1
|
Chen YC, Oga R, Furumi T, Nakagawa K, Nita Y, Tamaki H. The Effect of Bone Mechanical Stress Caused by Electrical Stimulation-Induced Muscle Contraction on Osteocalcin Secretion. BIOLOGY 2024; 13:882. [PMID: 39596837 PMCID: PMC11592284 DOI: 10.3390/biology13110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Electrical stimulation-induced muscle contraction (ESMC) has demonstrated various physiological benefits, but its effects on the secretion of undercarboxylated osteocalcin (ucOC), a bone-derived cytokine, remain unclear. This study explored the relationship between ESMC, bone strain, and ucOC secretion through two experiments. In the first, young male Fischer 344 rats were divided into three groups: low-frequency ES (LF, 10 Hz), high-frequency ES (HF, 100 Hz), and control (CON). Acute 30-min transcutaneous ES was applied, and both bone strain and ucOC levels were measured. In the second experiment, rats underwent LF or HF long-term ES (two sessions per week for 4 weeks), with ucOC and insulin levels monitored. Results revealed a significant peak in ucOC at 6 h post-acute LF-ESMC. Despite HF-ESMC generating greater bone strain, LF-ESMC, with smaller but repetitive bone strain, proved more effective in stimulating ucOC secretion. In the long-term study, both ESMC groups exhibited early increases in ucOC, with a positive correlation to insulin levels. In conclusion, bone strain induced by ES-mediated muscle contraction promotes ucOC secretion, with both the magnitude and frequency of strain playing critical roles.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Kanoya 891-2393, Japan; (R.O.); (T.F.); (K.N.); (Y.N.); (H.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Montoya-Sanhueza G, Bennett NC, Chinsamy A, Šumbera R. Functional anatomy and disparity of the postcranial skeleton of African mole-rats (Bathyergidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.857474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The burrowing adaptations of the appendicular system of African mole-rats (Bathyergidae) have been comparatively less investigated than their cranial adaptations. Because bathyergids exhibit different digging modes (scratch-digging and chisel-tooth digging) and social systems (from solitary to highly social), they are a unique group to assess the effects of distinct biomechanical regimes and social organization on morphology. We investigated the morphological diversity and intraspecific variation of the appendicular system of a large dataset of mole-rats (n = 244) including seven species and all six bathyergid genera. Seventeen morpho-functional indices from stylopodial (femur, humerus) and zeugopodial (ulna, tibia-fibula) elements were analyzed with multivariate analysis. We hypothesized that scratch-diggers (i.e., Bathyergus) would exhibit a more specialized skeletal phenotype favoring powerful forelimb digging as compared to the chisel-tooth diggers, and that among chisel-tooth diggers, the social taxa will exhibit decreased limb bone specializations as compared to solitary taxa due to colony members sharing the costs of digging. Our results show that most bathyergids have highly specialized fossorial traits, although such specializations were not more developed in Bathyergus (or solitary species), as predicted. Most chisel tooth-diggers are equally, or more specialized than scratch-diggers. Heterocephalus glaber contrasted significantly from other bathyergids, presenting a surprisingly less specialized fossorial morphology. Our data suggests that despite our expectations, chisel-tooth diggers have a suite of appendicular adaptations that have allowed them to maximize different aspects of burrowing, including shoulder and neck support for forward force production, transport and removal of soils out of the burrow, and bidirectional locomotion. It is probably that both postcranial and cranial adaptations in bathyergids have played an important role in the successful colonization of a wide range of habitats and soil conditions within their present distribution.
Collapse
|
3
|
Can E, Smith M, Boukens BJ, Coronel R, Buffenstein R, Riegler J. Naked mole-rats maintain cardiac function and body composition well into their fourth decade of life. GeroScience 2022; 44:731-746. [PMID: 35107705 PMCID: PMC9135933 DOI: 10.1007/s11357-022-00522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/21/2022] [Indexed: 11/04/2022] Open
Abstract
The prevalence of cardiovascular disease increases exponentially with age, highlighting the contribution of aging mechanisms to cardiac diseases. Although model organisms which share human disease pathologies can elucidate mechanisms driving disease, they do not provide us with innate examples how cardiac aging might be slowed or attenuated. The identification of animal models that preserve cardiac function throughout most of life offers an alternative approach to study mechanisms which might slow cardiac aging. One such species may be the naked mole-rat (NMR), a mouse-sized (40 g) rodent with extraordinary longevity (> 37 years), and constant mortality hazard over its four decades of life. We used a cross-sectional study design to measure a range of physiological parameters in NMRs between 2 and 34 years of age and compared these findings with those of mice aged between 3 months and 2.5 years. We observed a rapid decline in body fat content and bone mineral density in old mice, but no changes in NMRs. Similarly, rhythm disorders (premature atrial and ventricular complexes) occurred in aged mice but not in NMRs. Magnetic resonance and ultrasound imaging showed age-dependent increases in cardiac hypertrophy and diastolic dysfunction in mice which were absent in NMRs. Finally, cardiac stress tests showed an age-dependent decline in normalized cardiac output in mice, which was absent in NMRs. Unlike mice, that manifest several aspects of human cardiac aging, NMRs maintain cardiac function and reserve capacity throughout their long lives and may offer insights on how to delay or prevent cardiac aging.
Collapse
Affiliation(s)
- Emine Can
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Megan Smith
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105, AZ, Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200, MD, Maastricht, The Netherlands
| | - Ruben Coronel
- Department of Experimental Cardiology, Heart Center, Academic University Medical Centers, University of Amsterdam, 1105, AZ, Amsterdam, The Netherlands
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
- Department of Biology, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Johannes Riegler
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
4
|
Developmental Plasticity in the Ossification of the Proximal Femur of Heterocephalus glaber (Bathyergidae, Rodentia). J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09602-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Montoya‐Sanhueza G, Bennett NC, Oosthuizen MK, Dengler‐Crish CM, Chinsamy A. Bone remodeling in the longest living rodent, the naked mole-rat: Interelement variation and the effects of reproduction. J Anat 2021; 239:81-100. [PMID: 33554344 PMCID: PMC8197955 DOI: 10.1111/joa.13404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The pattern of bone remodeling of one of the most peculiar mammals in the world, the naked mole-rat (NMR), was assessed. NMRs are known for their long lifespans among rodents and for having low metabolic rates. We assessed long-term in vivo bone labeling of subordinate individuals, as well as the patterns of bone resorption and bone remodeling in a large sample including reproductive and non-reproductive individuals (n = 70). Over 268 undecalcified thin cross-sections from the midshaft of humerus, ulna, femur and tibia were analyzed with confocal fluorescence and polarized light microscopy. Fluorochrome analysis revealed low osteogenesis, scarce bone resorption and infrequent formation of secondary osteons (Haversian systems) (i.e., slow bone turnover), thus most likely reflecting the low metabolic rates of this species. Secondary osteons occurred regardless of reproductive status. However, considerable differences in the degree of bone remodeling were found between breeders and non-breeders. Pre-reproductive stages (subordinates) exhibited quite stable skeletal homeostasis and bone structure, although the attainment of sexual maturity and beginning of reproductive cycles in female breeders triggered a series of anabolic and catabolic processes that up-regulate bone turnover, most likely associated with the increased metabolic rates of reproduction. Furthermore, bone remodeling was more frequently found in stylopodial elements compared to zeugopodial elements. Despite the limited bone remodeling observed in NMRs, the variation in the pattern of skeletal homeostasis (interelement variation) reported here represents an important aspect to understand the skeletal dynamics of a small mammal with low metabolic rates. Given the relevance of the remodeling process among mammals, this study also permitted the comparison of such process with the well-documented histomorphology of extinct therapsids (i.e., mammalian precursors), thus evidencing that bone remodeling and its endocortical compartmentalization represent ancestral features among the lineage that gave rise to mammals. It is concluded that other factors associated with development (and not uniquely related to biomechanical loading) can also have an important role in the development of bone remodeling.
Collapse
Affiliation(s)
- Germán Montoya‐Sanhueza
- Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
- Department of ZoologyFaculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Nigel C. Bennett
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Maria K. Oosthuizen
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | | | - Anusuya Chinsamy
- Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
6
|
Montoya-Sanhueza G, Bennett NC, Oosthuizen MK, Dengler-Crish CM, Chinsamy A. Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. J Anat 2020; 238:1259-1283. [PMID: 33305850 DOI: 10.1111/joa.13381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Lacking fur, living in eusocial colonies and having the longest lifespan of any rodent, makes naked mole-rats (NMRs) rather peculiar mammals. Although they exhibit a high degree of polymorphism, skeletal plasticity and are considered a novel model to assess the effects of delayed puberty on the skeletal system, scarce information on their morphogenesis exists. Here, we examined a large ontogenetic sample (n = 76) of subordinate individuals to assess the pattern of bone growth and bone microstructure of fore- and hindlimb bones by using histomorphological techniques. Over 290 undecalcified thin cross-sections from the midshaft of the humerus, ulna, femur, and tibia from pups, juveniles and adults were analyzed with polarized light microscopy. Similar to other fossorial mammals, NMRs exhibited a systematic cortical thickening of their long bones, which clearly indicates a conserved functional adaptation to withstand the mechanical strains imposed during digging, regardless of their chisel-tooth predominance. We describe a high histodiversity of bone matrices and the formation of secondary osteons in NMRs. The bones of pups are extremely thin-walled and grow by periosteal bone formation coupled with considerable expansion of the medullary cavity, a process probably tightly regulated and adapted to optimize the amount of minerals destined for skeletal development, to thus allow the female breeder to produce a higher number of pups, as well as several litters. Subsequent cortical thickening in juveniles involves high amounts of endosteal bone apposition, which contrasts with the bone modeling of other mammals where a periosteal predominance exists. Adults have bone matrices predominantly consisting of parallel-fibered bone and lamellar bone, which indicate intermediate to slow rates of osteogenesis, as well as the development of poorly vascularized lamellar-zonal tissues separated by lines of arrested growth (LAGs) and annuli. These features reflect the low metabolism, low body temperature and slow growth rates reported for this species, as well as indicate a cyclical pattern of osteogenesis. The presence of LAGs in captive individuals was striking and indicates that postnatal osteogenesis and its consequent cortical stratification most likely represents a plesiomorphic thermometabolic strategy among endotherms which has been suggested to be regulated by endogenous rhythms. However, the generalized presence of LAGs in this and other subterranean taxa in the wild, as well as recent investigations on variability of environmental conditions in burrow systems, supports the hypothesis that underground environments experience seasonal fluctuations that may influence the postnatal osteogenesis of animals by limiting the extension of burrow systems during the unfavorable dry seasons and therefore the finding of food resources. Additionally, the intraspecific variation found in the formation of bone tissue matrices and vascularization suggested a high degree of developmental plasticity in NMRs, which may help explaining the polymorphism reported for this species. The results obtained here represent a valuable contribution to understanding the relationship of several aspects involved in the morphogenesis of the skeletal system of a mammal with extraordinary adaptations.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa.,Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Maria K Oosthuizen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | | | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|