1
|
Sha Y, Huang L, Zhang L, Hou X, Mo C, Pan C, Chen G, Luo S, Ou M. SUGAR-seq reveals the transcriptome and N-linked glycosylation landscape of mononuclear phagocytes at single-cell resolution in a mouse model of autosomal dominant osteopetrosis type 2. BMC Biol 2025; 23:91. [PMID: 40165215 PMCID: PMC11959739 DOI: 10.1186/s12915-025-02193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Heterozygous mutation of CLCN7 (R286W) is commonly found in patients with benign autosomal dominant osteopetrosis. However, there is no evidence from animal models to confirm that it is a disease mutation. And the characteristics of the bone marrow cell (BMC) landscape in osteopetrosis at the single-cell level are completely unknown till now. RESULTS In this study, we generated the first autosomal dominant osteopetrosis type 2 (ADO2) mouse model with typical phenotypes carried a mutation Clcn7 (r284w) corresponding to CLCN7 (R286W) observed in human patients using gene editing technology. And then, we conducted the first-ever single-cell analysis of the RNA expression and N-linked glycosylation profiles for the mouse BMCs by SUrface-protein Glycan And RNA-sequencing (SUGAR-seq). We identified 14 distinct cell types and similar proportion of neutrophils in both ADO2 and wild type mice, confirmed by flow cytometry analysis. The N-linked glycosylation modifications of BMCs were significantly downregulated detecting by SUGAR-seq, which was similar to the situation of N-Glycan profiling by the 4D Label-Free N-Glycosylation Proteomics Analysis. Particularly noteworthy is the heterogeneity of classic monocytes. We identified six cell subtypes, but only two cell subtypes were found with different proportion of cell, whose different expressed genes were associated with NF-κB-inducing kinase / Nuclear Factor-kappa B (NIK/NF-κB) signaling and other pathway associated with osteoclast differentiation. CONCLUSIONS Our murine model confirms that the human CLCN7 (R286W) is a pathogenic mutation for ADO2. Additionally, our single-cell analyses reveal the heterogeneity of monocytes in ADO2, and the abnormal glycosylation modifications across various subtypes may represent important events in the pathogenesis of osteopetrosis.
Collapse
Affiliation(s)
- Yu Sha
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Lingyu Huang
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Lei Zhang
- The Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xianliang Hou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chune Mo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Cuiping Pan
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Gengshuo Chen
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Sha Luo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Minglin Ou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Key Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541199, China.
| |
Collapse
|
2
|
Kondratskyi A, Bazzone A, Rapedius M, Zerlotti R, Masson B, Sadanandan NP, Parker JL, Santinho A, Moutia M, Thiam AR, Kemp A, Seibertz F, Murciano N, Friis S, Becker N, Obergrussberger A, Barthmes M, George C, George M, Dalrymple D, Gasnier B, Newstead S, Grimm C, Fertig N. Lysosomal Ion Channels and Transporters: Recent Findings, Therapeutic Potential, and Technical Approaches. Bioelectricity 2025; 7:29-57. [PMID: 40342936 PMCID: PMC12056583 DOI: 10.1089/bioe.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
In recent years, there has been a growing interest in lysosomal ion channels and transporters due to their critical role in maintaining lysosomal function and their involvement in a variety of diseases, particularly lysosomal storage diseases, cancer, and neurodegenerative disorders. Recent advancements in research techniques, including manual and automated patch clamp (APC) electrophysiology, solid-supported membrane-based electrophysiology (SSME), and fluorescence-based ion imaging, have further enhanced our ability to investigate lysosomal ion channels and transporters in both physiological and pathological conditions, spurring drug discovery efforts. Several pharmaceutical companies are now developing therapies aimed at modulating these channels and transporters to improve lysosomal function in disease. Small molecules targeting channels like transient receptor potential mucolipin (TRPML) 1 and TMEM175, as well as drugs modulating lysosomal pH, are currently in preclinical and clinical development. This review provides an overview of the role of lysosomal ion channels and transporters in health and disease, highlights the cutting-edge techniques used to study them, and discusses the therapeutic potential of targeting these channels and transporters in the treatment of various diseases. Furthermore, in addition to summarizing recent discoveries, we contribute novel functional data on cystinosin, TRPML1, and two-pore channel 2 (TPC2), utilizing both SSME and APC approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Nidish Ponath Sadanandan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Joanne L. Parker
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | | | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Arlene Kemp
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | | | | | | | | | | | | | | | | | - David Dalrymple
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | - Bruno Gasnier
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich/Frankfurt, Germany
| | | |
Collapse
|
3
|
Liu M, Zheng H, Li Z, Pang R, Niu Y, Yang L, Zhang Z, Xia J, Pang X. A novel frameshift variant leads to familial osteopetrosis with variable phenotypes in a Chinese Han consanguineous family. BMC Med Genomics 2025; 18:36. [PMID: 39994654 PMCID: PMC11853305 DOI: 10.1186/s12920-025-02101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Osteopetrosis, a group of highly heterogeneous genetic bone disorders, is characterized by deafness, increased bone density, hepatosplenomegaly, pancytopenia and intellectual disability. Osteopetrosis can be divided into three subtypes: autosomal recessive osteopetrosis (ARO), intermediate autosomal recessive osteopetrosis (IARO), and autosomal dominant osteopetrosis (ADO). CLCN7 has been reported to be the most common gene responsible for the ADO-II subtype. In this study, a novel variant, c.175dupA (p.Met59Asnfs*8), of CLCN7 was identified in a Chinese Han consanguineous family with suspected ADO-II. The proband was homozygous for the p.Met59Asnfs*8 variant and exhibited multiple severe phenotypes, including deafness, short stature, brittle bones, optic atrophy, hepatosplenomegaly, intellectual disability, cleft palate and recurrent infection. However, except for the mother of the proband, who presented a series of clinical phenotypes caused by bone marrow failure, all the other family members who were heterozygous had no obvious abnormal phenotypes. Our study suggested that the novel variant p.Met59Asnfs*8 in CLCN7 was very likely pathogenic factor in our suspected ADO-II family. The phenotypes of heterozygous carriers may be affected by incomplete penetrance. Loss of function of CLCN7 caused by nonsense-mediated mRNA decay (NMD) due to the frameshift variant was likely the underlying pathogenic mechanism. This study broadened the mutation spectrum of CLCN7, provided a foundation for timely and effective clinical intervention for related diseases, and demonstrates the importance of genetic counselling.
Collapse
Affiliation(s)
- Mengxiao Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
- Department of Otorhinolaryngology-Head and Neck Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Postgraduate Training Base of Dalian Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Hao Zheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhixiang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
- Department of Otorhinolaryngology-Head and Neck Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Postgraduate Training Base of Dalian Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Runfei Pang
- Department of Otorhinolaryngology-Head and Neck Surgery, Postgraduate Training Base of Dalian Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Yang Niu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
- Department of Otorhinolaryngology-Head and Neck Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Lei Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Postgraduate Training Base of Dalian Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Zhenxiang Zhang
- Department of Osteology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Jianguo Xia
- Department of Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Xiuhong Pang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
- Department of Otorhinolaryngology-Head and Neck Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China.
- Department of Otorhinolaryngology-Head and Neck Surgery, Postgraduate Training Base of Dalian Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China.
| |
Collapse
|
4
|
Chen X, Wang Z, Fu W, Wei Z, Gu J, Wang C, Zhang Z, Yu X, Hu W. Metabolomics study of osteopetrosis caused by CLCN7 mutation reveals novel pathway and potential biomarkers. Front Endocrinol (Lausanne) 2025; 15:1418932. [PMID: 40018371 PMCID: PMC11865745 DOI: 10.3389/fendo.2024.1418932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 03/01/2025] Open
Abstract
Objective CLCN7 mutation caused abnormal osteoclasts, resulting in osteopetrosis. Depending on the type of mutation, CLCN7 mutations can lead to severe or relatively benign forms of osteopetrosis. However, the serum metabolic alterations in osteopetrosis caused by CLCN7 mutation are still unknown. We aimed to investigate the differences in the metabolome of osteopetrosis patients caused by CLCN7 mutation versus healthy controls (HC), uncovering potential subtype diagnosis biomarkers. Methods 19 osteopetrosis patients caused by CLCN7 mutation and 19 HC were recruited for liquid chromatography-tandem mass spectrometry analysis. The screened pathway was validated in the myeloid cell specific Clcn7G763R mutant mouse model by quantitative real-time PCR analysis. Results Three metabolic pathways were significantly enriched, including glycerophospholipid metabolism (P=0.036948), arachidonic acid metabolism (P=0.0058585) and linoleic acid metabolism (P=0.032035). Ten differential expressed metabolites were located in these three pathways and classified ability with areas under the curve over 0.7 in receiver operating characteristic analysis, suggesting a certain accuracy for being the potential biological markers. Especially, we found that the proteins in glycerophospholipid metabolism were predicted to interact with ClC-7 and further verified that the expression of coding genes were significantly up-regulated in myeloid cell specific Clcn7G763R mutant mouse. Conclusion This study provides data on serum metabolomics in osteopetrosis caused by CLCN7 mutation and provides new potential metabolic markers and pathways for diagnosis and pathogenesis of osteopetrosis.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyuan Wang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhen Fu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Wei
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiemei Gu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtian Yu
- Clinical Research Center, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Hu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Cen J, Hu N, Shen J, Gao Y, Lu H. Pathological Functions of Lysosomal Ion Channels in the Central Nervous System. Int J Mol Sci 2024; 25:6565. [PMID: 38928271 PMCID: PMC11203704 DOI: 10.3390/ijms25126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Lysosomes are highly dynamic organelles that maintain cellular homeostasis and regulate fundamental cellular processes by integrating multiple metabolic pathways. Lysosomal ion channels such as TRPML1-3, TPC1/2, ClC6/7, CLN7, and TMEM175 mediate the flux of Ca2+, Cl-, Na+, H+, and K+ across lysosomal membranes in response to osmotic stimulus, nutrient-dependent signals, and cellular stresses. These ion channels serve as the crucial transducers of cell signals and are essential for the regulation of lysosomal biogenesis, motility, membrane contact site formation, and lysosomal homeostasis. In terms of pathophysiology, genetic variations in these channel genes have been associated with the development of lysosomal storage diseases, neurodegenerative diseases, inflammation, and cancer. This review aims to discuss the current understanding of the role of these ion channels in the central nervous system and to assess their potential as drug targets.
Collapse
Affiliation(s)
| | | | | | - Yongjing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| | - Huanjun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| |
Collapse
|
6
|
McLuckey MN, Imel EA, Forbes-Amrhein MM. Osteopetrosis in the pediatric patient: what the radiologist needs to know. Pediatr Radiol 2024; 54:1105-1115. [PMID: 38483591 PMCID: PMC11905148 DOI: 10.1007/s00247-024-05899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 05/22/2024]
Abstract
Osteopetrosis describes several types of rare sclerosing bone dysplasias of varying clinical and radiographic severity. The classic autosomal dominant subtype emerges most often in adolescence but can present from infancy through adulthood. The autosomal recessive osteopetrosis, or "malignant infantile osteopetrosis," presents in infancy with a grimmer prognosis, though the autosomal dominant forms (often mislabeled as "benign") actually can have life-threatening consequences as well. Often osteopetrosis is detected due to skeletal findings on radiographs performed to evaluate injury or as an incidental finding during evaluation for illness. Given the varied phenotypic severity and presentations at different ages, radiologists play an integral role in the care of these patients both in diagnosis and in clinical evaluation and monitoring. A deeper understanding of the underlying genetic basis of the disease can aid in the radiologist in diagnosis and in anticipation of unique complications. An overview of current clinical management is also discussed.
Collapse
Affiliation(s)
- Morgan N McLuckey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Boulevard, Room 0063, Indianapolis, IN, 46202, USA.
| | - Erik A Imel
- Department of Medicine and Pediatrics, Indiana University School of Medicine, 1120 W. Michigan Street, Room 380, Indianapolis, IN, 46202, USA
| | - Monica M Forbes-Amrhein
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Riley Hospital for Children, 705 Riley Hospital Drive, Room 1053, Indianapolis, IN, 46202, USA
| |
Collapse
|
7
|
Hong JM, Gerard-O'Riley RL, Acton D, Alam I, Econs MJ, Bruzzaniti A. The PDE4 Inhibitors Roflumilast and Rolipram Rescue ADO2 Osteoclast Resorption Dysfunction. Calcif Tissue Int 2024; 114:430-443. [PMID: 38483547 PMCID: PMC11239147 DOI: 10.1007/s00223-024-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients.
Collapse
Affiliation(s)
- Jung Min Hong
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 1121 West Michigan Street, DS266, Indianapolis, IN, 46202, USA
| | - Rita L Gerard-O'Riley
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dena Acton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Imranul Alam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Econs
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 1121 West Michigan Street, DS266, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Akintoye SO, Adisa AO, Okwuosa CU, Mupparapu M. Craniofacial disorders and dysplasias: Molecular, clinical, and management perspectives. Bone Rep 2024; 20:101747. [PMID: 38566929 PMCID: PMC10985038 DOI: 10.1016/j.bonr.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
There is a wide spectrum of craniofacial bone disorders and dysplasias because embryological development of the craniofacial region is complex. Classification of craniofacial bone disorders and dysplasias is also complex because they exhibit complex clinical, pathological, and molecular heterogeneity. Most craniofacial disorders and dysplasias are rare but they present an array of phenotypes that functionally impact the orofacial complex. Management of craniofacial disorders is a multidisciplinary approach that involves the collaborative efforts of multiple professionals. This review provides an overview of the complexity of craniofacial disorders and dysplasias from molecular, clinical, and management perspectives.
Collapse
Affiliation(s)
- Sunday O. Akintoye
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Akinyele O. Adisa
- University of Ibadan and University College Hospital Ibadan, Ibadan, Nigeria
| | - Chukwubuzor U. Okwuosa
- Department of Oral Pathology & Oral Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Mel Mupparapu
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
9
|
Bose S, de Heus C, Kennedy ME, Wang F, Jentsch TJ, Klumperman J, Stauber T. Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl -/H + Exchanger ClC-7. Biomolecules 2023; 13:1799. [PMID: 38136669 PMCID: PMC10742274 DOI: 10.3390/biom13121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
ClC-7 is a ubiquitously expressed voltage-gated Cl-/H+ exchanger that critically contributes to lysosomal ion homeostasis. Together with its β-subunit Ostm1, ClC-7 localizes to lysosomes and to the ruffled border of osteoclasts, where it supports the acidification of the resorption lacuna. Loss of ClC-7 or Ostm1 leads to osteopetrosis accompanied by accumulation of storage material in lysosomes and neurodegeneration. Interestingly, not all osteopetrosis-causing CLCN7 mutations from patients are associated with a loss of ion transport. Some rather result in an acceleration of voltage-dependent ClC-7 activation. Recently, a gain-of-function variant, ClC-7Y715C, that yields larger ion currents upon heterologous expression, was identified in two patients with neurodegeneration, organomegaly and albinism. However, neither the patients nor a mouse model that carried the equivalent mutation developed osteopetrosis, although expression of ClC-7Y715C induced the formation of enlarged intracellular vacuoles. Here, we investigated how, in transfected cells with mutant ClC-7, the substitution of this tyrosine impinged on the morphology and function of lysosomes. Combinations of the tyrosine mutation with mutations that either uncouple Cl- from H+ counter-transport or strongly diminish overall ion currents were used to show that increased ClC-7 Cl-/H+ exchange activity is required for the formation of enlarged vacuoles by membrane fusion. Degradation of endocytosed material was reduced in these compartments and resulted in an accumulation of lysosomal storage material. In cells expressing the ClC-7 gain-of-function mutant, autophagic clearance was largely impaired, resulting in a build-up of autophagic material.
Collapse
Affiliation(s)
- Shroddha Bose
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Cecilia de Heus
- Center for Molecular Medicine/Cell Biology, University Medical Center (UMC), 3584 CX Utrecht, The Netherlands
| | - Mary E. Kennedy
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Fan Wang
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Judith Klumperman
- Center for Molecular Medicine/Cell Biology, University Medical Center (UMC), 3584 CX Utrecht, The Netherlands
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
10
|
Raimann A, Misof BM, Fratzl P, Fratzl-Zelman N. Bone Material Properties in Bone Diseases Affecting Children. Curr Osteoporos Rep 2023; 21:787-805. [PMID: 37897675 DOI: 10.1007/s11914-023-00822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE OF REVIEW Metabolic and genetic bone disorders affect not only bone mass but often also the bone material, including degree of mineralization, matrix organization, and lacunar porosity. The quality of juvenile bone is moreover highly influenced by skeletal growth. This review aims to provide a compact summary of the present knowledge on the complex interplay between bone modeling and remodeling during skeletal growth and to alert the reader to the complexity of bone tissue characteristics in children with bone disorders. RECENT FINDINGS We describe cellular events together with the characteristics of the different tissues and organic matrix organization (cartilage, woven and lamellar bone) occurring during linear growth. Subsequently, we present typical alterations thereof in disorders leading to over-mineralized bone matrix compared to those associated with low or normal mineral content based on bone biopsy studies. Growth spurts or growth retardation might amplify or mask disease-related alterations in bone material, which makes the interpretation of bone tissue findings in children complex and challenging.
Collapse
Affiliation(s)
- Adalbert Raimann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Barbara M Misof
- Vienna Bone and Growth Center, Vienna, Austria
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - Nadja Fratzl-Zelman
- Vienna Bone and Growth Center, Vienna, Austria.
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| |
Collapse
|
11
|
Tüysüz B, Usluer E, Uludağ Alkaya D, Ocak S, Saygılı S, Şeker A, Apak H. The molecular spectrum of Turkish osteopetrosis and related osteoclast disorders with natural history, including a candidate gene, CCDC120. Bone 2023; 177:116897. [PMID: 37704070 DOI: 10.1016/j.bone.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Osteopetrosis and related osteoclastic disorders are a heterogeneous group of inherited diseases characterized by increased bone density. The aim of this study is to investigate the molecular spectrum and natural history of the clinical and radiological features of these disorders. METHODS 28 patients from 20 families were enrolled in the study; 20 of them were followed for a period of 1-16 years. Targeted gene analysis and whole-exome sequencing (WES) were performed. RESULTS Biallelic mutations in CLCN7 and TCIRG1 were detected in three families each, in TNFRSF11A and CA2 in two families each, and in SNX10 in one family in the osteopetrosis group. A heterozygous variant in CLCN7 was also found in one family. In the osteopetrosis and related osteoclast disorders group, three different variants in CTSK were detected in five families with pycnodysostosis and a SLC29A3 variant causing dysosteosclerosis was detected in one family. In autosomal recessive osteopetrosis (ARO), a malignant infantile form, four patients died during follow-up, two of whom had undergone hematopoietic stem cell transplantation. Interestingly, all patients had osteopetrorickets of the long bone metaphyses in infancy, typical skeletal features such as Erlenmeyer flask deformity and bone-in-bone appearance that developed toward the end of early childhood. Two siblings with a biallelic missense mutation in CLCN7 and one patient with the compound heterozygous novel splicing variants in intron 15 and 17 in TCIRG1 corresponded to the intermediate form of ARO (IARO); there was intrafamilial clinical heterogeneity in the family with the CLCN7 variant. One of two patients with IARO and distal tubular acidosis was found to have a large deletion in CA2. In one family, two siblings with a heterozygous mutation in CLCN7 were affected, whereas the father with the same mutation was asymptomatic. In WES analysis of three brothers from a family without mutations in osteopetrosis genes, a hemizygous missense variant in CCDC120, a novel gene, was found to be associated with high bone mass. CONCLUSION This study extended the natural history of the different types of osteopetrosis and also introduced a candidate gene, CCDC120, potentially causing osteopetrosis.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey.
| | - Esra Usluer
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey
| | - Süheyla Ocak
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Hematology, Istanbul, Turkey
| | - Seha Saygılı
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Nephrology, Istanbul, Turkey
| | - Ali Şeker
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Orthopedics and Traumatology, Istanbul, Turkey
| | - Hilmi Apak
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Hematology, Istanbul, Turkey
| |
Collapse
|