia, bipolar disorder (BD), and Alzheimer's disease (AD) is associated with bone mineral density (BMD). We aimed to investigate the causal effects of schizophrenia, BD and AD on BMD with Mendelian randomization (MR) analysis. Single-nucleotide polymorphisms (SNPs) strongly associated with these three neuropsychiatric diseases as instrumental variables were selected from genome-wide association studies in the MR Base database. We analyzed the effects of these SNPs on the femoral neck BMD (FN-BMD), lumbar spine BMD (LS-BMD) and forearm BMD (FA-BMD), and evaluated the heterogeneities and pleiotropy of these genetic variants. We also evaluated the potential confounding factors in the association between these three neuropsychiatric diseases and the BMD level. It was found that none of these genetic variants were significantly associated with BMD or confounding factors. Using these genetic variants, we did not find statistically significant causal effects of per unit increase in the log-odds of having schizophrenia, BD or AD with FN-BMD, LS-BMD and FA-BMD changes (e.g. schizophrenia and FN-BMD, MR-Egger OR 0.9673, 95% CI 0.8382 to 1.1163, p = 0.6519). The MR results also revealed that directional pleiotropy was unlikely to bias the causality (e.g., schizophrenia and FN-BMD, intercept = 0.0023, p = 0.6887), and no evidence of heterogeneity was found between the genetic variants (e.g., schizophrenia and FN-BMD, MR-Egger Q = 46.1502, I2 = 0.0899, p = 0.3047). Our MR study did not support causal effects of increased risk of schizophrenia, BD and AD status with BMD level.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xiangyu Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siying Zhuang
- Wuhan University School of Medicine, Wuhan, Hubei, China
| | - Zhaorui Liu
- Peking University Sixth Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China
| | - Yun Tian
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China.
| |
Collapse
|
34
|
Yuan S, Michaëlsson K, Wan Z, Larsson SC. Associations of Smoking and Alcohol and Coffee Intake with Fracture and Bone Mineral Density: A Mendelian Randomization Study. Calcif Tissue Int 2019; 105:582-588. [PMID: 31482193 DOI: 10.1007/s00223-019-00606-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
The causal associations of smoking and alcohol and coffee intake with fracture and bone mineral density are unknown. We investigated the associations using Mendelian randomization (MR). Summary-level data from UK Biobank for bone fractures (main outcome) (53,184 cases; 373,611 non-cases) and estimated bone mineral density (eBMD) (n = 426,824 individuals) were used. Single-nucleotide polymorphisms associated with smoking initiation (n = 378) and alcohol (n = 99) and coffee (n = 15) intake at the genome-wide significance threshold (P = 5 × 10-8) were identified from published genome-wide association studies. Univariable and multivariable inverse-variance weighted, weighted median, MR-Egger, and MR-PRESSO methods were used for statistical analyses. Genetic predisposition to smoking initiation was associated with fracture but not eBMD. The odds ratio of fracture per one-unit increase in log odds of smoking was 1.09 (95% confidence interval 1.04, 1.15; P = 8.58 × 10-4) after adjustment for alcohol intake in the multivariable MR analysis. The association remained in complementary analyses. Genetically predicted alcohol and coffee intake was not associated with fracture or eBMD. Nevertheless, genetic liability to alcohol dependence, based on variants in the ALD1B gene, was associated with fracture and lower eBMD. The odds ratio was 1.06 (95% confidence interval 1.01, 1.12; P = 0.018) per genetically predicted one-unit higher log odds of liability to alcohol dependence. This MR study strengthens the causal inference on an association between smoking and higher fracture risk but found no linear association of modestly higher alcohol and coffee intake with fracture or BMD. However, alcohol dependence may increase fracture risk.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Surgical Sciences, Uppsala University, The EpiHub, MTC-huset, 75185, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, The EpiHub, MTC-huset, 75185, Uppsala, Sweden
| | - Zihao Wan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susanna C Larsson
- Department of Surgical Sciences, Uppsala University, The EpiHub, MTC-huset, 75185, Uppsala, Sweden.
| |
Collapse
|
35
|
Zheng J, Frysz M, Kemp JP, Evans DM, Davey Smith G, Tobias JH. Use of Mendelian Randomization to Examine Causal Inference in Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:807. [PMID: 31824424 PMCID: PMC6882110 DOI: 10.3389/fendo.2019.00807] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies have identified many risk factors for osteoporosis, however it is unclear whether these observational associations reflect true causal effects, or the effects of latent confounding or reverse causality. Mendelian randomization (MR) enables causal relationships to be evaluated, by examining the relationship between genetic susceptibility to the risk factor in question, and the disease outcome of interest. This has been facilitated by the development of two-sample MR analysis, where the exposure and outcome are measured in different studies, and by exploiting summary result statistics from large well-powered genome-wide association studies that are available for thousands of traits. Though MR has several inherent limitations, the field is rapidly evolving and at least 14 methodological extensions have been developed to overcome these. The present paper aims to discuss some of the limitations in the MR analytical framework, and how this method has been applied to the osteoporosis field, helping to reinforce conclusions about causality, and discovering potential new regulatory pathways, exemplified by our recent MR study of sclerostin.
Collapse
Affiliation(s)
- Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Monika Frysz
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John P. Kemp
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M. Evans
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jonathan H. Tobias
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
36
|
Zhang S, Song S, Wang S, Duan Y, Zhu W, Song Y. Type 2 diabetes affects postextraction socket healing and influences first‐stage implant surgery: A study based on clinical and animal evidence. Clin Implant Dent Relat Res 2019; 21:436-445. [PMID: 31025528 DOI: 10.1111/cid.12780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sijia Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant DentistrySchool of Stomatology, The Fourth Military Medical University Xi'an China
- Department of Biochemistry and Molecular BiologyCenter for DNA Typing, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032 P.R. China
| | - Shuang Song
- Peking University, School of Stomatology Beijing China
| | - Shuyan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Disease, School of StomatologyThe Fourth Military Medical University Xi'an China
| | - Yansheng Duan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant DentistrySchool of Stomatology, The Fourth Military Medical University Xi'an China
| | - Wenzhong Zhu
- Department of Implant DentistryThe Second People's Hospital Xi'an China
| | - Yingliang Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant DentistrySchool of Stomatology, The Fourth Military Medical University Xi'an China
| |
Collapse
|
37
|
Koromani F, Trajanoska K, Rivadeneira F, Oei L. Recent Advances in the Genetics of Fractures in Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:337. [PMID: 31231309 PMCID: PMC6559287 DOI: 10.3389/fendo.2019.00337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic susceptibility, together with old age, female sex, and low bone mineral density (BMD) are amongst the strongest determinants of fracture risk. Tmost recent large-scale genome-wide association study (GWAS) meta-analysis has yielded fifteen loci. This review focuses on the advances in the research of genetic determinants of fracture risk. We first discuss the genetic architecture of fracture risk, touching upon different methods and overall findings. We then discuss in a second paragraph the most recent advances in the field and focus on the genetics of fracture risk and also of other endophenotypes closely related to fracture risk such as bone mineral density (BMD). Application of state-of-the-art methodology such as Mendelian randzation in fracture GWAS are reviewed. The final part of this review touches upon potential future directions in genetic research of osteoporotic fractures.
Collapse
Affiliation(s)
- Fjorda Koromani
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ling Oei
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Ling Oei
| |
Collapse
|