1
|
Hosseinitabatabaei S, Vitienes I, Rummler M, Birkhold A, Rauch F, Willie BM. Non-invasive quantification of bone (re)modeling dynamics in adults with osteogenesis imperfecta treated with setrusumab using timelapse high-resolution peripheral-quantitative computed tomography. J Bone Miner Res 2025; 40:348-361. [PMID: 39849981 PMCID: PMC11909737 DOI: 10.1093/jbmr/zjaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/07/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Timelapse imaging using high-resolution peripheral quantitative computed tomography has emerged as a non-invasive method to quantify bone (re)modeling. However, there is no consensus on how to perform the procedure. As part of the ASTEROID phase-2b multicenter trial, we used 29 same-day repeated scans from adults with OI to identify a method that minimized measurement error. We evaluated input image type, registration method, segmentation mask, and for grayscale images various values for the voxel density difference considered formed or resorbed, minimum formation/resorption cluster size, and Gaussian smoothing sigma. We verified the accuracy of our method and then used it on longitudinal scans (baseline, 6, 12, 18, and 24 mo) from 78 participants to assess bone formation and resorption induced by an anabolic (setrusumab) and anti-catabolic (zoledronic acid) treatments as part of the ASTEROID trial. Regardless of image registration method, binary input images resulted in large errors ~13% and ~8% for first- and second-generation scanners, respectively. For the grayscale input images, errors were smaller for 3D compared to matched angle registration. For both scanner generations, a density threshold of 200 mgHA/cm3 combined with Gaussian noise reduction resulted in errors <1%. We verified the method was accurate by showing that similar regions of bone formation and resorption were identified when comparing each scan from the same-day repeated scans with a scan from another timepoint. Timelapse analysis revealed a dose-dependent increase in bone formation and resorption with setrusumab treatment. Zoledronic acid altered bone changes in favor of formation, although no changes reached statistical significance. This study identifies a timelapse method that minimizes measurement error, which can be used in future studies to improve the uniformity of results. This non-invasive imaging biomarker revealed dose dependent bone (re)modeling outcomes from 1 year of setrusumab treatment in adults with OI.
Collapse
Affiliation(s)
- Seyedmahdi Hosseinitabatabaei
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Isabela Vitienes
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Maximillian Rummler
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | | | - Frank Rauch
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Fang Y, Tian Z, Li W, Li D, Li J, Hu Z, Qiu Y, Zhu Z, Liu Z. Gut microbiota alterations in adolescent idiopathic scoliosis: a comparison study with healthy control and congenital scoliosis. Spine Deform 2025; 13:497-507. [PMID: 39438431 DOI: 10.1007/s43390-024-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study aims to compare the composition of GM isolated from individuals with AIS or congenital scoliosis (CS) and age-matched control (Ctr). METHODS A total of 48 patients with AIS, 24 patients with CS, and 31 healthy individuals were recruited as the discovery cohort, and 9 pairs of siblings where one was affected by AIS were recruited as the validation cohort. The GM profile was determined with 16S rRNA sequencing, and the alpha-diversity and beta-diversity metrics were performed with Mothur. Linear discriminant analysis (LDA) analysis was performed to identify the enriched species. RESULTS The α diversity (Chao1 index) was significantly lower in AIS patients with low BMI (< 18.5) than those with normal BMI. The PcoA analysis showed a trend of clustering of GM in AIS compared to that in Ctr and CS groups (r2 = 0.0553, p = 0.001). METASTAT analysis showed Cellulomonadaceae was significantly enriched in AIS groups compared to CS and Ctr. LDA analysis showed 9 enriched species in AIS patients. Compared to Ctr, two species including Hungatella genus and Bacteroides fragilis were significantly enriched, while the Firmicutes versus Bacteroidetes (F/B) ratio and the Ruminococcus genus were significantly decreased in AIS but not CS groups. The significantly reduced F/B ratio and Ruminococcus genus in AIS were replicated in the validation cohort. CONCLUSIONS Our study elucidated an association between low BMI and GM diversity in AIS patients. The reduced F/B ratio and Ruminococcus genus in AIS patients were identified and validated in 9 pairs of AIS patients and their unaffected siblings. Our pilot results may help understand the anthropometric discrepancy in these patients and support a possible role of GM in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Yinyu Fang
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Zhen Tian
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weibiao Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Dongyue Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Zongshan Hu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China.
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Yang KG, Lee WYW, Hung ALH, Kumar A, Chui ECS, Hung VWY, Cheng JCY, Lam TP, Lau AYC. Distinguishing risk of curve progression in adolescent idiopathic scoliosis with bone microarchitecture phenotyping: a 6-year longitudinal study. J Bone Miner Res 2024; 39:956-966. [PMID: 38832703 DOI: 10.1093/jbmr/zjae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Low bone mineral density and impaired bone quality have been shown to be important prognostic factors for curve progression in adolescent idiopathic scoliosis (AIS). There is no evidence-based integrative interpretation method to analyze high-resolution peripheral quantitative computed tomography (HR-pQCT) data in AIS. This study aimed to (1) utilize unsupervised machine learning to cluster bone microarchitecture phenotypes on HR-pQCT parameters in girls with AIS, (2) assess the phenotypes' risk of curve progression and progression to surgical threshold at skeletal maturity (primary cohort), and (3) investigate risk of curve progression in a separate cohort of girls with mild AIS whose curve severity did not reach bracing threshold at recruitment (secondary cohort). Patients were followed up prospectively for 6.22 ± 0.33 years in the primary cohort (n = 101). Three bone microarchitecture phenotypes were clustered by fuzzy C-means at time of peripubertal peak height velocity (PHV). Phenotype 1 had normal bone characteristics. Phenotype 2 was characterized by low bone volume and high cortical bone density, and phenotype 3 had low cortical and trabecular bone density and impaired trabecular microarchitecture. The difference in bone quality among the phenotypes was significant at peripubertal PHV and continued to skeletal maturity. Phenotype 3 had significantly increased risk of curve progression to surgical threshold at skeletal maturity (odd ratio [OR] = 4.88; 95% CI, 1.03-28.63). In the secondary cohort (n = 106), both phenotype 2 (adjusted OR = 5.39; 95% CI, 1.47-22.76) and phenotype 3 (adjusted OR = 3.67; 95% CI, 1.05-14.29) had increased risk of curve progression ≥6° with mean follow-up of 3.03 ± 0.16 years. In conclusion, 3 distinct bone microarchitecture phenotypes could be clustered by unsupervised machine learning on HR-pQCT-generated bone parameters at peripubertal PHV in AIS. The bone quality reflected by these phenotypes was found to have significant differentiating risk of curve progression and progression to surgical threshold at skeletal maturity in AIS.
Collapse
Affiliation(s)
- Kenneth Guangpu Yang
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Yuk-Wai Lee
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alec Lik-Hang Hung
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Hong Kong SAR, China
| | - Anubrat Kumar
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elvis Chun-Sing Chui
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vivian Wing-Yin Hung
- Bone Quality and Health Centre, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jack Chun-Yiu Cheng
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz-Ping Lam
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Adam Yiu-Chung Lau
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
4
|
Lau RWL, Cheuk KY, Hung VWY, Yu FWP, Tam EMS, Wong LLN, Zhang J, Lee WYW, Cheng JCY, Lam TP, Lau AYC. Handgrip strength assessment at baseline in addition to bone parameters could potentially predict the risk of curve progression in adolescent idiopathic scoliosis. Front Pediatr 2023; 11:1258454. [PMID: 38027290 PMCID: PMC10655030 DOI: 10.3389/fped.2023.1258454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Adolescent idiopathic scoliosis (AIS) is characterized by deranged bone and muscle qualities, which are important prognostic factors for curve progression. This retrospective case-control study aims to investigate whether the baseline muscle parameters, in addition to the bone parameters, could predict curve progression in AIS. Methods The study included a cohort of 126 female patients diagnosed with AIS who were between the ages of 12 and 14 years old at their initial clinical visit. These patients were longitudinally followed up every 6 months (average 4.08 years) until they reached skeletal maturity. The records of these patients were thoroughly reviewed as part of the study. The participants were categorized into two sub-groups: the progressive AIS group (increase in Cobb angle of ≥6°) and the stable AIS group (increase in Cobb angle <6°). Clinical and radiological assessments were conducted on each group. Results Cobb angle increase of ≥6° was observed in 44 AIS patients (34.9%) prior to skeletal maturity. A progressive AIS was associated with decreased skeletal maturity and weight, lower trunk lean mass (5.7%, p = 0.027) and arm lean mass (8.9%, p < 0.050), weaker dominant handgrip strength (8.8%, p = 0.027), deranged cortical compartment [lower volumetric bone mineral density (vBMD) by 6.5%, p = 0.002], and lower bone mechanical properties [stiffness and estimated failure load lowered by 13.2% (p = 0.005) and 12.5% (p = 0.004)]. The best cut-off threshold of maximum dominant handgrip strength is 19.75 kg for distinguishing progressive AIS from stable AIS (75% sensitivity and 52.4% specificity, p = 0.011). Discussion Patients with progressive AIS had poorer muscle and bone parameters than patients with stable AIS. The implementation of a cut-off threshold in the baseline dominant handgrip strength could potentially be used as an additional predictor, in addition to bone parameters, for identifying individuals with AIS who are at higher risk of experiencing curve progression.
Collapse
Affiliation(s)
- Rufina Wing Lum Lau
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ka Yee Cheuk
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Vivian Wing Yin Hung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fiona Wai Ping Yu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Elisa Man Shan Tam
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lyn Lee Ning Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiajun Zhang
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jack Chun Yiu Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tsz Ping Lam
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adam Yiu Chung Lau
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
He S, Li J, Wang Y, Xiang G, Yang G, Xiao L, Tang M, Zhang H. Phosphorylated heat shock protein 27 improves the bone formation ability of osteoblasts and bone marrow stem cells from patients with adolescent idiopathic scoliosis. JOR Spine 2023; 6:e1256. [PMID: 37780830 PMCID: PMC10540826 DOI: 10.1002/jsp2.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 10/03/2023] Open
Abstract
Background Adolescent idiopathic scoliosis (AIS) is a scoliotic deformity of unknown etiology that occurs during adolescent development. Abnormal bone metabolism is closely related to AIS, but the cause is uncertain. Recent studies have shown that heat shock protein 27 (HSP27) and its phosphorylation (pHSP27) play important roles in bone metabolism. However, whether HSP27 and pHSP27 are involved in abnormal bone metabolism in AIS is unclear. Methods Osteoblasts (OBs) and bone marrow stem cells (BMSCs) were extracted from the facet joints and bone marrow of AIS patients and controls who underwent posterior spinal fusion surgery. The expression levels of HSP27 and pHSP27, as well as the expression levels of bone formation markers in OBs from AIS patients and controls, were examined by quantitative real-time PCR (qRT-PCR) and Western blotting. The mineralization ability of OBs from AIS patients and controls was analyzed by alizarin red staining after osteogenic differentiation. Heat shock and thiolutin were used to increase the levels of pHSP27 in OBs, and the levels of bone formation markers were also investigated. In addition, the levels of pHSP27 and the bone formation ability of BMSCs from AIS patients and controls were investigated after heat shock treatment. Results Lower pHSP27 levels and impaired osteogenic differentiation abilities were observed in the OBs of AIS patients than in those of controls. Thiolutin increased HSP27 phosphorylation and increased the mRNA levels of SPP1 and ALPL in OBs from AIS patients. Heat shock treatment increased SPP1 and HSP27 mRNA expression, pHSP27 levels, OCN expression, and mineralization ability of both OBs and BMSCs from AIS patients. Conclusion Heat shock treatment and thiolutin can increase the levels of pHSP27 and further promote the bone formation of OBs and BMSCs from AIS patients. Therefore, decreased pHSP27 levels may be associated with abnormal bone metabolism in AIS patients.
Collapse
Affiliation(s)
- Sihan He
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Jiong Li
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Yunjia Wang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Gang Xiang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Guanteng Yang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Lige Xiao
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Mingxing Tang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| | - Hongqi Zhang
- Department of Spine Surgery and OrthopaedicsXiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital Central South UniversityChangshaChina
| |
Collapse
|
6
|
Danielewicz A, Wójciak M, Sowa I, Kusz M, Wessely-Szponder J, Dresler S, Latalski M. Metabolic Imbalances and Bone Remodeling Agents in Adolescent Idiopathic Scoliosis: A Study in Postmenarcheal Girls. Int J Mol Sci 2023; 24:13286. [PMID: 37686090 PMCID: PMC10487495 DOI: 10.3390/ijms241713286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The causes and mechanisms underlying adolescent idiopathic scoliosis (AIS) remain unclear, and the available information regarding metabolic imbalances in AIS is still insufficient. This investigation aimed to evaluate the concentrations of specific bone remodeling-related agents in postmenarcheal girls diagnosed with AIS. The study encompassed thirty-six scoliosis patients and eighteen age-matched healthy individuals assigned to the control group. The patients underwent clinical and radiological examinations to assess the degree of the spinal deformity, type of curvature, and skeletal maturity. Blood and urine samples were collected from all participants and serological markers were measured using an enzyme-linked immunosorbent assay. Our study results demonstrated that the balance of phosphate-calcium and parathormone levels seems normal in individuals with AIS. Furthermore, no statistically significant differences were observed in the content of Klotho protein, osteocalcin, osteoprotegerin, C-terminal telopeptide of type I collagen (CTX), sclerostin, and alkaline phosphatase. Nevertheless, the serum levels of vitamin D (25-OH-D) were lowered, while N-terminal propeptide of type I procollagen (PINP), and fibroblast growth factor-23 (FGF23) were increased in the AIS group, with p-values of 0.044, 0.001, and 0.022, respectively. This finding indicates the potential involvement of these factors in the progression of AIS, which necessitates further studies to uncover the fundamental mechanisms underlying idiopathic scoliosis.
Collapse
Affiliation(s)
- Anna Danielewicz
- Paediatric Orthopaedic Department, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (I.S.); (S.D.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (I.S.); (S.D.)
| | - Monika Kusz
- Department of Pediatric Nephrology, Childrens’ University Hospital in Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (I.S.); (S.D.)
| | - Michał Latalski
- Paediatric Orthopaedic Department, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| |
Collapse
|
7
|
Yang KG, Goff E, Cheng KL, Kuhn GA, Wang Y, Cheng JCY, Qiu Y, Müller R, Lee WYW. Abnormal morphological features of osteocyte lacunae in adolescent idiopathic scoliosis: A large-scale assessment by ultra-high-resolution micro-computed tomography. Bone 2023; 166:116594. [PMID: 36341948 DOI: 10.1016/j.bone.2022.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022]
Abstract
AIM Abnormal osteocyte lacunar morphology in adolescent idiopathic scoliosis (AIS) has been reported while the results were limited by the number of osteocyte lacunae being quantified. The present study aimed to validate previous findings through (a) comparing morphological features of osteocyte lacunae between AIS patients and controls in spine and ilium using a large-scale assessment, and (b) investigating whether there is an association between the acquired morphological features of osteocyte lacunae and disease severity in AIS. METHOD Trabecular bone tissue of the facet joint of human vertebrae on both concave and convex sides at the apex of the scoliotic curve were collected from 4 AIS and 5 congenital scoliosis (CS) patients, and also at the same anatomic site from 3 non-scoliosis (NS) subjects intraoperatively. Trabecular bone tissue from ilium was obtained from 12 AIS vs 9 NS subjects during surgery. Osteocyte lacunae were assessed using ultra-high-resolution micro-computed tomography. Clinical information such as age, body mass index (BMI) and radiological Cobb angle of the major curve were collected. RESULTS There was no significant difference between density of osteocyte lacuna and bone volume fraction (BV/TV) between groups. A total of 230,076 and 78,758 osteocyte lacunae from facet joints of apical vertebra of scoliotic curve and iliac bone were included in the analysis, respectively. In facet joint bone biopsies, lacunar stretch (Lc.St) was higher, and lacunar equancy (Lc.Eq), lacunar oblateness (Lc.Ob), and lacunar sphericity (Lc.Sr) were lower in AIS and CS groups when compared with NS group. CA side was associated with higher Lc.St when compared with CX side. In iliac bone biopsies, Lc.Ob was higher and lacunar surface area (Lc.S) was lower in AIS group than NS group. Median values of Lc.St, Lc.Eq and Lc.Sr were significantly associated with radiological Cobb angle with adjustment for age and BMI (R-squared: 0.576, 0.558 and 0.543, respectively). CONCLUSIONS This large-scale assessment of osteocyte lacunae confirms that AIS osteocyte lacunae are more oblate in iliac bone that is less influenced by asymmetric loading of the deformed spine than the vertebrae. Shape of osteocyte lacunae in iliac bone is associated with radiological Cobb angle of the major curve in AIS patients, suggesting the likelihood of systemic abnormal osteocyte morphology in AIS. Osteocyte lacunae from concave side of scoliotic curves were more stretched in both AIS and CS groups, which is likely secondary to asymmetric mechanical loading.
Collapse
Affiliation(s)
- Kenneth Guangpu Yang
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Elliott Goff
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ka-Lo Cheng
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Yujia Wang
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jack Chun-Yiu Cheng
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Qiu
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Wayne Yuk-Wai Lee
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Yang Y, Han X, Chen Z, Li X, Zhu X, Yuan H, Huang Z, Zhou X, Du Q. Bone mineral density in children and young adults with idiopathic scoliosis: a systematic review and meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:149-166. [PMID: 36450863 DOI: 10.1007/s00586-022-07463-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Osteoporosis is a risk factor for idiopathic scoliosis (IS) progression, but it is still unclear whether IS patients have bone mineral density (BMD) loss and a higher risk of osteoporosis than asymptomatic people. This systematic review aims to explore the differences in BMD and prevalence of osteoporosis between the IS group and the control group. METHODS We searched 5 health science-related databases. Studies that were published up to February 2022 and written in English and Chinese languages were included. The primary outcome measures consisted of BMD z score, the prevalence of osteoporosis and osteopenia, and areal and volumetric BMD. Bone morphometry, trabecular microarchitecture, and quantitative ultrasound measures were included in the secondary outcome measures. The odds ratio (OR) and the weighted mean difference (WMD) with a 95% confidence interval (CI) were used to pool the data. RESULTS A total of 32 case-control studies were included. The pooled analysis revealed significant differences between the IS group and the control group in BMD z score (WMD -1.191; 95% CI - 1.651 to -0.732, p < 0.001). Subgroup analysis showed significance in both female (WMD -1.031; 95% CI -1.496 to -0.566, p < 0.001) and male participants (WMD -1.516; 95% CI -2.401 to -0.632, p = 0.001). The prevalence of osteoporosis and osteopenia in the group with IS was significantly higher than in the control group (OR = 6.813, 95% CI 2.815-16.489, p < 0.001; OR 1.879; 95% CI 1.548-2.281, p < 0.000). BMD measures by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography showed a significant decrease in the IS group (all p < 0.05), but no significant difference was found in the speed of sound measured by quantitative ultrasound between the two groups (p > 0.05). CONCLUSION Both the male and female IS patients had a generalized lower BMD and an increased prevalence of osteopenia and osteoporosis than the control group. Future research should focus on the validity of quantitative ultrasound in BMD screening. To control the risk of progression in IS patients, regular BMD scans and targeted intervention are necessary for IS patients during clinical practice.
Collapse
Affiliation(s)
- Yuqi Yang
- College of Global Public Health, New York University, New York, USA
| | - Xiaoli Han
- Centers for Disease Control and Prevention of Chongming, Shanghai, China
| | - Zhengquan Chen
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Li
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoqing Zhu
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiyan Yuan
- Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zefan Huang
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuan Zhou
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Qing Du
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China. .,Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
9
|
Chen T, Hu W, Peng Y, Li Y, Qiu J, Qiu X, Li P, Li S, Liang A, Gao W, Huang D. Evaluating bone quality and asymmetrical aplasia of the thoracic vertebral body in Lenke 1A adolescent idiopathic scoliosis using hounsfield units. Front Surg 2022; 9:1028873. [PMID: 36386502 PMCID: PMC9659626 DOI: 10.3389/fsurg.2022.1028873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Study Design Retrospective analysis. Objective To evaluate bone quality and investigate asymmetrical development of the thoracic vertebral body in adolescent idiopathic scoliosis (AIS) based on Hounsfield unit (HU) measurements obtained from computed-tomography (CT) scans. Summary of Background Data HU value demonstrated higher reliability and accuracy than the traditional method, indicating that they could be used to individually evaluate and effectively assess the bone quality of every vertebra in the CT films. Methods Total 30 AIS patients classified as Lenke Type 1A and 30 paired controls were included in this study. Regions of interest for HU value were measured on three horizontal images of the thoracic vertebrae. HU measurements of the whole vertebral body in each vertebra were obtained. Using HU value, we separately measured the concave and convex sides of each vertebral body in patients' group, as well as within the left and right sides in controls. Results In controls, the mean HU value of T1–T12 thoracic vertebral bodies was 240.03 ± 39.77, with no statistical differences among different levels. As for AIS patients, in the structural curve, the apical region had a significantly lower HU compared with the other regions, and asymmetrical change was found between the concave and convex sides, most significantly in the apical region. In the non-structural curve, the average HU value was 254.99 ± 44.48, and no significant difference was found either among the different levels of vertebrae or between the concave and convex sides. Conclusions Abnormal and asymmetrical changes in bone quality of the thoracic vertebral body in patients with Lenke 1A AIS were indicated. Low bone quality in the convex side of the structural curve indicated stronger internal fixation in surgery to correct the deformity.
Collapse
Affiliation(s)
- Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, People’s Hospital of Jieyang, Jieyang, China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Li
- Department of Radiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoguang Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Correspondence: Wenjie Gao Dongsheng Huang
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Correspondence: Wenjie Gao Dongsheng Huang
| |
Collapse
|
10
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
11
|
Chen H, Yang KG, Zhang J, Cheuk KY, Nepotchatykh E, Wang Y, Hung ALH, Lam TP, Moreau A, Lee WYW. Upregulation of microRNA-96-5p is associated with adolescent idiopathic scoliosis and low bone mass phenotype. Sci Rep 2022; 12:9705. [PMID: 35690607 PMCID: PMC9188568 DOI: 10.1038/s41598-022-12938-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Bone densitometry revealed low bone mass in patients with adolescent idiopathic scoliosis (AIS) and its prognostic potential to predict curve progression. Recent studies showed differential circulating miRNAs in AIS but their diagnostic potential and links to low bone mass have not been well-documented. The present study aimed to compare miRNA profiles in bone tissues collected from AIS and non-scoliotic subjects, and to explore if the selected miRNA candidates could be useful diagnostic biomarkers for AIS. Microarray analysis identified miR-96-5p being the most upregulated among the candidates. miR-96-5p level was measured in plasma samples from 100 AIS and 52 healthy girls. Our results showed significantly higher plasma levels of miR-96-5p in AIS girls with an area under the curve (AUC) of 0.671 for diagnostic accuracy. A model that was composed of plasma miR-96-5p and patient-specific parameters (age, body weight and years since menarche) gave rise to an improved AUC of 0.752. Ingenuity Pathway Analysis (IPA) indicated functional links between bone metabolic pathways and miR-96-5p. In conclusion, differentially expressed miRNAs in AIS bone and plasma samples represented a new source of disease biomarkers and players in AIS etiopathogenesis, which required further validation study involving AIS patients of both genders with long-term follow-up.
Collapse
Affiliation(s)
- Huanxiong Chen
- Department of Spine Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Guangpu Yang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiajun Zhang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Yee Cheuk
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Evguenia Nepotchatykh
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Yujia Wang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alec Lik-Hang Hung
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada. .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Yang KG, Lee WYW, Hung ALH, Hung VWY, Tang MF, Leung TF, Kong APS, Cheng JCY, Lam TP. Decreased cortical bone density and mechanical strength with associated elevated bone turnover markers at peri-pubertal peak height velocity: a cross-sectional and longitudinal cohort study of 396 girls with adolescent idiopathic scoliosis. Osteoporos Int 2022; 33:725-735. [PMID: 34643755 DOI: 10.1007/s00198-021-06200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED Decreased cortical bone density and bone strength at peak height velocity (PHV) were noted in girls with adolescent idiopathic scoliosis (AIS). These findings could provide the link to the previously reported observation that low bone mineral density (BMD) could contribute as one of the prognostic factors for curve progression that mostly occurs during PHV in AIS. INTRODUCTION As part of the studies related to aetiopathogenesis of AIS, we assessed bone qualities, bone mechanical strength and bone turnover markers (BTMs) focusing at the peri-pubertal period and PHV in AIS girls. METHODS 396 AIS girls in two separate cohorts were studied. Skeletal maturity was assessed using the validated thumb ossification composite index (TOCI). Bone qualities and strength were evaluated with high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA). RESULTS Cohort-A included 179 girls (11.95 ± 0.95 years old). Girls at TOCI-4 had numerically the highest height velocity (0.71 ± 0.24 cm/month) corresponding to the PHV. Subjects at TOCI-4 had lower cortical volumetric BMD (672.36 ± 39.07 mg/mm3), cortical thickness (0.68 ± 0.08 mm) and apparent modulus (1601.54 ± 243.75 N/mm2) than: (a) those at TOCI-1-3 (724.99 ± 32.09 mg/mm3 (p < 0.001), 0.79 ± 0.11 mm (p < 0.001) and 1910.88 ± 374.75 N/mm2 (p < 0.001), respectively) and (b) those at TOCI-8 (732.28 ± 53.75 mg/mm3 (p < 0.001), 0.84 ± 0.14 mm (p < 0.001), 1889.11 ± 419.37 N/mm2 (p < 0.001), respectively). Cohort-B included 217 girls (12.22 ± 0.89 years old). Subjects at TOCI-4 had higher levels of C-terminal telopeptide of type 1 collagen (1524.70 ± 271.10 pg/L) and procollagen type 1 N-terminal propeptide (941.12 ± 161.39 µg/L) than those at TOCI-8 (845.71 ± 478.55 pg/L (p < 0.001) and 370.08 ± 197.04 µg/L (p < 0.001), respectively). CONCLUSION AIS girls had decreased cortical bone density and bone mechanical strength with elevated BTMs at PHV. Coupling of PHV with decreased cortical and FEA parameters could provide the link to the previously reported observation that low BMD could contribute as one of the prognostic factors for curve progression that mostly occurs during PHV in AIS.
Collapse
Affiliation(s)
- K G Yang
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - W Y W Lee
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - A L H Hung
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - V W Y Hung
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - M F Tang
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - T F Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - A P S Kong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - J C Y Cheng
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - T P Lam
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Abstract
BACKGROUND This review paper aims to report on the last 5 years of relevant research on pediatric bone health in regard to nutrition and obesity, ethnic disparities, common orthopaedic conditions, trauma, spine, and sports medicine. METHODS A search of the PubMed database was completed using the following terms: bone health, Vitamin D, pediatric, adolescent, sports medicine, fractures, spine, scoliosis, race, ethnicity, obesity, Slipped Capital Femoral Epiphysis, Osteogenesis Imperfecta, Duchenne's Muscular Dystrophy, neuromuscular, and cancer. Resultant papers were reviewed by study authors and determined to be of quality and relevance for description in this review. Papers from January 1, 2015 to August 31, 2020 were included. RESULTS A total of 85 papers were selected for review. General results include 7 key findings. (1) Obesity inhibits pediatric bone health with leptin playing a major role in the process. (2) Socioeconomic and demographic disparities have shown to have a direct influence on bone health. (3) Vitamin D deficiency has been linked to an increased fracture risk and severity in children. (4) Formal vitamin D monitoring can aid with patient compliance with treatment. (5) Patients with chronic medical conditions are impacted by low vitamin D and need ongoing monitoring of their bone health to decrease their fracture risk. (6) Vitamin D deficiency in pediatrics has been correlated to low back pain, spondylolysis, and adolescent idiopathic scoliosis. Osteopenic patients with AIS have an increased risk of curve progression requiring surgery. Before spine fusion, preoperative screening for vitamin D deficiency may reduce complications of fractures, insufficient tissue repair, loosening hardware, and postoperative back pain. (7) Increasing youth sports participation has resulted in increased bone health related injuries. However, improved understanding of Relative Energy Deficiency in Sport effects on bone health has recently occurred. CONCLUSIONS Increasing awareness of bone health issues in children will improve their recognition and treatment. Further research is needed on diagnosis, treatment, outcomes, and most importantly prevention of pediatric bone health diseases.
Collapse
Affiliation(s)
| | - Susan T Mahan
- Boston Children's Hospital/Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|