1
|
Marulanda J, Retrouvey JM, Rauch F. Skeletal and Non-skeletal Phenotypes in Children with Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:923-930. [PMID: 39167113 DOI: 10.1007/s00223-024-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Although fractures are the defining characteristic of osteogenesis imperfecta (OI), the disorder affects many tissues. Here we discuss three facets of the OI phenotype, skeletal growth and development, skeletal muscle weakness and the dental and craniofacial characteristics. Short stature is almost universal in the more severe forms of OI and is probably caused by a combination of direct effects of the underlying genetic defect on growth plates and indirect effects of fractures, bone deformities and scoliosis. Recent studies have developed OI type-specific growth curves, which allow determining whether a given child with OI grows as expected for OI type. Impaired muscle function is an important OI-related phenotype in severe OI. Muscles may be directly affected in OI by collagen type I abnormalities in muscle connective tissue and in the muscle-tendon unit. Indirect effects like bone deformities and lack of physical activity may also contribute to low muscle mass and function. Dental and craniofacial abnormalities are also very common in severe OI and include abnormal tooth structure (dentinogenesis imperfecta), malocclusion, and deformities in the bones of the face and the skull. It is hoped that future treatment approaches will address these OI-related phenotypes.
Collapse
Affiliation(s)
- Juliana Marulanda
- Shriners Hospital for Children - Canada, 1003 Decarie, Montreal, QC, H4A 0A9, Canada
| | | | - Frank Rauch
- Shriners Hospital for Children - Canada, 1003 Decarie, Montreal, QC, H4A 0A9, Canada.
| |
Collapse
|
2
|
Crawford TK, Lafaver BN, Phillips CL. Extra-Skeletal Manifestations in Osteogenesis Imperfecta Mouse Models. Calcif Tissue Int 2024; 115:847-862. [PMID: 38641703 DOI: 10.1007/s00223-024-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder of skeletal fragility with an incidence of roughly 1:15,000. Approximately 85% of the pathogenic variants responsible for OI are in the type I collagen genes, COL1A1 and COL1A2, with the remaining pathogenic OI variants spanning at least 20 additional genetic loci that often involve type I collagen post-translational modification, folding, and intracellular transport as well as matrix incorporation and mineralization. In addition to being the most abundant collagen in the body, type I collagen is an important structural and extracellular matrix signaling molecule in multiple organ systems and tissues. Thus, OI disease-causing variants result not only in skeletal fragility, decreased bone mineral density (BMD), kyphoscoliosis, and short stature, but can also result in hearing loss, dentinogenesis imperfecta, blue gray sclera, cardiopulmonary abnormalities, and muscle weakness. The extensive genetic and clinical heterogeneity in OI has necessitated the generation of multiple mouse models, the growing awareness of non-skeletal organ and tissue involvement, and OI being more broadly recognized as a type I collagenopathy.This has driven the investigation of mutation-specific skeletal and extra-skeletal manifestations and broadened the search of potential mechanistic therapeutic strategies. The purpose of this review is to outline several of the extra-skeletal manifestations that have recently been characterized through the use of genetically and phenotypically heterogeneous mouse models of osteogenesis imperfecta, demonstrating the significant potential impact of OI disease-causing variants as a collagenopathy (affecting multiple organ systems and tissues), and its implications to overall health.
Collapse
Affiliation(s)
- Tara K Crawford
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Brittany N Lafaver
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Charlotte L Phillips
- Departments of Biochemistry and Child Health, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:891-914. [PMID: 39127989 PMCID: PMC11607015 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Jovanovic M, Mitra A, Besio R, Contento BM, Wong KW, Derkyi A, To M, Forlino A, Dale RK, Marini JC. Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function - A multi-omics study. Matrix Biol 2023; 121:127-148. [PMID: 37348683 PMCID: PMC10634967 DOI: 10.1016/j.matbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Ka Wai Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alberta Derkyi
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
5
|
Sinkam L, Boraschi-Diaz I, Svensson RB, Kjaer M, Komarova SV, Bergeron R, Rauch F, Veilleux LN. Tendon properties in a mouse model of severe osteogenesis imperfecta. Connect Tissue Res 2022; 64:285-293. [PMID: 36576243 DOI: 10.1080/03008207.2022.2161376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE/AIM OF THE STUDY Osteogenesis imperfecta is a heritable bone disorder that is usually caused by mutations in collagen type I encoding genes. The impact of such mutations on tendons, a structure with high collagen type I content, remains largely unexplored. We hypothesized that tendon properties are abnormal in the context of a mutation affecting collagen type I. The main purpose of the study was to assess the anatomical, mechanical, and material tendon properties of Col1a1Jrt/+ mice, a model of severe dominant OI. MATERIALS AND METHODS The Flexor Digitorum Longus (FDL) tendon of Col1a1Jrt/+ mice and wild-type littermates (WT) was assessed with in vitro mechanical testing. RESULTS The results showed that width and thickness of FDL tendons were about 40% larger in WT (p < 0.01) than in Col1a1Jrt/+ mice, whereas the cross-sectional area was 138% larger (p < 0.001). The stiffness, peak- and yield-force were between 160% and 194% higher in WT vs. Col1a1Jrt/+ mice. The material properties did not show significant differences between mouse strains with differences <15% between WT and Col1a1Jrt/+ (p > 0.05). Analysis of the Achilles tendon collagen showed no difference between mice strains for the content but collagen solubility in acetic acid was 66% higher in WT than in Col1a1Jrt/+ (p < 0.001). CONCLUSIONS This study shows that the FDL tendon of Col1a1Jrt/+ mice has reduced mechanical properties but apparently normal material properties. It remains unclear whether the tendon phenotype of Col1a1Jrt/+ mice is secondary to muscle weakness or a direct effect of the Col1a1 mutation or a combination of both.
Collapse
Affiliation(s)
- Larissa Sinkam
- Motion Analysis Center, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Experimental suregery, McGill University, Montreal, Quebec, Canada
| | - Iris Boraschi-Diaz
- Motion Analysis Center, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Experimental suregery, McGill University, Montreal, Quebec, Canada
| | - René B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Øresund, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Øresund, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Øresund, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Øresund, Denmark
| | - Svetlana V Komarova
- Motion Analysis Center, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Raynald Bergeron
- École de kinésiologie et des sciences de l'activité physique. Faculté de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Frank Rauch
- Motion Analysis Center, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Experimental suregery, McGill University, Montreal, Quebec, Canada.,Genetics Unit, Shrines Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Louis-Nicolas Veilleux
- Motion Analysis Center, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Experimental suregery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Moffatt P, Boraschi-Diaz I, Marulanda J, Bardai G, Rauch F. Calvaria Bone Transcriptome in Mouse Models of Osteogenesis Imperfecta. Int J Mol Sci 2021; 22:ijms22105290. [PMID: 34069814 PMCID: PMC8157281 DOI: 10.3390/ijms22105290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a bone fragility disorder that is usually caused by mutations affecting collagen type I. We compared the calvaria bone tissue transcriptome of male 10-week-old heterozygous Jrt (Col1a1 mutation) and homozygous oim mice (Col1a2 mutation) to their respective littermate results. We found that Jrt and oim mice shared 185 differentially expressed genes (upregulated: 106 genes; downregulated: 79 genes). A total of seven genes were upregulated by a factor of two or more in both mouse models (Cyp2e1, Slc13a5, Cgref1, Smpd3, Ifitm5, Cthrc1 and Rerg). One gene (Gypa, coding for a blood group antigen) was downregulated by a factor of two or more in both OI mouse models. Overrepresentation analyses revealed that genes involved in ‘ossification’ were significantly overrepresented among upregulated genes in both Jrt and oim mice, whereas hematopoietic genes were downregulated. Several genes involved in Wnt signaling and transforming growth factor beta signaling were upregulated in oim mice, but less so in Jrt mice. Thus, this study identified a set of genes that are dysregulated across various OI mouse models and are likely to play an important role in the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Pierre Moffatt
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| | - Iris Boraschi-Diaz
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Juliana Marulanda
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Ghalib Bardai
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (P.M.); (I.B.-D.); (J.M.); (G.B.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Correspondence: ; Tel.: +1-514-282-7193
| |
Collapse
|
7
|
Gremminger VL, Phillips CL. Impact of Intrinsic Muscle Weakness on Muscle-Bone Crosstalk in Osteogenesis Imperfecta. Int J Mol Sci 2021; 22:4963. [PMID: 34066978 PMCID: PMC8125032 DOI: 10.3390/ijms22094963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bone and muscle are highly synergistic tissues that communicate extensively via mechanotransduction and biochemical signaling. Osteogenesis imperfecta (OI) is a heritable connective tissue disorder of severe bone fragility and recently recognized skeletal muscle weakness. The presence of impaired bone and muscle in OI leads to a continuous cycle of altered muscle-bone crosstalk with weak muscles further compromising bone and vice versa. Currently, there is no cure for OI and understanding the pathogenesis of the skeletal muscle weakness in relation to the bone pathogenesis of OI in light of the critical role of muscle-bone crosstalk is essential to developing and identifying novel therapeutic targets and strategies for OI. This review will highlight how impaired skeletal muscle function contributes to the pathophysiology of OI and how this phenomenon further perpetuates bone fragility.
Collapse
Affiliation(s)
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Department of Child Health, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|