1
|
Mammadov J, Davudov M, Aliyev T, Isgandarova S. The Effect of Immunocorrection on Reparative Osteogenesis in Mandibular Fracture: A Histomorphometric Study. J Craniofac Surg 2025:00001665-990000000-02611. [PMID: 40202323 DOI: 10.1097/scs.0000000000011404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Fracture consolidation is a fundamental factor in understanding the biological process of bone healing in human. The objective of this study was to evaluate the effects of immunocorrection after trauma surgery on bone healing process in mandibular fracture in rabbits. METHODS This study carried out using 24 rabbits. In all rabbits, the mandibular fracture model and osteogenesis carried out on the fracture site by titanium miniplates and screws. Blood analysis performed before and during the treatment. The animals slaughtered and fractured site removed for morphologic studies at baseline and follow-up assessments. RESULTS After surgical trauma in all animals, immunologic indicators of blood including circulating immunocomplex, complements, and lysosomes have been reduced. CONCLUSION General immunity and histomorphometric evaluation of the present study showed posttraumatic immunodeficiency could affects bone healing.
Collapse
Affiliation(s)
- Jahid Mammadov
- Department of Oral and Maxillofacial Surgery, Azerbaijan Medical University, Baku, Azerbaijan
| | | | | | | |
Collapse
|
2
|
Müller D, Klotsche J, Kosik MB, Perka C, Buttgereit F, Hoff P, Gaber T. Fracture Fusion on Fast-Forward: Locally Administered Deferoxamine Significantly Enhances Fracture Healing in Animal Models: A Systematic Review and Meta-Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413290. [PMID: 39840407 PMCID: PMC11848589 DOI: 10.1002/advs.202413290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Fractures, with a yearly incidence of 1.2%, can lead to healing complications in up to 10% of cases. The angiogenic stimulant deferoxamine (DFO) is recognized for enhancing bone healing when administered into the fracture gap. This systematic review with meta-analysis investigates the effect of local DFO application on bone healing in rat and mouse models. EMBASE, MEDLINE (PubMed), and Web of Science are systematically searched in January 2024. The study is prospectively registered in PROSPERO (CRD42024492533), and the SYRCLE tool is used to assess study quality and risk of bias. Outcome values contain the primary endpoint bone volume fraction (BV/TV) as well as the secondary endpoints bone volume, tissue volume, bone mineral density, trabecular separation, trabecular thickness, vessel formation and the mechanical properties, assessed by µCT, angiography and mechanical strength tests. Out of 21 included studies, 18 qualify for meta-analysis, involving 539 animals. DFO-treated groups exhibit significantly higher BV/TV values (p < 0.0001) compared to controls, with similarly significant improvements in secondary outcomes. These findings highlight the substantial benefit of DFO in promoting bone healing, especially after radiotherapy. Rapid clinical implementation is recommended to help patients at high risk of fracture healing complications.
Collapse
Affiliation(s)
- Daniel Müller
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Jens Klotsche
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| | - Magdalena B. Kosik
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Carsten Perka
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinCharitéCenter for Orthopedics und Traumatology10117BerlinGermany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| | - Paula Hoff
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- MVZ Endokrinologikum Berlin am Gendarmenmarkt10117BerlinGermany
| | - Timo Gaber
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| |
Collapse
|
3
|
Lang A, Collins JM, Nijsure MP, Belali S, Khan MP, Moharrer Y, Schipani E, Yien YY, Fan Y, Gelinsky M, Vinogradov SA, Koch C, Boerckel JD. Local erythropoiesis directs oxygen availability in bone fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632440. [PMID: 39829797 PMCID: PMC11741344 DOI: 10.1101/2025.01.10.632440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Bone fracture ruptures blood vessels and disrupts the bone marrow, the site of new red blood cell production (erythropoiesis). Current dogma holds that bone fracture causes severe hypoxia at the fracture site, due to vascular rupture, and that this hypoxia must be overcome for regeneration. Here, we show that the early fracture site is not hypoxic, but instead exhibits high oxygen tension (> 55 mmHg, or 8%), similar to the red blood cell reservoir, the spleen. This elevated oxygen stems not from angiogenesis but from activated erythropoiesis in the adjacent bone marrow. Fracture-activated erythroid progenitor cells concentrate oxygen through haemoglobin formation. Blocking transferrin receptor 1 (CD71)-mediated iron uptake prevents oxygen binding by these cells, induces fracture site hypoxia, and enhances bone repair through increased angiogenesis and osteogenesis. These findings upend our current understanding of the early phase of bone fracture repair, provide a mechanism for high oxygen tension in the bone marrow after injury, and reveal an unexpected and targetable role of erythroid progenitors in fracture repair.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph M. Collins
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P. Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Simin Belali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette Y. Yien
- Division of Hematology/Oncology, Department of Medicine and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Cameron Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Leng S, Cong R, Xia Y, Kang F. Deferoxamine Accelerates Mandibular Condylar Neck Fracture Early Bone Healing by Promoting Type H Vessel Proliferation. J Oral Rehabil 2025; 52:17-26. [PMID: 39363428 DOI: 10.1111/joor.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Condylar fractures (CFs) are a common type of maxillofacial trauma, especially in adolescents. Conservative treatment of CF avoids the possible complications of surgical intervention, but prolongs the patient's suffering because of the requirement for extended intermaxillary fixation. Therefore, the development of a new strategy to accelerate the rate of fracture healing to shorten the period of conservative treatment is of great clinical importance. OBJECTIVE To investigate the potential of deferoxamine (DFO) in promoting the healing process of CF in adolescent mice. METHODS Thirty-two 4-week-old male C57BL/6J mice were randomly assigned to four groups: vehicle + sham group, vehicle + CF group, DFO + sham group and DFO + CF group. After constructing the mandibular CF model, mandibular tissue samples were collected respectively at 1, 2 and 4 weeks postoperatively. Radiographic and histomorphometric analyses were employed to assess bone tissue healing and vascular formation. RESULTS Deferoxamine was observed to promote the early bone healing of fracture, both radiologically and histomorphometrically. Furthermore, this enhancement of condylar neck fracture healing was attributed to the upregulation of the hypoxia-inducible factor-1α (HIF-1α) signalling pathway while facilitating the formation of type H vessels. In addition, DFO did not produce significant effects on the condylar neck between vehicle + sham and DFO + sham group. CONCLUSION The application of the HIF-1α inducer DFO can enhance type H vessels expansion thereby accelerating condylar neck fracture healing.
Collapse
Affiliation(s)
- Sijia Leng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rong Cong
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuxing Xia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
5
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
6
|
Tan J, Li S, Sun C, Bao G, Liu M, Jing Z, Fu H, Sun Y, Yang Q, Zheng Y, Wang X, Yang H. A Dose-Dependent Spatiotemporal Response of Angiogenesis Elicited by Zn Biodegradation during the Initial Stage of Bone Regeneration. Adv Healthc Mater 2024; 13:e2302305. [PMID: 37843190 DOI: 10.1002/adhm.202302305] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Zinc (Zn) plays a crucial role in bone metabolism and imbues biodegradable Zn-based materials with the ability to promote bone regeneration in bone trauma. However, the impact of Zn biodegradation on bone repair, particularly its influence on angiogenesis, remains unexplored. This study reveals that Zn biodegradation induces a consistent dose-dependent spatiotemporal response in angiogenesis,both in vivo and in vitro. In a critical bone defect model, an increase in Zn release intensity from day 3 to 10 post-surgery is observed. By day 10, the CD31-positive area around the Zn implant significantly surpasses that of the Ti implant, indicating enhanced angiogenesis. Furthermore,angiogenesis exhibits a distance-dependent pattern closely mirroring the distribution of Zn signals from the implant. In vitro experiments demonstrate that Zn extraction fosters the proliferation and migration of human umbilical vein endothelial cells and upregulates the key genes associated with tube formation, such as HIF-1α and VEGF-A, peaking at a concentration of 22.5 µM. Additionally, Zn concentrations within the range of 11.25-45 µM promote the polarization of M0-type macrophages toward the M2-type, while inhibiting polarization toward the M1-type. These findings provide essential insights into the biological effects of Zn on bone repair, shedding light on its potential applications.
Collapse
Affiliation(s)
- Junlong Tan
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Shuang Li
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Chaoyang Sun
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Guo Bao
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Meijing Liu
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Zehao Jing
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Hanwei Fu
- School of Materials Science and Engineering, Beihang University, 37 Xueyuan Rd, Beijing, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Qingmin Yang
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Yufeng Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaogang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Hongtao Yang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| |
Collapse
|
7
|
Schlundt C, Saß RA, Bucher CH, Bartosch S, Hauser AE, Volk HD, Duda GN, Schmidt-Bleek K. Complex Spatio-Temporal Interplay of Distinct Immune and Bone Cell Subsets during Bone Fracture Healing. Cells 2023; 13:40. [PMID: 38201244 PMCID: PMC10777943 DOI: 10.3390/cells13010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The healing of a bone injury is a highly complex process involving a multitude of different tissue and cell types, including immune cells, which play a major role in the initiation and progression of bone regeneration. METHODS We histologically analyzed the spatio-temporal occurrence of cells of the innate immune system (macrophages), the adaptive immune system (B and T lymphocytes), and bone cells (osteoblasts and osteoclasts) in the fracture area of a femoral osteotomy over the healing time. This study was performed in a bone osteotomy gap mouse model. We also investigated two key challenges of successful bone regeneration: hypoxia and revascularization. RESULTS Macrophages were present in and around the fracture gap throughout the entire healing period. The switch from initially pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype coincided with the revascularization as well as the appearance of osteoblasts in the fracture area. This indicates that M2 macrophages are necessary for the restoration of vessels and that they also play an orchestrating role in osteoblastogenesis during bone healing. The presence of adaptive immune cells throughout the healing process emphasizes their essential role for regenerative processes that exceeds a mere pathogen defense. B and T cells co-localize consistently with bone cells throughout the healing process, consolidating their crucial role in guiding bone formation. These histological data provide, for the first time, comprehensive information about the complex interrelationships of the cellular network during the entire bone healing process in one standardized set up. With this, an overall picture of the spatio-temporal interplay of cellular key players in a bone healing scenario has been created. CONCLUSIONS A spatio-temporal distribution of immune cells, bone cells, and factors driving bone healing at time points that are decisive for this process-especially during the initial steps of inflammation and revascularization, as well as the soft and hard callus phases-has been visualized. The results show that the bone healing cascade does not consist of five distinct, consecutive phases but is a rather complex interrelated and continuous process of events, especially at the onset of healing.
Collapse
Affiliation(s)
- Claudia Schlundt
- Julius Wolff Institut, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (C.S.); (R.A.S.); (C.H.B.); (G.N.D.)
- BIH Center for Regenerative Therapies, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Radost A. Saß
- Julius Wolff Institut, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (C.S.); (R.A.S.); (C.H.B.); (G.N.D.)
- BIH Center for Regenerative Therapies, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Christian H. Bucher
- Julius Wolff Institut, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (C.S.); (R.A.S.); (C.H.B.); (G.N.D.)
- BIH Center for Regenerative Therapies, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Sabine Bartosch
- Berlin School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Augustenburger Plarz 1, 13353 Berlin, Germany;
| | - Anja E. Hauser
- Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institut, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (C.S.); (R.A.S.); (C.H.B.); (G.N.D.)
- BIH Center for Regenerative Therapies, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Katharina Schmidt-Bleek
- Julius Wolff Institut, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (C.S.); (R.A.S.); (C.H.B.); (G.N.D.)
- BIH Center for Regenerative Therapies, BIH at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
8
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
9
|
Wolter A, Bucher CH, Kurmies S, Schreiner V, Konietschke F, Hohlbaum K, Klopfleisch R, Löhning M, Thöne-Reineke C, Buttgereit F, Huwyler J, Jirkof P, Rapp AE, Lang A. A buprenorphine depot formulation provides effective sustained post-surgical analgesia for 72 h in mouse femoral fracture models. Sci Rep 2023; 13:3824. [PMID: 36882427 PMCID: PMC9992384 DOI: 10.1038/s41598-023-30641-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Adequate pain management is essential for ethical and scientific reasons in animal experiments and should completely cover the period of expected pain without the need for frequent re-application. However, current depot formulations of Buprenorphine are only available in the USA and have limited duration of action. Recently, a new microparticulate Buprenorphine formulation (BUP-Depot) for sustained release has been developed as a potential future alternative to standard formulations available in Europe. Pharmacokinetics indicate a possible effectiveness for about 72 h. Here, we investigated whether the administration of the BUP-Depot ensures continuous and sufficient analgesia in two mouse fracture models (femoral osteotomy) and could, therefore, serve as a potent alternative to the application of Tramadol via the drinking water. Both protocols were examined for analgesic effectiveness, side effects on experimental readout, and effects on fracture healing outcomes in male and female C57BL/6N mice. The BUP-Depot provided effective analgesia for 72 h, comparable to the effectiveness of Tramadol in the drinking water. Fracture healing outcome was not different between analgesic regimes. The availability of a Buprenorphine depot formulation for rodents in Europe would be a beneficial addition for extended pain relief in mice, thereby increasing animal welfare.
Collapse
Affiliation(s)
- Angelique Wolter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Christian H Bucher
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kurmies
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Viktoria Schreiner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Frank Konietschke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Max Löhning
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Anna E Rapp
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Duda GN, Geissler S, Checa S, Tsitsilonis S, Petersen A, Schmidt-Bleek K. The decisive early phase of bone regeneration. Nat Rev Rheumatol 2023; 19:78-95. [PMID: 36624263 DOI: 10.1038/s41584-022-00887-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Bone has a remarkable endogenous regenerative capacity that enables scarless healing and restoration of its prior mechanical function, even under challenging conditions such as advanced age and metabolic or immunological degenerative diseases. However - despite much progress - a high number of bone injuries still heal with unsatisfactory outcomes. The mechanisms leading to impaired healing are heterogeneous, and involve exuberant and non-resolving immune reactions or overstrained mechanical conditions that affect the delicate regulation of the early initiation of scar-free healing. Every healing process begins phylogenetically with an inflammatory reaction, but its spatial and temporal intensity must be tightly controlled. Dysregulation of this inflammatory cascade directly affects the subsequent healing phases and hinders the healing progression. This Review discusses the complex processes underlying bone regeneration, focusing on the early healing phase and its highly dynamic environment, where vibrant changes in cellular and tissue composition alter the mechanical environment and thus affect the signalling pathways that orchestrate the healing process. Essential to scar-free healing is the interplay of various dynamic cascades that control timely resolution of local inflammation and tissue self-organization, while also providing sufficient local stability to initiate endogenous restoration. Various immunotherapy and mechanobiology-based therapy options are under investigation for promoting bone regeneration.
Collapse
Affiliation(s)
- Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
12
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
13
|
Cui J, Yu X, Yu B, Yang X, Fu Z, Wan J, Zhu M, Wang X, Lin K. Coaxially Fabricated Dual-Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration. Adv Healthc Mater 2022; 11:e2200571. [PMID: 35668705 DOI: 10.1002/adhm.202200571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Indexed: 01/24/2023]
Abstract
In clinical treatment, the bone regeneration of critical-size defects is desiderated to be solved, and the regeneration of large bone segment defects depends on early vascularization. Therefore, overcoming insufficient vascularization in artificial bone grafts may be a promising strategy for critical-size bone regeneration. Herein, a novel dual-drug programmed releasing electrospinning fibrous mat (EFM) with a deferoxamine (DFO)-loaded shell layer and a dexamethasone (DEX)-loaded core layer is fabricated using coaxial electrospinning technology, considering the temporal sequence of vascularization and bone repair. DFO acts as an angiogenesis promoter and DEX is used as an osteogenesis inducer. The results demonstrate that the early and rapid release of DFO promotes angiogenesis in human umbilical vascular endothelial cells and the sustained release of DEX enhances the osteogenic differentiation of rat bone mesenchymal stem cells. DFO and DEX exert synergetic effects on osteogenic differentiation via the Wnt/β-catenin signaling pathway, and the dual-drug programmed releasing EFM acquired perfect vascularized bone regeneration ability in a rat calvarial defect model. Overall, the study suggests a low-cost strategy to enhance vascularized bone regeneration by adjusting the behavior of angiogenesis and osteogenesis in time dimension.
Collapse
Affiliation(s)
- Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xingge Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Bin Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xiuyi Yang
- Department of Orthodontics, Affiliated Stomatological Hospital of Soochow University, Suzhou, 215005, China
| | - Zeyu Fu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jianyu Wan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Min Zhu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| |
Collapse
|