1
|
Uptegrove A, Chen C, Sahagun-Bisson M, Kulkarni AK, Louie KW, Ueharu H, Mishina Y, Omi-Sugihara M. Influence of bone morphogenetic protein (BMP) signaling and masticatory load on morphological alterations of the mouse mandible during postnatal development. Arch Oral Biol 2025; 169:106096. [PMID: 39341045 PMCID: PMC11609011 DOI: 10.1016/j.archoralbio.2024.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Bone homeostasis relies on several contributing factors, encompassing growth factors and mechanical stimuli. While bone morphogenetic protein (BMP) signaling is acknowledged for its essential role in skeletal development, its specific impact on mandibular morphogenesis remains unexplored. Here, we investigated the involvement of BMP signaling and mechanical loading through mastication in postnatal mandibular morphogenesis. DESIGN We employed conditional deletion of Bmpr1a in osteoblasts and chondrocytes via Osterix-Cre. Cre activity was induced at birth for the 3-week group and at three weeks for the 9-week and 12-week groups, respectively. The conditional knockout (cKO) and control mice were given either a regular diet (hard diet, HD) or a powdered diet (soft diet, SD) from 3 weeks until sample collection, followed by micro-CT and histological analysis. RESULTS The cKO mice exhibited shorter anterior lengths and a posteriorly inclined ramus across all age groups compared to the control mice. The cKO mice displayed an enlarged hypertrophic cartilage area along with fewer osteoclast numbers in the subchondral bone of the condyle compared to the control group at three weeks, followed by a reduction in the cartilage area in the posterior region at twelve weeks. Superimposed imaging and histomorphometrical analysis of the condyle revealed that BMP signaling primarily affects the posterior part of the condyle, while mastication affects the anterior part. CONCLUSIONS Using 3D landmark-based geometric morphometrics and histological assessments of the mandible, we demonstrated that BMP signaling and mechanical loading reciprocally contribute to the morphological alterations of the mandible and condyle during postnatal development.
Collapse
Affiliation(s)
- Amber Uptegrove
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Coral Chen
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Madison Sahagun-Bisson
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA.
| | - Maiko Omi-Sugihara
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA; Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Zhou W, van de Laarschot DM, van Rooij JGJ, Koedam M, Nguyen HH, Uitterlinden AG, Ebeling PR, Thakker RV, Geusens P, van der Eerden BCJ, Verkerk AJMH, Zillikens MC. Family-based whole-exome sequencing implicates a variant in lysyl oxidase like 4 in atypical femur fractures. J Bone Miner Res 2024; 40:69-78. [PMID: 39485938 DOI: 10.1093/jbmr/zjae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Atypical femur fractures (AFFs) are rare adverse events associated with bisphosphonate use, having unclear pathophysiology. AFFs also cluster in families and have occurred in patients with monogenetic bone diseases sometimes without bisphosphonate use, suggesting an underlying genetic susceptibility. Our aim was to identify a genetic cause for AFF in a Caucasian family with 7 members affected by osteoporosis, including 3 siblings with bisphosphonate-associated AFFs. Using whole-exome sequencing, we identified a rare pathogenic variant c.G1063A (p.Gly355Ser) in lysyl oxidase like 4 (LOXL4) among 64 heterozygous rare, protein-altering variants shared by the 3 siblings with AFFs. The same variant was also found in a fourth sibling with a low-trauma femur fracture above the knee, not fulfilling all the ASBMR criteria of AFF and in 1 of 73 unrelated European AFF patients. LOXL4 is involved in collagen cross-linking and may be relevant for microcrack formation and bone repair mechanisms. Preliminary functional analysis showed that skin fibroblast-derived osteoblasts from the unrelated patient with the LOXL4 variant expressed less collagen type I and elastin, while osteogenic differentiation and mineralization were enhanced compared with 2 controls. In conclusion, this LOXL4 variant may underlie AFF susceptibility possibly due to abnormal collagen metabolism, leading to increased formation of microdamage or compromised healing of microcracks in the femur.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Denise M van de Laarschot
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX3 9DU, United Kingdom
| | - Piet Geusens
- Biomedical Research Institute, University Hasselt, Diepenbeek, 3500, Belgium
- Department of Internal Medicine, Maastricht University, Maastricht, 6211 LK, the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
3
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
4
|
Yang R, Chu H, Yue H, Mishina Y, Zhang Z, Liu H, Li B. BMP signaling maintains auricular chondrocyte identity and prevents microtia development by inhibiting protein kinase A. eLife 2024; 12:RP91883. [PMID: 38690987 PMCID: PMC11062634 DOI: 10.7554/elife.91883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.
Collapse
Affiliation(s)
- Ruichen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hongshang Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hua Yue
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yuji Mishina
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| |
Collapse
|
5
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
6
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 PMCID: PMC10315222 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Ruan X, Zhang Z, Aili M, Luo X, Wei Q, Zhang D, Bai M. Activin receptor-like kinase 3: a critical modulator of development and function of mineralized tissues. Front Cell Dev Biol 2023; 11:1209817. [PMID: 37457289 PMCID: PMC10347416 DOI: 10.3389/fcell.2023.1209817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Mineralized tissues, such as teeth and bones, pose significant challenges for repair due to their hardness, low permeability, and limited blood flow compared to soft tissues. Bone morphogenetic proteins (BMPs) have been identified as playing a crucial role in mineralized tissue formation and repair. However, the application of large amounts of exogenous BMPs may cause side effects such as inflammation. Therefore, it is necessary to identify a more precise molecular target downstream of the ligands. Activin receptor-like kinase 3 (ALK3), a key transmembrane receptor, serves as a vital gateway for the transmission of BMP signals, triggering cellular responses. Recent research has yielded new insights into the regulatory roles of ALK3 in mineralized tissues. Experimental knockout or mutation of ALK3 has been shown to result in skeletal dysmorphisms and failure of tooth formation, eruption, and orthodontic tooth movement. This review summarizes the roles of ALK3 in mineralized tissue regulation and elucidates how ALK3-mediated signaling influences the physiology and pathology of teeth and bones. Additionally, this review provides a reference for recommended basic research and potential future treatment strategies for the repair and regeneration of mineralized tissues.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiang Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Xie X, Xu C, Zhao L, Wu Y, Feng JQ, Wang J. Axin2-expressing cells in the PDL are regulated by BMP signaling and play a pivotal role in periodontium development. J Clin Periodontol 2022; 49:945-956. [PMID: 35634660 DOI: 10.1111/jcpe.13666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To date, controversies still exist regarding the exact cellular origin and regulatory mechanisms of periodontium development, which hinders efforts to achieve ideal periodontal tissue regeneration. Axin2-expressing cells in the periodontal ligament (PDL) have been shown to be a novel progenitor cell population that is essential for periodontal homeostasis. In the current study, we aimed to elucidate the regulatory role of bone morphogenetic protein receptor type 1A (BMPR1A)-mediated BMP signaling in Axin2-expressing cells during periodontium development. METHODS Two strains of Axin2 gene reporter mice, Axin2lacZ/+ and Axin2CreERT2/+ ; R26RtdTomato/+ mice, were used. We next generated Axin2CreERT2/+ ; R26RDTA/+ ; R26RtdTomato/+ mice to genetically ablate of Axin2-lineage cells. Axin2CreERT2/+ ; Bmpr1afl/fl ; R26RtdTomato/+ mice were established to conditionally knock out Bmpr1a in Axin2-lineage cells. Multiple approaches, including micro-CT, calcein green and alizarin red double-labeling, scanning electron microscopy, and histological and immunostaining assays, were used to analyze periodontal phenotypes and molecular mechanisms. RESULTS X-gal staining revealed that Axin2-expressing cells in the PDL were mainly distributed along the alveolar bone and cementum surface. Cell lineage tracing and cell ablation assays further demonstrated the indispensable role of Axin2-expressing cells in periodontium development. Next, we found that conditional knockout of Bmpr1a in Axin2-lineage cells led to periodontal defects, which were characterized by alveolar bone loss, impaired cementogenesis, and abnormal Sharpey's fibers. CONCLUSIONS Our findings suggest that Axin2-expressing cells in the PDL are essential for periodontium development, which is regulated by BMP signaling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Wells KM, Baumel M, McCusker CD. The Regulation of Growth in Developing, Homeostatic, and Regenerating Tetrapod Limbs: A Minireview. Front Cell Dev Biol 2022; 9:768505. [PMID: 35047496 PMCID: PMC8763381 DOI: 10.3389/fcell.2021.768505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023] Open
Abstract
The size and shape of the tetrapod limb play central roles in their functionality and the overall physiology of the organism. In this minireview we will discuss observations on mutant animal models and humans, which show that the growth and final size of the limb is most impacted by factors that regulate either limb bud patterning or the elongation of the long bones. We will also apply the lessons that have been learned from embryos to how growth could be regulated in regenerating limb structures and outline the challenges that are unique to regenerating animals.
Collapse
|
10
|
Wells KM, Kelley K, Baumel M, Vieira WA, McCusker CD. Neural control of growth and size in the axolotl limb regenerate. eLife 2021; 10:68584. [PMID: 34779399 PMCID: PMC8716110 DOI: 10.7554/elife.68584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the ‘tiny-limb’ stage, which is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the accessory limb model (ALM), we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the neural modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb. Humans’ ability to regrow lost or damaged body parts is relatively limited, but some animals, such as the axolotl (a Mexican salamander), can regenerate complex body parts, like legs, many times over their lives. Studying regeneration in these animals could help researchers enhance humans’ abilities to heal. One way to do this is using the Accessory Limb Model (ALM), where scientists wound an axolotl’s leg, and study the additional leg that grows from the wound. The first stage of limb regeneration creates a new leg that has the right structure and shape. The new leg is very small so the next phase involves growing the leg until its size matches the rest of the animal. This phase must be controlled so that the limb stops growing when it reaches the right size, but how this regulation works is unclear. Previous research suggests that the number of nerves in the new leg could be important. Wells et al. used a ALM to study how the size of regenerating limbs is controlled. They found that changing the number of nerves connected to the new leg altered its size, with more nerves leading to a larger leg. Next, Wells et al. created a system that used transplanted nerve bundles of different sizes to grow new legs in different sized axolotls. This showed that the size of the resulting leg is controlled by the number of nerves connecting it to the CNS. Wells et al. also showed that nerves can only control regeneration if they remain connected to the central nervous system. These results explain how size is controlled during limb regeneration in axolotls, highlighting the fact that regrowth is directly controlled by the number of nerves connected to a regenerating leg. Much more work is needed to reveal the details of this process and the signals nerves use to control growth. It will also be important to determine whether this control system is exclusive to axolotls, or whether other animals also use it.
Collapse
Affiliation(s)
- Kaylee M Wells
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Kristina Kelley
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Mary Baumel
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Warren A Vieira
- Biology Department, University of Massachusetts Boston, Boston, United States
| | | |
Collapse
|
11
|
Hu Y, Hao X, Liu C, Ren C, Wang S, Yan G, Meng Y, Mishina Y, Shi C, Sun H. Acvr1 deletion in osteoblasts impaired mandibular bone mass through compromised osteoblast differentiation and enhanced sRANKL-induced osteoclastogenesis. J Cell Physiol 2021; 236:4580-4591. [PMID: 33251612 PMCID: PMC8048423 DOI: 10.1002/jcp.30183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is well known in bone homeostasis. However, the physiological effects of BMP signaling on mandibles are largely unknown, as the mandible has distinct functions and characteristics from other bones. In this study, we investigated the roles of BMP signaling in bone homeostasis of the mandibles by deleting BMP type I receptor Acvr1 in osteoblast lineage cells with Osterix-Cre. We found mandibular bone loss in conditional knockout mice at the ages of postnatal day 21 and 42 in an age-dependent manner. The decreased bone mass was related to compromised osteoblast differentiation together with enhanced osteoclastogenesis, which was secondary to the changes in osteoblasts in vivo. In vitro study revealed that deletion of Acvr1 in the mandibular bone marrow stromal cells (BMSCs) significantly compromised osteoblast differentiation. When wild type bone marrow macrophages were cocultured with BMSCs lacking Acvr1 both directly and indirectly, both proliferation and differentiation of osteoclasts were induced as evidenced by an increase of multinucleated cells, compared with cocultured with control BMSCs. Furthermore, we demonstrated that the increased osteoclastogenesis in vitro was at least partially due to the secretion of soluble receptor activator of nuclear factor-κB ligand (sRANKL), which is probably the reason for the mandibular bone loss in vivo. Overall, our results proposed that ACVR1 played essential roles in maintaining mandibular bone homeostasis through osteoblast differentiation and osteoblast-osteoclast communication via sRANKL.
Collapse
Affiliation(s)
- Yue Hu
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Xinqing Hao
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Cangwei Liu
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Chunxia Ren
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Shuangshuang Wang
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Guangxing Yan
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Yuan Meng
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Ce Shi
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| |
Collapse
|
12
|
Sampath TK, Vukicevic S. Biology of bone morphogenetic protein in bone repair and regeneration: A role for autologous blood coagulum as carrier. Bone 2020; 141:115602. [PMID: 32841742 DOI: 10.1016/j.bone.2020.115602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
BMPs were purified from demineralized bone matrix based on their ability to induce new bone in vivo and they represent a large member of the TGF-β superfamily of proteins. BMPs serve as morphogenic signals for mesenchymal stem cell migration, proliferation and subsequently differentiation into cartilage and bone during embryonic development. A BMP when implanted with a collagenous carrier in a rat subcutaneous site is capable of inducing new bone by mimicking the cellular events of embryonic bone formation. Based on this biological principle, BMP2 and BMP7 containing collagenous matrix as carrier have been developed as bone graft substitutes for spine fusion and long bone fractures. Here, we describe a novel autologous bone graft substitute that contains BMP6 delivered within an autologous blood coagulum as carrier and summarize the biology of osteogenic BMPs in the context of bone repair and regeneration specifically the critical role that carrier plays to support osteogenesis.
Collapse
Affiliation(s)
- T Kuber Sampath
- perForm Biologics Inc., Holliston, MA 01746, United States of America.
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Vukicevic S, Sampath KT, Luyten FP. Editorial - "The role of bone morphogenetic proteins (BMPs) in musculoskeletal biology". Bone 2020; 141:115622. [PMID: 32919995 DOI: 10.1016/j.bone.2020.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Kuber T Sampath
- perForm Biologics Inc., Holliston, MA 01746, United States of America.
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|