1
|
Kattah AG, Titan SM, Wermers RA. The Challenge of Fractures in Patients With Chronic Kidney Disease. Endocr Pract 2025; 31:511-520. [PMID: 39733945 DOI: 10.1016/j.eprac.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE People with chronic kidney disease (CKD) are at increased risk of fractures in comparison to the non-CKD population, and fractures are associated with high mortality and worsening quality of life. However, the approach for evaluation of bone disease and fracture risk in CKD is different from the approach in the general population. METHODS The authors conducted a literature review of PubMed to include studies on pathophysiology of CKD mineral bone disorder, fracture risk assessment, and therapeutic options in the setting of CKD. RESULTS The higher risk observed in the CKD population is related to the complex interplay of changes in bone turnover (T), mineralization (M), and volume (V), along with other risk factors accumulated as glomerular filtration rate declines. The diagnosis of the type of renal osteodystrophy is not based only on assessment of bone density and traditional risk factors for osteoporosis. There are limitations of currently available fracture risk tools in the CKD population. Treatment choice should take into consideration the 3 components of the TMV classification along with the stage of kidney disease and comorbidities, but the assessment of these components has not been well established. CONCLUSIONS Current data are limited on efficacy and safety of treatments for fracture prevention in CKD. As new medications for the treatment of osteoporosis become available, there is an urgency to establish more clear guidelines for the diagnosis, fracture risk stratification, and treatment of bone disease in CKD.
Collapse
Affiliation(s)
- Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| | - Silvia M Titan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Robert A Wermers
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Zaimi M, Grapsa E. Current therapeutic approach of chronic kidney disease-mineral and bone disorder. Ther Apher Dial 2024; 28:671-689. [PMID: 38898685 DOI: 10.1111/1744-9987.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Chronic kidney disease (CKD) has emerged as one of the leading noncommunicable diseases affecting >10% of the population worldwide. Bone and mineral disorders are a common complication among patients with CKD resulting in a poor life quality, high fracture risk, increased morbidity and cardiovascular mortality. According to Kidney Disease: Improving Global Outcomes, renal osteodystrophy refers to changes in bone morphology found in bone biopsy, whereas CKD-mineral and bone disorder (CKD-MBD) defines a complex of disturbances including biochemical and hormonal alterations, disorders of bone and mineral metabolism and extraskeletal calcification. As a result, the management of CKD-MBD should focus on the aforementioned parameters, including the treatment of hyperphosphatemia, hypocalcemia, abnormal PTH and vitamin D levels. Regarding the bone fragility fractures, osteoporosis and renal osteodystrophy, which constitute the bone component of CKD-MBD, anti-osteoporotic agents constitute the mainstay of treatment. However, a thorough elucidation of the CKD-MBD pathogenesis is crucial for the ideal personalized treatment approach. In this paper, we review the pathology and management of CKD-MBD based on the current literature with special attention to recent advances.
Collapse
Affiliation(s)
- Maria Zaimi
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Eirini Grapsa
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
3
|
Vachey C, Candellier A, Toutain S, Mac-Way F. The Bone-Vascular Axis in Chronic Kidney Disease: From Pathophysiology to Treatment. Curr Osteoporos Rep 2024; 22:69-79. [PMID: 38195897 DOI: 10.1007/s11914-023-00858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF REVIEW This review aims to describe the pathogenic factors involved in bone-vessel anomalies in CKD which are the object of numerous experimental and clinical research. RECENT FINDINGS Knowledge on the pathophysiological mechanisms involved in the regulation of vascular calcification and mineral-bone disorders is evolving. Specific bone turnover anomalies influence the vascular health while recent studies demonstrate that factors released by the calcified vessels also contribute to bone deterioration in CKD. Current therapies used to control mineral dysregulations will impact both the vessels and bone metabolism. Available anti-osteoporotic treatments used in non-CKD population may negatively or positively affect vascular health in the context of CKD. It is essential to study the bone effects of the new therapeutic options that are currently under investigation to reduce vascular calcification. Our paper highlights the complexity of the bone-vascular axis and discusses how current therapies may affect both organs in CKD.
Collapse
Affiliation(s)
- Clément Vachey
- CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Faculty and Department of Medicine, Université Laval, 10 McMahon, Quebec City, Quebec, G1R 2J6, Canada
| | - Alexandre Candellier
- CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Faculty and Department of Medicine, Université Laval, 10 McMahon, Quebec City, Quebec, G1R 2J6, Canada
| | - Soline Toutain
- CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Faculty and Department of Medicine, Université Laval, 10 McMahon, Quebec City, Quebec, G1R 2J6, Canada
| | - Fabrice Mac-Way
- CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Faculty and Department of Medicine, Université Laval, 10 McMahon, Quebec City, Quebec, G1R 2J6, Canada.
| |
Collapse
|
4
|
Hu TL, Chen J, Shao SQ, Li LL, Lai C, Gao WN, Xu RF, Meng Y. Biomechanical and histomorphological analysis of the mandible in rats with chronic kidney disease. Sci Rep 2023; 13:21886. [PMID: 38081976 PMCID: PMC10713524 DOI: 10.1038/s41598-023-49152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to investigate the biomechanical and histomorphological features of mandibles in an adenine-induced chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model of CKD. A total of 14 Sprague-Dawley rats were randomized into the following two groups: control group and CKD group. At the end of the sixth week, all rats were euthanized, and serum was collected for biochemical marker tests. Macroscopic bone growth and biomechanical parameters were measured in the right hemimandible, while the left hemimandible was used for bone histomorphometric analysis. Compared to the control group, the CKD group showed a significant increase in serum creatinine, blood urea nitrogen, and serum parathyroid hormone at the end of the sixth week. The biomechanical structural properties significantly decreased in the CKD group compared to the control group. Bone histomorphometric analysis indicated that the trabecular bone volume of rats in the CKD group was significantly lower than that of the control group. In the CKD groups, the bone formation parameters of the trabecular bone were significantly increased, while the bone mineralization apposition rates of both the trabecular bone and periosteal cortical bone were significantly increased. The rat CKD model showed deteriorated structural mechanics, low trabecular bone volume, high trabecular bone formation, increased trabecular bone mineralization apposition rate, and increased cortical bone mineralization apposition rate, which met the characteristics of osteitis fibrosa, indicating that this model is a useful tool for the study of mandible diseases in CKD patients.
Collapse
Affiliation(s)
- Ta-la Hu
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Jun Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Shen-Quan Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Le-le Li
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Can Lai
- Graduate School, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Wu-Niri Gao
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Rui-Feng Xu
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Yan Meng
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
5
|
Swallow EA, Metzger CE, Chen NX, Wallace JM, Tippen SP, Kohler R, Moe SM, Allen MR. Cortical porosity is elevated after a single dose of zoledronate in two rodent models of chronic kidney disease. Bone Rep 2022; 16:101174. [PMID: 35252482 PMCID: PMC8891946 DOI: 10.1016/j.bonr.2022.101174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Patients with chronic kidney disease (CKD) have high risk of fracture in part due to cortical bone deterioration. The goal of this study was to assess the impact of two different bisphosphonates and dosing regimens on cortical microstructure (porosity, thickness, area) and bone mechanical properties in animal models of CKD. METHODS In experiment 1, Male Cy/+ (CKD) rats were treated with either a single dose or ten fractionated doses of zoledronate at 18 weeks of age. Fractionated animals received 1/10th of single dose given weekly for 10 weeks, with study endpoint at 28 weeks of age. In experiment 2, male C57Bl/6 J mice were given dietary adenine (0.2%) to induce CKD. Bisphosphonate treated groups were given either a single dose of zoledronate or weekly risedronate injections for 4 weeks. Cortical microstructure was assessed via μCT and mechanical parameters evaluated by monotonic bending tests. RESULTS Exp 1: CKD rats had higher blood urea nitrogen (BUN) and parathyroid hormone (PTH) compared to NL littermate controls. Single dose zoledronate had significantly higher cortical porosity in CKD S.Zol (2.29%) compared to NL control (0.04%) and untreated CKD (0.14%) (p = 0.004). Exp 2: All adenine groups had significantly higher BUN and PTH compared to control mice. Mice treated with single dose zoledronate (Ad + Zol) had the highest porosity (~6%), which was significantly higher compared to either Ad or Ad + Ris (~3%; p < 0.0001) and control mice had the lowest cortical porosity (0.35%). In both experiments, mechanics were minimally affected by any bisphosphonate dosing regimen. CONCLUSION A single dose of zoledronate leads to higher cortical porosity compared to more frequent dosing of bisphosphonates (fractionated zoledronate or risedronate). Bisphosphonate treatment demonstrated limited effectiveness in preventing cortical bone microstructure deterioration with mechanical parameters remaining compromised due to CKD and/or secondary hyperparathyroidism irrespective of bisphosphonate treatment.
Collapse
Affiliation(s)
- Elizabeth A. Swallow
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Corinne E. Metzger
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neal X. Chen
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Samantha P. Tippen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Sharon M. Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| |
Collapse
|
6
|
Cailleaux PE, Cohen-Solal M. Managing Musculoskeletal and Kidney Aging: A Call for Holistic Insights. Clin Interv Aging 2022; 17:717-732. [PMID: 35548383 PMCID: PMC9081621 DOI: 10.2147/cia.s357501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Martine Cohen-Solal
- Inserm UMR-S 1132 Bioscar, Université Paris Cité - Hôpital Lariboisiere, Paris, F-75010, France
| |
Collapse
|
7
|
Evenepoel P, Cunningham J, Ferrari S, Haarhaus M, Javaid MK, Lafage-Proust MH, Prieto-Alhambra D, Torres PU, Cannata-Andia J. European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4-G5D. Nephrol Dial Transplant 2021; 36:42-59. [PMID: 33098421 DOI: 10.1093/ndt/gfaa192] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Controlling the excessive fracture burden in patients with chronic kidney disease (CKD) Stages G4-G5D remains an impressive challenge. The reasons are 2-fold. First, the pathophysiology of bone fragility in patients with CKD G4-G5D is complex and multifaceted, comprising a mixture of age-related (primary male/postmenopausal), drug-induced and CKD-related bone abnormalities. Second, our current armamentarium of osteoporosis medications has not been developed for, or adequately studied in patients with CKD G4-G5D, partly related to difficulties in diagnosing osteoporosis in this specific setting and fear of complications. Doubts about the optimal diagnostic and therapeutic approach fuel inertia in daily clinical practice. The scope of the present consensus paper is to review and update the assessment and diagnosis of osteoporosis in patients with CKD G4-G5D and to discuss the therapeutic interventions available and the manner in which these can be used to develop management strategies for the prevention of fragility fracture. As such, it aims to stimulate a cohesive approach to the management of osteoporosis in patients with CKD G4-G5D to replace current variations in care and treatment nihilism.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Department of Nephrology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - John Cunningham
- Centre for Nephrology, UCL Medical School, Royal Free Campus, London, UK
| | - Serge Ferrari
- Service of Bone Diseases, Geneva University Hospital, Switzerland
| | - Mathias Haarhaus
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Diaverum Sweden, Stockholm, Sweden
| | | | | | | | - Pablo Ureña Torres
- Department of Dialysis, AURA Nord Saint Ouen, Saint Ouen, France.,Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Jorge Cannata-Andia
- Bone and Mineral Research Unit (ISPA) (REDinREN), Hospital Universitario Central Asturias, Oviedo University, Spain
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is associated with the development of mineral and bone disorders (MBD), including renal osteodystrophy (ROD). ROD is a global disorder of bone strength that is associated with an increased fracture risk. The use of bisphosphonates for fracture risk reduction in CKD remains controversial. This review provides a synopsis of the state-of-the literature regarding the safety and potential antifracture benefits of bisphosphonates in CKD patients. RECENT FINDINGS In preclinical studies of animals with CKD 3-4 and evidence of CKD-MBD, bisphosphonates resulted in changes in bone quality that improve bone strength. Bone turnover was generally reduced to a similar extent in animals with and without CKD. Post hoc analyses of randomized trials in patients with CKD 3-4 reported increases in bone mineral density (BMD) and fracture reduction that were similar in patients with and without CKD. There are no primary clinical trial data in patients with CKD-MBD. SUMMARY In patients with CKD without evidence of CKD-MBD, the use of bisphosphonates should follow general population guidelines. The lack of data for patients with CKD 4-5D and evidence of CKD-MBD makes treatment decisions challenging. Clinical studies are urgently needed to provide data on the safety and antifracture benefits of bisphosphonates in these cohorts.
Collapse
|