1
|
Alvarado K, Tang WJ, Watson CJ, Ahmed AR, Gómez AE, Donaka R, Amemiya C, Karasik D, Hsu YH, Kwon RY. Loss of cped1 does not affect bone and lean tissue in zebrafish. JBMR Plus 2025; 9:ziae159. [PMID: 39776615 PMCID: PMC11701521 DOI: 10.1093/jbmrpl/ziae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 (CPED1) as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of CPED1 in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of CPED1 in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of cped1 in zebrafish, an emerging model for bone and mineral research. We analyzed two different cped1 mutant lines and performed deep phenotyping to characterize more than 200 measures of adult vertebral, craniofacial, and lean tissue morphology. We also examined alternative splicing of zebrafish cped1 and gene expression in various cell/tissue types. Our studies fail to support an essential role of cped1 in adult zebrafish bone. Specifically, homozygous mutants for both cped1 mutant alleles, which are expected to result in loss-of-function and impact all cped1 isoforms, exhibited no significant differences in the measures examined when compared to their respective wildtype controls, suggesting that cped1 does not significantly contribute to these traits. We identified sequence differences in critical residues of the catalytic triad between the zebrafish and mouse orthologs of CPED1, suggesting that differences in key residues, as well as distinct alternative splicing, could underlie different functions of CPED1 orthologs in the two species. Our studies fail to support a requirement of cped1 in zebrafish bone and lean tissue, adding to evidence that variants at 7q31.31 can act independently of CPED1 to influence BMD and fracture risk.
Collapse
Affiliation(s)
- Kurtis Alvarado
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - W Joyce Tang
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Claire J Watson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Ali R Ahmed
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Arianna Ericka Gómez
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Rajashekar Donaka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 5290002, Israel
| | - Chris Amemiya
- Department of Molecular and Cell Biology and Quantitative and Systems Biology Program, University of California, Merced, CA 95343, United States
| | - David Karasik
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 5290002, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, United States
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, United States
| | - Ronald Young Kwon
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| |
Collapse
|
2
|
Gómez AE, Salmon P, Baumgarten N, Rai J, Huber P, Simmonds SP, Yase RA, Reynolds KA, Tang WJ, Kwon RY. MicroCT Scanning and Analysis of the Zebrafish Skeleton. Methods Mol Biol 2025; 2885:575-595. [PMID: 40448780 DOI: 10.1007/978-1-0716-4306-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Zebrafish and other small laboratory fish have emerged as important model systems for bone biomedical research. Micro-computed tomography (microCT) is a powerful approach to non-destructively visualize and quantify bone morphology, microarchitecture, and mineral density. While consensus methods for microCT scanning analysis have been established in other vertebrates including small rodents, the small size of zebrafish, their different anatomy, and their amenability to rapid-throughput and high-content approaches call for unique considerations. In this chapter, we describe key considerations for performing microCT scans in the zebrafish skeleton. We also describe different approaches for sample mounting, scan acquisition, and analysis that can be used depending on experimental objectives and outcomes. Finally, we describe a step-by-step protocol for microCT scanning and analysis of adult zebrafish using FishCuT, resulting in hundreds of descriptors of vertebral morphology and mineral density.
Collapse
Affiliation(s)
- Arianna Ericka Gómez
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Nell Baumgarten
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Philippe Huber
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Susana P Simmonds
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Rohda A Yase
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kiana A Reynolds
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - W Joyce Tang
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Wang Z, Li K, Chen H, Li Z, Li W, Lin H, Zheng L, Zhang X, Wu S. Quantitative Characterization of Zebrafish Caudal Fin Regeneration Based on Mueller Matrix OCT In Vivo. JOURNAL OF BIOPHOTONICS 2024; 17:e202400376. [PMID: 39323178 DOI: 10.1002/jbio.202400376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Zebrafish serves as a valuable model for studying tissue regeneration due to their comprehensive regenerative abilities, particularly in bone tissue. In this study, a Mueller matrix optical coherence tomography (OCT) system was applied to monitor the regenerative processes of zebrafish caudal fins in vivo. The analysis focused on evaluating the thickness of the caudal fin tip and the distribution of internal bone tissue during the regenerative process. Subsequently, the effect of ectoine solution on the regeneration process was observed and discussed. Our findings revealed that the caudal fin blastema did not exhibit phase-induced polarization characteristics in the Mueller matrix OCT images. Statistical analyses indicated that the caudal fins did not fully regenerate to their original state within 21 days. Furthermore, the results suggested that ectoine solution could enhance tissue regeneration. This approach provides a method for quantifying zebrafish caudal fin regeneration and advances observation techniques for biomedical and clinical applications.
Collapse
Affiliation(s)
- Zaifan Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Ke Li
- School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hui Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Wangbiao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Liqin Zheng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaoman Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Shulian Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Li L, Huang J, Feng L, Xu L, Lin H, Liu K, Li X, Wang R. Altechromone A Ameliorates Inflammatory Bowel Disease by Inhibiting NF-κB and NLRP3 Pathways. Mar Drugs 2024; 22:410. [PMID: 39330291 PMCID: PMC11432983 DOI: 10.3390/md22090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Altechromone A, also known as 2,5-dimethyl-7-hydroxychromone, is a hydroxyketone containing one hydroxyl and one ketone group. In this study, we isolated Altechromone A from the marine-derived fungus Penicillium Chrysogenum (XY-14-0-4). Previous reports show that Altechromone A has various activities including tumor suppression, antibacterial, and antiviral activities. However, there is no study about its anti-inflammatory activity in inflammatory bowel disease (IBD). Here, we assess the anti-inflammatory activity, especially in IBD, and its potential mechanism using the zebrafish model. Our results indicated that Altechromone A has anti-inflammatory activity in a CuSO4-, tail-cutting-, and LPS-induced inflammatory model in zebrafish, respectively. In addition, Altechromone A greatly reduced the number of neutrophils, improved intestinal motility and efflux efficiency, alleviated intestinal damage, and reduced reactive oxygen species production in the TNBS-induced IBD zebrafish model. The transcriptomics sequencing and real-time qPCR indicated that Altechromone A inhibited the expression of pro-inflammatory genes including TNF-α, NF-κB, IL-1, IL-1β, IL-6, and NLRP3. Therefore, these data indicate that Altechromone A exhibits therapeutic effects in IBD by inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Jing Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Lixin Feng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Liyan Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Medical Decision and Economic Group, Department of Pharmacy, Ren Ji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| |
Collapse
|
5
|
Sun D, Wang S, Wang C, Zou J. Transcriptomics reveals that NAD(P)H affects the development of the Zig-zag eel (Mastacembelus armatus ♀) × Spiny eel (Sinobdella sinensis ♂) hybrid offspring leading to low hatching rates. Anim Reprod Sci 2024; 268:107561. [PMID: 39004014 DOI: 10.1016/j.anireprosci.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/17/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Zig-zag eel (Mastacembelus armatus (2 n = 48)) and Spiny eel (Sinobdella sinensis (2 n = 48)) are two species of the Mastacembelidae family commonly found in southern China. Hybridization between the two has a very high deformity rate and a very low hatching rate. In order to investigate the reasons for this, the first hybridization between M. armatus and S. sinensis was carried out using artificial insemination, and the embryonic development of the hybrid offspring was examined using microphotography, and the malformations of the hybrid offspring were investigated by transcriptomics. The experiments showed that the average egg production was 4265.7 ± 322.94 (Mean ± SD), the average fertilization rate of hybrid offspring was 98.67 ± 0.58 % (Mean ± SD), the hatching rate was 12.06 ± 3.44 % (Mean ± SD), the deformity rate was 98.15 ± 3.21 % (Mean ± SD), and the embryonic development successively went through the five main stages of fertilized egg, egg cleavage, embryo formation, organogenesis, and exertion of membranes. Transcriptomics showed that the expression of NAD(P)H-related enzyme activity DEGs was increased, and many DEGs related to cell signaling molecule transmission and metabolic regulation are enriched in KEGG pathways, such as IL-17 signaling pathway, Osteoclast differentiation, TNF signaling pathway and MAPK signaling pathway. etc. The major types of DEGs corresponded to those coding for proteins. This study suggests that the high malformation rate in hybrid offspring may be caused by impaired synthesis of proteins during embryonic development.
Collapse
Affiliation(s)
- Di Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaodan Wang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chong Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Alvarado K, Tang WJ, Watson CJ, Ahmed AR, Gomez AE, Donaka R, Amemiya C, Karasik D, Hsu YH, Kwon RY. Loss of cped1 does not affect bone and lean tissue in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.601974. [PMID: 39026892 PMCID: PMC11257572 DOI: 10.1101/2024.07.10.601974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Human genetic studies have nominated Cadherin-like and PC-esterase Domain-containing 1 (CPED1) as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of CPED1 in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of CPED1 in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of cped1 in zebrafish, an emerging model for bone and mineral research. We analyzed two different cped1 mutant lines and performed deep phenotyping to characterize more than 200 measures of adult vertebral, craniofacial, and lean tissue morphology. We also examined alternative splicing of zebrafish cped1 and gene expression in various cell/tissue types. Our studies fail to support an essential role of cped1 in adult zebrafish bone. Specifically, homozygous mutants for both cped1 mutant alleles, which are expected to result in loss-of-function and impact all cped1 isoforms, exhibited no significant differences in the measures examined when compared to their respective wildtype controls, suggesting that cped1 does not significantly contribute to these traits. We identified sequence differences in critical residues of the catalytic triad between the zebrafish and mouse orthologs of CPED1, suggesting that differences in key residues, as well as distinct alternative splicing, could underlie different functions of CPED1 orthologs in the two species. Our studies fail to support a requirement of cped1 in zebrafish bone and lean tissue, adding to evidence that variants at 7q31.31 can act independently of CPED1 to influence BMD and fracture risk.
Collapse
Affiliation(s)
- Kurtis Alvarado
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - W. Joyce Tang
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Claire J. Watson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ali R. Ahmed
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Arianna Ericka Gomez
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Chris Amemiya
- Department of Molecular and Cell Biology and Quantitative and Systems Biology Program, University of California, Merced, CA, USA
| | - David Karasik
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Ronald Young Kwon
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Surette E, Donahue J, Robinson S, McKenna D, Martinez CS, Fitzgerald B, Karlstrom RO, Cumplido N, McMenamin SK. Adult caudal fin shape is imprinted in the embryonic fin fold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603744. [PMID: 39071346 PMCID: PMC11275767 DOI: 10.1101/2024.07.16.603744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Appendage shape is formed during development (and re-formed during regeneration) according to spatial and temporal cues that orchestrate local cellular morphogenesis. The caudal fin is the primary appendage used for propulsion in most fish species, and exhibits a range of distinct morphologies adapted for different swimming strategies, however the molecular mechanisms responsible for generating these diverse shapes remain mostly unknown. In zebrafish, caudal fins display a forked shape, with longer supportive bony rays at the periphery and shortest rays at the center. Here, we show that a premature, transient pulse of sonic hedgehog a (shha) overexpression during late embryonic development results in excess proliferation and growth of the central rays, causing the adult caudal fin to grow into a triangular, truncate shape. Both global and regional ectopic shha overexpression are sufficient to alter fin shape, and forked shape may be rescued by subsequent treatment with an antagonist of the canonical Shh pathway. The induced truncate fins show a decreased fin ray number and fail to form the hypural diastema that normally separates the dorsal and ventral fin lobes. While forked fins regenerate their original forked morphology, truncate fins regenerate truncate, suggesting that positional memory of the fin rays can be permanently altered by a transient treatment during embryogenesis. Ray finned fish have evolved a wide spectrum of caudal fin morphologies, ranging from truncate to forked, and the current work offers insights into the developmental mechanisms that may underlie this shape diversity.
Collapse
|
8
|
Wilson CA, Postlethwait JH. A maternal-to-zygotic-transition gene block on the zebrafish sex chromosome. G3 (BETHESDA, MD.) 2024; 14:jkae050. [PMID: 38466753 PMCID: PMC11075544 DOI: 10.1093/g3journal/jkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex-determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting that Chr4R transcriptomics might differ from the rest of the genome. To test this hypothesis, we conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes in the Nadia strain and identified 4 regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brains and livers validated reduced transcripts from Region-2 in somatic cells, but without sex specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. Region-2 lacks protein-coding genes with human orthologs; has zinc finger genes expressed early in zygotic genome activation; has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and a distinct set of repetitive elements. The colocalization of (1) genes silenced in ovaries but not in testes that are (2) expressed in embryos briefly at the onset of zygotic genome activation; (3) maternal-specific genes for translation machinery; (4) maternal-specific spliceosome components; and (5) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a maternal-to-zygotic-transition gene regulatory block.
Collapse
|
9
|
Van Wynsberghe J, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Huang AH, Galloway JL. Current and emerging technologies for defining and validating tendon cell fate. J Orthop Res 2023; 41:2082-2092. [PMID: 37211925 DOI: 10.1002/jor.25632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate. The successful integration of new technologies and approaches have the potential to further propel tendon research into a new renaissance of discovery. However, there are also limitations with the current methodologies that are important to consider when tackling research questions. Altogether, we will highlight recent advances and technologies and propose new avenues to explore tendon biology.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Jenna L Galloway
- Department of Orthopaedic Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Tsai SL, Villaseñor S, Shah RR, Galloway JL. Endogenous tenocyte activation underlies the regenerative capacity of the adult zebrafish tendon. NPJ Regen Med 2023; 8:52. [PMID: 37726307 PMCID: PMC10509205 DOI: 10.1038/s41536-023-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Tendons are essential, frequently injured connective tissues that transmit forces from muscle to bone. Their unique highly ordered, matrix-rich structure is critical for proper function. While adult mammalian tendons heal after acute injuries, endogenous tendon cells, or tenocytes, fail to respond appropriately, resulting in the formation of disorganized fibrovascular scar tissue with impaired function and increased propensity for re-injury. Here, we show that, unlike mammals, adult zebrafish tenocytes activate upon injury and fully regenerate the tendon. Using a full tear injury model in the adult zebrafish craniofacial tendon, we defined the hallmark stages and cellular basis of tendon regeneration through multiphoton imaging, lineage tracing, and transmission electron microscopy approaches. Remarkably, we observe that zebrafish tendons regenerate and restore normal collagen matrix ultrastructure by 6 months post-injury (mpi). Tendon regeneration progresses in three main phases: inflammation within 24 h post-injury (hpi), cellular proliferation and formation of a cellular bridge between the severed tendon ends at 3-5 days post-injury (dpi), and re-differentiation and matrix remodeling beginning from 5 dpi to 6 mpi. Importantly, we demonstrate that pre-existing tenocytes are the main cellular source of regeneration, proliferating and migrating upon injury to ultimately bridge the tendon ends. Finally, we show that TGF-β signaling is required for tenocyte recruitment and bridge formation. Collectively, our work debuts and aptly positions the adult zebrafish tendon as an invaluable comparative system to elucidate regenerative mechanisms that may inspire new therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie L Tsai
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steffany Villaseñor
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rishita R Shah
- Department of Biology, Barnard College, New York, NY, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
12
|
Plotkin LI, Kalajzic I. Animal models for musculoskeletal research. Bone 2023; 173:116813. [PMID: 37244428 PMCID: PMC10513736 DOI: 10.1016/j.bone.2023.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Roudebush Veterans Administration Medical Center, Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA.
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT 06032, USA.
| |
Collapse
|
13
|
Basheer F, Sertori R, Liongue C, Ward AC. Zebrafish: A Relevant Genetic Model for Human Primary Immunodeficiency (PID) Disorders? Int J Mol Sci 2023; 24:ijms24076468. [PMID: 37047441 PMCID: PMC10095346 DOI: 10.3390/ijms24076468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Primary immunodeficiency (PID) disorders, also commonly referred to as inborn errors of immunity, are a heterogenous group of human genetic diseases characterized by defects in immune cell development and/or function. Since these disorders are generally uncommon and occur on a variable background profile of potential genetic and environmental modifiers, animal models are critical to provide mechanistic insights as well as to create platforms to underpin therapeutic development. This review aims to review the relevance of zebrafish as an alternative genetic model for PIDs. It provides an overview of the conservation of the zebrafish immune system and details specific examples of zebrafish models for a multitude of specific human PIDs across a range of distinct categories, including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), multi-system immunodeficiency, autoinflammatory disorders, neutropenia and defects in leucocyte mobility and respiratory burst. It also describes some of the diverse applications of these models, particularly in the fields of microbiology, immunology, regenerative biology and oncology.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
14
|
Tsai SL, Villasenor S, Shah R, Galloway JL. Endogenous Tenocyte Activation Underlies the Regenerative Capacity of Adult Zebrafish Tendon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527141. [PMID: 36778338 PMCID: PMC9915736 DOI: 10.1101/2023.02.04.527141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tendons are essential, frequently injured connective tissues that transmit forces from muscle to bone. Their unique highly ordered, matrix-rich structure is critical for proper function. While adult mammalian tendons heal after acute injuries, endogenous tendon cells, or tenocytes, fail to respond appropriately, resulting in the formation of disorganized fibrovascular scar tissue with impaired function and increased propensity for re-injury. Here, we show that unlike mammals, adult zebrafish tenocytes activate upon injury and fully regenerate the tendon. Using a full tear injury model in the adult zebrafish craniofacial tendon, we defined the hallmark stages and cellular basis of tendon regeneration through multiphoton imaging, lineage tracing, and transmission electron microscopy approaches. Remarkably, we observe that the zebrafish tendon can regenerate and restore normal collagen matrix ultrastructure by 6 months post-injury (mpi). We show that tendon regeneration progresses in three main phases: inflammation within 24 hours post-injury (hpi), cellular proliferation and formation of a cellular bridge between the severed tendon ends at 3-5 days post-injury (dpi), and re-differentiation and matrix remodeling beginning from 5 dpi to 6 mpi. Importantly, we demonstrate that pre-existing tenocytes are the main cellular source of regeneration. Collectively, our work debuts the zebrafish tendon as one of the only reported adult tendon regenerative models and positions it as an invaluable comparative system to identify regenerative mechanisms that may inspire new tendon injury treatments in the clinic.
Collapse
|