1
|
Yadav RN, Oravec DJ, Drost J, Flynn MJ, Divine GW, Rao SD, Yeni YN. Textural and geometric measures derived from digital tomosynthesis discriminate women with and without vertebral fracture. Eur J Radiol 2025; 183:111925. [PMID: 39832416 DOI: 10.1016/j.ejrad.2025.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Vertebral fractures are a common and debilitating consequence of osteoporosis. Bone mineral density (BMD), measured by dual energy x-ray absorptiometry (DXA), is the clinical standard for assessing overall bone quantity but falls short in accurately predicting vertebral fracture. Fracture risk prediction may be improved by incorporating metrics of microstructural organization from an appropriate imaging modality. Digital tomosynthesis (DTS)-derived textural and microstructural parameters have been previously correlated to vertebral bone strength in vitro, but the in vivo utility has not been explored. Therefore, the current study sought to establish the extent to which DTS-derived measurements of vertebral microstructure and size discriminate patients with and without vertebral fracture. In a cohort of 93 postmenopausal women with or without history of vertebral fracture, DTS-derived microstructural parameters and vertebral width were calculated for T12 and L1 vertebrae, as well as lumbar spine BMD and trabecular bone score (TBS) from DXA images. Fracture patients had lower BMD and TBS, while DTS-derived degree of anisotropy and vertebral width were higher, compared to nonfracture (p < 0.02 to p < 0.003) patients. The addition of DTS-derived parameters (fractal dimension, lacunarity, degree of anisotropy and vertebral width) improved discriminative capability for models of fracture status (AUC = 0.79) compared to BMD alone (AUC = 0.67). For twelve additional participants who were imaged twice, in vivo repeatability errors for DTS parameters were low (0.2 % - 7.3 %). The current results support the complementary use of DTS imaging for assessing bone quality and improving the accuracy of fracture risk assessment beyond that achievable by DXA alone.
Collapse
Affiliation(s)
- Ram N Yadav
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA
| | | | - Joshua Drost
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA
| | - Michael J Flynn
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | - George W Divine
- Department of Public Health Science, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Sudhaker D Rao
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA; Division of Endocrinology, Diabetes and Bone & Mineral Disorders, and Bone & Mineral Research Laboratory, Henry Ford Health, Detroit, MI, USA
| | - Yener N Yeni
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA.
| |
Collapse
|
2
|
Hao Y, Ma Y, Zhang S, Wang C, Wang W, Li X, Gao S, Li K, Chen J, Wang H, Yang Y, Gao M, Wang J, Li Z, Shi J, Wang X. Study of distribution and morphological characteristics of the trabecular bone in the uncinate process of the cervical spine using micro-computed tomography. PLoS One 2025; 20:e0315640. [PMID: 39752465 PMCID: PMC11698431 DOI: 10.1371/journal.pone.0315640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
The cervical uncinate process is a unique structure of the cervical spine that undergoes significant changes in its morphological characteristics with age, and these changes may be related to osteoporosis. This study aimed to observe the distribution of cancellous bone in the cervical uncinate process and its morphological features using micro-computed tomography (Micro-CT) to gain a deeper understanding of the morphological characteristics of the uncinate microstructure. We performed Micro-CT scans on 31 sets of C3-C7 vertebrae, a total of 155 intact bone samples, and subsequently used the measurement software with the Micro-CT system to obtain parameters related to the cancellous bone of the uncinate process. We found that the cancellous bone of the uncinate process was predominantly longitudinally cross-aligned and continuous with the cancellous bone within the vertebral body. Comparisons between the left and right sides of each parameter showed significant differences only in the bone surface area, and the peaks of each parameter were primarily concentrated in C4-C6. In this study, we found that the C5 uncinate process is the site of most significant stress in the cervical vertebrae, which leads to the earliest occurrence of osteoporosis, and this study provides experimental, theoretical bases for the prevention of cervical spondylosis and osteoporosis, and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yunteng Hao
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuan Ma
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Shaojie Zhang
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Chaoqun Wang
- Department of Imaging, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wei Wang
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaohe Li
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Shang Gao
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Kun Li
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Jie Chen
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Haiyan Wang
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Yang Yang
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Mingjie Gao
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Jian Wang
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Zhijun Li
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Jun Shi
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xing Wang
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| |
Collapse
|
3
|
Takahashi R, Chiba K, Okazaki N, Era M, Yokota K, Yabe Y, Kondo C, Fukuda T, Fukushima K, Kono M, Michikoshi Y, Yamada S, Iida T, Mitsumizo K, Sato S, Doi M, Watanabe K, Ota S, Shiraishi K, Yonekura A, Osaki M. Effects of daily teriparatide, weekly high-dose teriparatide, or bisphosphonate on cortical and trabecular bone of vertebra and proximal femur in postmenopausal women with fragility fracture: Sub-analysis by quantitative computed tomography from the TERABIT study. Bone 2024; 187:117189. [PMID: 38960296 DOI: 10.1016/j.bone.2024.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/17/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE The effects of daily teriparatide (D-PTH, 20 μg/day), weekly high-dose teriparatide (W-PTH, 56.5 μg/week), or bisphosphonate (BP) on the vertebra and proximal femur were investigated using quantitative computed tomography (QCT). METHODS A total of 131 postmenopausal women with a history of fragility fractures were randomized to receive D-PTH, W-PTH, or bisphosphonate (oral alendronate or risedronate). QCT were evaluated at baseline and after 18 months of treatment. RESULTS A total of 86 participants were evaluated by QCT (Spine: D-PTH: 25, W-PTH: 21, BP: 29. Hip: PTH: 22, W-PTH: 21, BP: 32. Dropout rate: 30.5 %). QCT of the vertebra showed that D-PTH, W-PTH, and BP increased total vBMD (+34.8 %, +18.2 %, +11.1 %), trabecular vBMD (+50.8 %, +20.8 %, +12.2 %), and marginal vBMD (+20.0 %, +14.0 %, +11.5 %). The increase in trabecular vBMD was greater in the D-PTH group than in the W-PTH and BP groups. QCT of the proximal femur showed that D-PTH, W-PTH, and BP increased total vBMD (+2.8 %, +3.6 %, +3.2 %) and trabecular vBMD (+7.7 %, +5.1 %, +3.4 %), while only W-PTH and BP significantly increased cortical vBMD (-0.1 %, +1.5 %, +1.6 %). Although there was no significant increase in cortical vBMD in the D-PTH group, cortical bone volume (BV) increased in all three treatment groups (+2.1 %, +3.6 %, +3.1 %). CONCLUSIONS D-PTH had a strong effect on trabecular bone of vertebra. Although D-PTH did not increase cortical BMD of proximal femur, it increased cortical BV. W-PTH had a moderate effect on trabecular bone of vertebra, while it increased both cortical BMD and BV of proximal femur. Although BP had a limited effect on trabecular bone of vertebra compared to teriparatide, it increased both cortical BMD and BV of proximal femur.
Collapse
Affiliation(s)
- Ryosuke Takahashi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Narihiro Okazaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Era
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuaki Yokota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | - Toru Fukuda
- Department of Radiology, Nagasaki University Hospital, Nagasaki, Japan
| | - Kaisho Fukushima
- Department of Radiology, Nagasaki University Hospital, Nagasaki, Japan
| | - Mika Kono
- Department of Radiology, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasue Michikoshi
- Department of Radiology, Nagasaki University Hospital, Nagasaki, Japan
| | - Shuta Yamada
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Iida
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazutaka Mitsumizo
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Mitsuru Doi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kounosuke Watanabe
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shingo Ota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuteru Shiraishi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Yonekura
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
4
|
Li K, Yang Y, Wang P, Song H, Ma C, Zhang Y, Dang X, Shi J, Zhang S, Li Z, Wang X. Exploring the micromorphological characteristics of adult lower cervical vertebrae based on micro-computed tomography. Sci Rep 2023; 13:12400. [PMID: 37524928 PMCID: PMC10390556 DOI: 10.1038/s41598-023-39703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023] Open
Abstract
We will use micro-computed tomography to scan 31 sets of the adult lower cervical vertebrae (155 vertebrae) to observe the morphological characteristics and direction of trabeculae in the lower cervical vertebrae by outlining and reconstructing the regions of interest and to calculate the variation laws of the microstructure in the regions of interest to reveal their structural characteristics and weak areas. As a result, the images showed that the trabeculae in the lower cervical pedicle near the medial and lateral cortices were relatively dense, and their bone plates were lamellar. There were cavities between the superior and inferior articular processes where the ossification centers had not been absorbed after ossified. The lamellar trabeculae in the vertebral plates near the cortical bones were only 1-2 layers, extended and transformed into rod-shaped trabeculae in a radial shape toward the medullary space. The lamellar trabeculae of the vertebral plate extend over the spinous process near the cortical bone. The statistical results of the trabeculae's morphological parameters showed significant differences in bone volume fraction values among the four parts (P < 0.05). There were substantial differences in BS/BV, except for no differences between the pedicle and the vertebral plate (P < 0.05). There was a significant difference in trabecular pattern factor values between the articular process, the spinous process, and the vertebral plate (P < 0.05) and a significant difference between the pedicle, the spinous process, and the vertebral plate (P < 0.05). There were no significant differences in trabecular bone thickness and trabecular space values among the four parts (P < 0.05). The anatomical microstructural perspective confirms that the optimal choice is internal fixation via the pedicle. If using pedicle screws, the nail tract needs to be placed into the spinous process to increase its holding power and resistance to extraction.
Collapse
Affiliation(s)
- Kun Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- Human Anatomy Teaching and Research Section, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Yang Yang
- Graduate School, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Peng Wang
- School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Haoyu Song
- School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Chunying Ma
- School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Yansong Zhang
- School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Xingye Dang
- School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Jun Shi
- Physiology Teaching and Research Section, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Shaojie Zhang
- Human Anatomy Teaching and Research Section, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
- Digital Medicine Center, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Zhijun Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- Human Anatomy Teaching and Research Section, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China
| | - Xing Wang
- Human Anatomy Teaching and Research Section, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China.
- Digital Medicine Center, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China.
| |
Collapse
|
5
|
Li K, Ji Y, Shi J, Zhang S, Song H, Wang P, Ma C, Zhang Y, Dang Y, Ma Y, Wang X, Li Z. Examination of the microstructures of the lower cervical facet based on micro-computed tomography: A cadaver study. Medicine (Baltimore) 2022; 101:e31805. [PMID: 36550803 PMCID: PMC9771288 DOI: 10.1097/md.0000000000031805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The cervical facet has complicated 3D microstructures and inhomogeneities. The cervical facet joint, which also participates in the formation, plays a certain role in regulating and limiting the movement of the spine. Correct identification and evaluation of its microstructure can help in the diagnosis of orthopedic disease and predict early phases of fracture risk. To evaluate the safety of the cervical spine by measuring and analyzing the microstructures and morphometric parameters of bone trabeculae in the normal cervical facet with high-resolution 3D micro-computed tomography. Thirty-one sets of C3 to C7 lower cervical vertebrae (155 vertebrae) were scanned using micro-computed tomography. The morphological characteristics and direction of trabecular bone in the facet of the lower cervical vertebrae were observed by selecting and rebuilding the areas of interest, and the changes in the microstructure of the areas of interest were calculated to reveal the structural characteristics and weak areas. Images indicated an ossified center between the superior and inferior articular processes of the lower cervical spine. The cellular bone trabeculae of the articular process had complex reticular microstructures. The trabecular bone plate near the cortical bone was lamellar and relatively dense, and it extended around and transformed into a network structure, and then into the rod-shaped trabecular bone. The rod-shaped trabeculae converged with the plate-shaped trabeculae with only 1 to 2 layers surrounding the trabeculae cavity. Statistical results of the morphological parameters of the trabecular bone showed that trabecular bone volume fraction values were significantly higher for C7 than for C3 to C6 (P < .05). There were significant differences between C7 and C3 to C5 and between C6 and C4 in bone surface area/bone volume (P < .05). There was a significant difference between C7 and C3 to C6 in trabecular bone thickness values (P < .05). The degree of anisotropy value was significantly smaller for C3 than for C6 and C7 (P < .05). The changes in the C3 to C7 microstructure were summarized in this study. The loading capacity and stress of the C7 articular process tended to be limited, and the risk of injury tended to be higher for the C7 articular process.
Collapse
Affiliation(s)
- Kun Li
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Yucheng Ji
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Jun Shi
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shaojie Zhang
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Haoyu Song
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Peng Wang
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Chunying Ma
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yansong Zhang
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yexing Dang
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yuan Ma
- Department of Physiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Xing Wang
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
| | - Zhijun Li
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China
- *Correspondence: Zhijun Li and Xing Wang, Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Yangguang South Street, Fangshan District, Beijing 100029, China (e-mail: and )
| |
Collapse
|
6
|
Tsuji K, Kitamura M, Chiba K, Muta K, Yokota K, Okazaki N, Osaki M, Mukae H, Nishino T. Comparison of bone microstructures via high-resolution peripheral quantitative computed tomography in patients with different stages of chronic kidney disease before and after starting hemodialysis. Ren Fail 2022; 44:381-391. [PMID: 35220856 PMCID: PMC8890516 DOI: 10.1080/0886022x.2022.2043375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) negatively affects bone strength; however, the osteoporotic conditions in patients with CKD are not fully understood. Moreover, the changes in bone microstructure between pre-dialysis and dialysis are unknown. High-resolution peripheral quantitative computed tomography (HR-pQCT) reveals the three-dimensional microstructures of the bone. We aimed to evaluate bone microstructures in patients with different stages of CKD. This study included 119 healthy men and 40 men admitted to Nagasaki University Hospital for inpatient education or the initiation of hemodialysis. The distal radius and tibia were scanned with HR-pQCT. Patient clinical characteristics and bone microstructures were evaluated within 3 months of initiation of hemodialysis (in patients with CKD stage 5 D), patients with CKD stage 4-5, and healthy volunteers. Cortical bone parameters were lower in the CKD group than in healthy controls. Tibial cortical and trabecular bone parameters (cortical thickness, cortical area, trabecular volumetric bone mineral density, trabecular-bone volume fraction, and trabecular thickness) differed between patients with CKD stage 5 D and those with CKD stage 4-5 (p < 0.01). These differences were also observed between patients with CKD stage 5 and those with CKD stage 5 D (p < 0.017), but not between patients with CKD stage 4 and those with CKD stage 5, suggesting that the bone microstructure rapidly changed at the start of hemodialysis. Patients with CKD stage 5 D exhibited tibial microstructural impairment compared with those with CKD stage 4-5. HR-pQCT is useful for elucidation of the pathology of bone microstructures in patients with renal failure.
Collapse
Affiliation(s)
- Kiyokazu Tsuji
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mineaki Kitamura
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kumiko Muta
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuaki Yokota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Narihiro Okazaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Wei W, Shi F, Kolb JF. Analysis of microstructural parameters of trabecular bone based on electrical impedance spectroscopy and deep neural networks. Bioelectrochemistry 2022; 148:108232. [PMID: 35987060 DOI: 10.1016/j.bioelechem.2022.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
The potential of electrical impedance spectroscopy (EIS) was demonstrated for the investigation of microstructural properties of osseous tissue. Therefore, a deep neural network (DNN) was implemented for a sensitive assessment of different structural features that were derived on the basis of dielectric parameters, especially relative permittivities, recorded over a frequency range from 40 Hz to 5 MHz. The advantages of the developed method over conventional approaches, including equivalent circuit models (ECMs), linear regression and effective medium approximation (EMA), is the comprehensive quantification of bone morphologies by several microstructural parameters simultaneously, such as bone volume fraction (BV/TV), bone surface-volume-ratio (BS/BV), structure model index (SMI), trabecular number (Tb.N) and trabecular thickness (Tb.Th). The comparison of predictions of the DNN with an analysis of µCT-images confirmed a high accuracy for different microstructural parameters, which was indicated by corresponding Pearson correlation coefficients, especially for Tb.Th (r = 0.89) and BS/BV (r = 0.80). Concurrently, the approach was able to unambiguously discriminate anatomically similar bone regions (femoral head, greater trochanter and femoral neck) and therefore was capable to determine the morphological status of osseous tissue in detail. The classification was more discriminative than one based on classical linear discriminant analysis (LDA), due to the distinguishing features extracted by the DNN model. Accordingly, the method and model can serve as a potential tool for evaluating bone quality and bone status.
Collapse
Affiliation(s)
- Wenzuo Wei
- Institute of Physics, University of Rostock, 18059 Rostock, Germany; Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany; Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Fukun Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Juergen F Kolb
- Institute of Physics, University of Rostock, 18059 Rostock, Germany; Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany; Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany.
| |
Collapse
|
8
|
Jin Y, Zhang T, Cheung JPY, Wong TM, Feng X, Sun T, Zu H, Sze KY, Lu WW. A novel mechanical parameter to quantify the microarchitecture effect on apparent modulus of trabecular bone: A computational analysis of ineffective bone mass. Bone 2020; 135:115314. [PMID: 32156663 DOI: 10.1016/j.bone.2020.115314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND One of the characteristics of osteoporotic bone is the deterioration of trabecular microarchitecture. Previous studies have shown microarchitecture alone can vary the apparent modulus of trabecular bone significantly independent of bone volume fraction (BV/TV) from morphological and topological perspectives. However, modulus is a mechanical quantity and there is a lack of mechanical explanatory parameters. This study aims to propose a novel mechanical parameter to quantify the microarchitecture effect on the apparent modulus of trabecular bone. MATERIALS AND METHODS Fourteen human female cadaveric vertebrae were scanned with a dual-energy X-ray (DXA) equipment followed by a micro-CT (μCT) system at 18 μm isotropic resolution. Four trabecular bone specimens (3.46 × 3.46 × 3.46 mm) were obtained from each vertebral body and converted to voxel-based micro finite element (μFE) models. The apparent modulus (E) of the μFE model was computed using a linear micro finite element analysis (μFEA). The normalized apparent modulus (E*) was computed as E divided by BV/TV. The relationship between E and BV/TV was analyzed by linear, power-law and exponential regressions. Linear regression was performed between E* and BV/TV. Ineffective bone mass (InBM) was defined as the bone mass with a negligible contribution to the load-resistance and represented by elements with von Mises stress less than a certain stress threshold. InBM was quantified as the low von Mises stress ratio (LSVMR), which is the ratio of the number of InBM elements to the total number of elements in the μFE model. An incremental search technique with coarse and fine search intervals of 10 and 1 MPa, respectively, was adopted to determine the stress threshold for calculating LSVMR of the μFE model. Correlation between E* and LSVMR was analyzed using linear and power-law models for each stress threshold. The threshold producing the highest coefficient of determination (R2) in the correlation between E* and LSVMR was taken as the optimal stress threshold for calculating LSVMR. Linear regression was performed between E and LSVMR. Multiple linear regression of E against both BV/TV and LSVMR was further analyzed. RESULTS E significantly (p < .001) correlates to BV/TV whereas E* has no significant (p = .75) correlation with BV/TV. Incremental search suggests 59 MPa to be the optimal stress threshold for calculating LSVMR. BV/TV alone can explain 59% of the variation in E using power-law regression model (E = 2254.64BV/TV1.04, R2 = 0.59, p < .001). LSVMR alone can explain 48% of the variation in E using linear regression model (E = 1696.4-1647.1LSVMR, R2 = 0.48, p < .001). With these two predictors taken into consideration, 95% of the variation in E can be explained in a multiple linear regression model (E = 1364.89 + 2184.37BV/TV - 1605.38LSVMR, adjusted R2 = 0.95, p < .001). CONCLUSION LSVMR can be adopted as the mechanical parameter to quantify the microarchitecture effect on the apparent modulus of trabecular bone.
Collapse
Affiliation(s)
- Yongqiang Jin
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Teng Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tak Man Wong
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoreng Feng
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianhao Sun
- Department of Orthopaedics and Traumatology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Haiyue Zu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kam Yim Sze
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China.
| | - William Weijia Lu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
The measured mechanical properties of osteoporotic trabecular bone decline with the increment of deformation volume during micro-indentation. J Mech Behav Biomed Mater 2019; 103:103546. [PMID: 31786511 DOI: 10.1016/j.jmbbm.2019.103546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/14/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Osteoporosis is a critical global health issue. However, the biomechanical properties of osteoporotic trabecular bone have not been well understood due to its hierarchically complex structure mingled with accumulated microcracks. Previous studies indicated the mechanical behaviors of trabecular bone may differ with varying amounts of deformation. Therefore, this study aims to further reveal the relationship between the measured mechanical properties of osteoporotic trabecular bone and various amounts of deformation volume during micro-indentation. METHODS Two trabecular specimens were dissected transversally and frontally from an osteoporotic lumbar vertebral (L5) cadaver and embedded into Methyl methacrylate. On each specimen, two orthogonal cuts were performed to make a right-angle, followed by five parallel slicing. On each slice, the region of interest was gridded into 16 (4 × 4) sub-regions with the size equal to the microscope field. Within each sub-region, indentations were made on a single trabecula with five different indentation depths (3, 4, 5, 6, 7 μm) to induce different deformation volume. Both the indentation hardness and modulus were computed from the indenting curve for each measurement. The results of the five slices are pooled together to represent the longitudinal and circumferential mechanical characteristics, respectively. Linear regression was performed to investigate the relationship between the measured mechanical properties and various deformation volumes. RESULTS A total of 1055 indents were made. After eliminating outliers, 840 indents were left for data analysis with 490 indents from transversal slices and 350 indents from frontal slices. Both the hardness and modulus decreased with the increasement of indentation depths. The hardness decreased by slopes of -0.65 (R2 = 0.72, p = 0.044) and -0.869 (R2 = 0.95, p = 0.003) longitudinally and circumferentially while the modulus decreased by slopes of -0.39 (R2 = 0.82, p = 0.02) and -0.348 (R2 = 0.94, p = 0.004) longitudinally and circumferentially. CONCLUSIONS Mechanical properties of trabecular bone measured by micro-indentation can alter with the variation of deformation volume, which reflects the nonlinear behavior of vertebra from the material perspective.
Collapse
|