1
|
Landau MB, Zou B, Yang Z, Rowan BG, Anbalagan M. A Micro-Computed Tomography-Based Simplified Approach to Measure Body Composition, Osteoporosis, and Lung Fibrosis in Mice. Bio Protoc 2025; 15:e5207. [PMID: 40028031 PMCID: PMC11865830 DOI: 10.21769/bioprotoc.5207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 03/05/2025] Open
Abstract
Micro-computed tomography (micro-CT) is a powerful, non-destructive imaging technique that creates high-resolution 3D images of the internal structures of small animal models such as mice and rats. Familiarizing oneself with micro-CT imaging and data analysis can be overwhelming without easy-to-follow, clear instructions. Training on new instruments is often a task exclusive to a select subset of researchers, leaving the majority of potential trainees without a technical grasp of how to navigate the instructions. This protocol on the use of micro-CT aims to bridge that gap by providing a clear, step-by-step guide to acquire and analyze micro-CT images from mice for quantitative data. By exclusively detailing the necessary procedural steps from start to finish and overcoming complex user interfaces during imaging operations and analysis, this protocol will equip new micro-CT users with the ability to measure mouse body composition (bone, body fat, and lean muscle mass) and identify and quantify lung fibrosis. This approach applies to researchers with a basic understanding of medical imaging, animal care, and software analysis. Key features • Analysis of tissue-specific body composition using mice as model organisms. • An easy-to-follow guide for novice users of high-resolution micro-computed tomography imaging systems. • Enhances accessibility, workflow, standardization, training, and breadth of application in the research community. • Effectively employing non-invasive live imaging allows for a longitudinal study of tissue architecture for examining age-related changes in vivo. Graphical overview.
Collapse
Affiliation(s)
| | - Binghao Zou
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ziqi Yang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
2
|
Martelli C, Ottobrini L, Ferraretto A, Bendinelli P, Cattaneo S, Masotti F, Stuknytė M, Dall’Asta M, Del Sole A, De Noni I, Rossi F. Ex Vivo, In Vitro and In Vivo Bone Health Properties of Grana Padano Cheese. Foods 2025; 14:273. [PMID: 39856939 PMCID: PMC11765351 DOI: 10.3390/foods14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Grana Padano (GP) is an Italian hard cooked cheese characterized by a long ripening process and high protein and Ca contents. After in vitro static simulated gastrointestinal digestion, GP digest contained caseinophosphopeptides that were 6 to 24 amino acids in length, including tri-phosphorylated species incorporating the pSer-pSer-pSer-Glu-Glu cluster. Using rat ileum tissue, the digest was used to assess Ca absorption ex vivo, which showed significantly better results for the GP digest in comparison to the CaCO3 aqueous solution. An in vitro intestinal model based on Caco-2/HT-29 cell co-culture was able to mimic Ca absorption from GP digest, with Ca-rich water as a control. The metabolite-containing medium was then used to treat osteoblast-like SaOS-2 cells. As a consequence, metabolized GP digest significantly increased the number of osteoblasts, whereas the metabolized water did not exert this effect. Finally, the mice were fed diets containing GP or CaCO3 and pea isolate and the in vivo outcomes were assessed through fluorescent probe and computed tomography. Mice fed a diet containing GP showed a higher increase in bone remodeling and volume in comparison to those fed a control diet containing CaCO3 and pea isolate. Overall, the ex vivo, in vitro and in vivo experiments highlighted the effectiveness of GP in improving Ca absorption, osteoblast proliferation and bone remodeling and volume.
Collapse
Affiliation(s)
- Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, 20054 Milan, Italy; (C.M.); (L.O.)
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, 20054 Milan, Italy; (C.M.); (L.O.)
- Bioimaging and Complex Biological Systems (IBSBC), National Research Council (CNR), 20054 Milan, Italy
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (A.F.); (P.B.)
| | - Paola Bendinelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (A.F.); (P.B.)
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (S.C.); (F.M.)
| | - Fabio Masotti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (S.C.); (F.M.)
| | - Milda Stuknytė
- Unitech COSPECT—COmprehensive Substances characterization via advanced sPECTtroscopy, University Technological Platform, University of Milan, 20133 Milan, Italy;
| | - Margherita Dall’Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.D.); (F.R.)
| | - Angelo Del Sole
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (S.C.); (F.M.)
| | - Filippo Rossi
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.D.); (F.R.)
| |
Collapse
|
3
|
Babey ME, Krause WC, Chen K, Herber CB, Torok Z, Nikkanen J, Rodriguez R, Zhang X, Castro-Navarro F, Wang Y, Wheeler EE, Villeda S, Leach JK, Lane NE, Scheller EL, Chan CKF, Ambrosi TH, Ingraham HA. A maternal brain hormone that builds bone. Nature 2024; 632:357-365. [PMID: 38987585 PMCID: PMC11306098 DOI: 10.1038/s41586-024-07634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
In lactating mothers, the high calcium (Ca2+) demand for milk production triggers significant bone loss1. Although oestrogen normally counteracts excessive bone resorption by promoting bone formation, this sex steroid drops precipitously during this postpartum period. Here we report that brain-derived cellular communication network factor 3 (CCN3) secreted from KISS1 neurons of the arcuate nucleus (ARCKISS1) fills this void and functions as a potent osteoanabolic factor to build bone in lactating females. We began by showing that our previously reported female-specific, dense bone phenotype2 originates from a humoral factor that promotes bone mass and acts on skeletal stem cells to increase their frequency and osteochondrogenic potential. This circulatory factor was then identified as CCN3, a brain-derived hormone from ARCKISS1 neurons that is able to stimulate mouse and human skeletal stem cell activity, increase bone remodelling and accelerate fracture repair in young and old mice of both sexes. The role of CCN3 in normal female physiology was revealed after detecting a burst of CCN3 expression in ARCKISS1 neurons coincident with lactation. After reducing CCN3 in ARCKISS1 neurons, lactating mothers lost bone and failed to sustain their progeny when challenged with a low-calcium diet. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone for both sexes and define a new maternal brain hormone for ensuring species survival in mammals.
Collapse
Affiliation(s)
- Muriel E Babey
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, San Francisco, CA, USA
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Chen
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Denali Therapeutics, South San Francisco, CA, USA
| | - Zsofia Torok
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joni Nikkanen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ruben Rodriguez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Carmot Therapeutics, Berkeley, CA, USA
| | - Xiao Zhang
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Fernanda Castro-Navarro
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Erika E Wheeler
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Saul Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Nancy E Lane
- Department of Medicine, Division of Rheumatology, University of California, Davis, Sacramento, CA, USA
| | - Erica L Scheller
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA.
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Towle I, Loch C, Oxenham M, Krueger KL, Samir Salem A, de Pinillos MM, Modesto-Mata M, Hlusko LJ. Technical note: Micro-computed tomography calibration using dental tissue for bone mineral research. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24952. [PMID: 38775381 DOI: 10.1002/ajpa.24952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Computed tomography (CT) and microcomputed tomography (μCT) require calibration against density phantoms scanned with specimens or during routine internal calibration for assessment of mineral concentration (MC) and density. In clinical studies involving bone, alternative calibration methods using bodily tissues and fluids ("phantomless" calibration) have been suggested. However, such tissues are seldom available in archeological and osteological research. This study investigates the potential of dental tissue as internal reference for calibration of μCT scans, facilitating the analysis of bone MC. We analyzed 70 molars from 24 extant primate species, including eight human teeth, each scanned with density phantoms for calibration. Our findings indicate that sampling specific regions of molars (lateral aspects of the mesial cusps) yields low variation in enamel and dentine MC values, averaging 1.27 g/cm3 (±0.03) for dentine and 2.25 g/cm3 (±0.03) for enamel. No significant differences were observed across molar types or among scanning procedures, including scanner model, resolution, and filters. An ad hoc test on 12 mandibles revealed low variance in MC between the conventional phantom and dental tissue calibration methods; all 36 measurements (low, medium, and high MC for each mandible) were within 0.05 g/cm3 of each other -81% were within 0.03 g/cm3 and 94% within 0.04 g/cm3. Based on these results, we propose a new "phantomless" calibration technique using these mean enamel and dentine MC values. The presented phantomless calibration method could aid in the assessment of bone pathology and enhance the scope of studies investigating bone structure and physical property variations in archeological, osteological, and laboratory-based research.
Collapse
Affiliation(s)
- Ian Towle
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Marc Oxenham
- School of Archaeology and Anthropology, Australian National University, Canberra, Australia
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK
| | - Kristin L Krueger
- Department of Anthropology, Loyola University Chicago, Chicago, IL, USA
| | - Amira Samir Salem
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Marina Martínez de Pinillos
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Laboratorio de Evolución Humana (LEH), Universidad de Burgos, Burgos, Spain
| | - Mario Modesto-Mata
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
- Universidad Internacional de La Rioja (UNIR), Logroño La Rioja, Spain
| | - Leslea J Hlusko
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| |
Collapse
|
5
|
Tomczyk-Warunek A, Turżańska K, Posturzyńska A, Kowal F, Blicharski T, Pano IT, Winiarska-Mieczan A, Nikodem A, Dresler S, Sowa I, Wójciak M, Dobrowolski P. Influence of Various Strontium Formulations (Ranelate, Citrate, and Chloride) on Bone Mineral Density, Morphology, and Microarchitecture: A Comparative Study in an Ovariectomized Female Mouse Model of Osteoporosis. Int J Mol Sci 2024; 25:4075. [PMID: 38612883 PMCID: PMC11012416 DOI: 10.3390/ijms25074075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoporosis stands out as a prevalent skeletal ailment, prompting exploration into potential treatments, including dietary strontium ion supplements. This study assessed the efficacy of supplementation of three strontium forms-strontium citrate (SrC), strontium ranelate (SrR), and strontium chloride (SrCl)-for enhancing bone structure in 50 female SWISS mice, aged seven weeks. In total, 40 mice underwent ovariectomy, while 10 underwent sham ovariectomy. Ovariectomized (OVX) mice were randomly assigned to the following groups: OVX (no supplementation), OVX + SrR, OVX + SrC, and OVX + SrCl, at concentrations equivalent to the molar amount of strontium. After 16 weeks, micro-CT examined trabeculae and cortical bones, and whole-bone strontium content was determined. Results confirm strontium administration increased bone tissue mineral density (TMD) and Sr content, with SrC exhibiting the weakest effect. Femur morphometry showed limited Sr impact, especially in the OVX + SrC group. This research highlights strontium's potential in bone health, emphasizing variations in efficacy among its forms.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Karolina Turżańska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Agnieszka Posturzyńska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Filip Kowal
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Inés Torné Pano
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| |
Collapse
|
6
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Takahashi Y, Fujita H, Seino Y, Hattori S, Hidaka S, Miyakawa T, Suzuki A, Waki H, Yabe D, Seino Y, Yamada Y. Gastric inhibitory polypeptide receptor antagonism suppresses intramuscular adipose tissue accumulation and ameliorates sarcopenia. J Cachexia Sarcopenia Muscle 2023; 14:2703-2718. [PMID: 37897141 PMCID: PMC10751449 DOI: 10.1002/jcsm.13346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Intramuscular adipose tissue (IMAT) formation derived from muscle fibro-adipogenic progenitors (FAPs) has been recognized as a pathological feature of sarcopenia. This study aimed to explore whether genetic and pharmacological gastric inhibitory polypeptide (GIP) receptor antagonism suppresses IMAT accumulation and ameliorates sarcopenia in mice. METHODS Whole body composition, grip strength, skeletal muscle weight, tibialis anterior (TA) muscle fibre cross-sectional area (CSA) and TA muscle IMAT area were measured in young and aged male C57BL/6 strain GIP receptor (Gipr)-knockout (Gipr-/- ) and wild-type (Gipr+/+ ) mice. FAPs isolated from lower limb muscles of 12-week-old Gipr+/+ mice were cultured with GIP, and their differentiation into mature adipocytes was examined. Furthermore, TA muscle IMAT area and fibre CSA were measured in untreated Gipr-/- mice and GIP receptor antagonist-treated Gipr+/+ mice after glycerol injection into the TA muscles. RESULTS Body composition analysis revealed that 104-week-old Gipr-/- mice had a greater proportion of lean tissue mass (73.7 ± 1.2% vs. 66.5 ± 2.7%, P < 0.05 vs. 104-week-old Gipr+/+ mice) and less adipose tissue mass (13.1 ± 1.3% vs. 19.4 ± 2.6%, P < 0.05 vs. 104-week-old Gipr+/+ mice). Eighty-four-week-old Gipr-/- mice exhibited increases in grip strength (P < 0.05), weights of TA (P < 0.05), soleus (P < 0.01), gastrocnemius (P < 0.05) and quadriceps femoris (P < 0.01) muscles, and average TA muscle fibre CSA (P < 0.05) along with a reduction in TA muscle IMAT area assessed by the number of perilipin-positive cells (P < 0.0001) compared with 84-week-old Gipr+/+ mice. Oil Red O staining analysis revealed 1.6- and 1.7-fold increased adipogenesis in muscle FAPs cultured with 10 and 100 nM of GIP (P < 0.01 and P < 0.001 vs. 0 nM of GIP, respectively). Furthermore, both untreated Gipr-/- mice and GIP receptor antagonist-treated Gipr+/+ mice for 14 days after glycerol injection into the TA muscles at 12 weeks of age showed reduced TA muscle IMAT area (1.39 ± 0.38% and 2.65 ± 0.36% vs. 6.54 ± 1.30%, P < 0.001 and P < 0.01 vs. untreated Gipr+/+ mice, respectively) and increased average TA muscle fibre CSA (P < 0.01 and P < 0.05 vs. untreated Gipr+/+ mice, respectively). CONCLUSIONS GIP promotes the differentiation of muscle FAPs into adipocytes and its receptor antagonism suppresses IMAT accumulation and promotes muscle regeneration. Pharmacological GIP receptor antagonism may serve as a novel therapeutic approach for sarcopenia.
Collapse
Affiliation(s)
- Yuya Takahashi
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Hiroki Fujita
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeJapan
| | - Shihomi Hidaka
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeJapan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
| | - Hironori Waki
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical ImmunologyGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational ResearchGifu UniversityGifuJapan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| | - Yuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| |
Collapse
|
8
|
Babey ME, Krause WC, Herber CB, Chen K, Nikkanen J, Rodriquez R, Zhang X, Castro-Navarro F, Wang Y, Villeda S, Lane NE, Scheller EL, Chan CKF, Ambrosi TH, Ingraham HA. Brain-Derived CCN3 Is An Osteoanabolic Hormone That Sustains Bone in Lactating Females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554707. [PMID: 37693376 PMCID: PMC10491109 DOI: 10.1101/2023.08.28.554707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In lactating mothers, the high calcium (Ca 2+ ) demand for milk production triggers significant bone resorption. While estrogen would normally counteract excessive bone loss and maintain sufficient bone formation during this postpartum period, this sex steroid drops precipitously after giving birth. Here, we report that brain-derived CCN3 (Cellular Communication Network factor 3) secreted from KISS1 neurons of the arcuate nucleus (ARC KISS1 ) fills this void and functions as a potent osteoanabolic factor to promote bone mass in lactating females. Using parabiosis and bone transplant methods, we first established that a humoral factor accounts for the female-specific, high bone mass previously observed by our group after deleting estrogen receptor alpha (ER α ) from ARC KISS1 neurons 1 . This exceptional bone phenotype in mutant females can be traced back to skeletal stem cells (SSCs), as reflected by their increased frequency and osteochondrogenic potential. Based on multiple assays, CCN3 emerged as the most promising secreted pro-osteogenic factor from ARC KISS1 neurons, acting on mouse and human SSCs at low subnanomolar concentrations independent of age or sex. That brain-derived CCN3 promotes bone formation was further confirmed by in vivo gain- and loss-of-function studies. Notably, a transient rise in CCN3 appears in ARC KISS1 neurons in estrogen-depleted lactating females coincident with increased bone remodeling and high calcium demand. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone that defines a novel female-specific brain-bone axis for ensuring mammalian species survival.
Collapse
|
9
|
Chang SH, Hsiao HY, Chen YH, Cheng MH, Liu JW, Huang HJ, Chou YT, Amer TAM, Vijayaraghavan P, Palanisamy S, Wang YM, Lu TT. Conjugation of bone grafts with NO-delivery dinitrosyl iron complexes promotes synergistic osteogenesis and angiogenesis in rat calvaria bone defects. J Mater Chem B 2023; 11:8007-8019. [PMID: 37530140 DOI: 10.1039/d3tb00587a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Craniofacial/jawbone deformities remain a significant clinical challenge in restoring facial/dental functions and esthetics. Despite the reported therapeutics for clinical bone tissue regeneration, the bioavailability issue of autografts and limited regeneration efficacy of xenografts/synthetic bone substitutes, however, inspire continued efforts towards functional conjugation and improvement of bioactive bone graft materials. Regarding the potential of nitric oxide (NO) in tissue engineering, herein, functional conjugation of NO-delivery dinitrosyl iron complex (DNIC) and osteoconductive bone graft materials was performed to optimize the spatiotemporal control over the delivery of NO and to activate synergistic osteogenesis and angiogenesis in rat calvaria bone defects. Among three types of biomimetic DNICs, [Fe2(μ-SCH2CH2COOH)2(NO)4] (DNIC-COOH) features a steady kinetics for cellular uptake by MC3T3-E1 osteoblast cells followed by intracellular assembly of protein-bound DNICs and release of NO. This steady kinetics for intracellular delivery of NO by DNIC-COOH rationalizes its biocompatibility and wide-spectrum cell proliferation effects on MC3T3-E1 osteoblast cells and human umbilical vein endothelial cells (HUVECs). Moreover, the bridging [SCH2CH2COOH]- thiolate ligands in DNIC-COOH facilitate its chemisorption to deproteinized bovine bone mineral (DBBM) and physisorption onto TCP (β-tricalcium phosphate), respectively, which provides a mechanism to control the kinetics for the local release of loaded DNIC-COOH. Using rats with calvaria bone defects as an in vivo model, DNIC-DBBM/DNIC-TCP promotes the osteogenic and angiogenic activity ascribed to functional conjugation of osteoconductive bone graft materials and NO-delivery DNIC-COOH. Of importance, the therapeutic efficacy of DNIC-DBBM/DNIC-TCP on enhanced compact bone formation after treatment for 4 and 12 weeks supports the potential for clinical application to regenerative medicine.
Collapse
Affiliation(s)
- Shih-Hao Chang
- Department of Periodontics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan 33302, Taiwan
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Hui-Yi Hsiao
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Ming-Huei Cheng
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jia-Wei Liu
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hsiao-Jo Huang
- Department of Periodontics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Yu-Ting Chou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Tarik Abdelkareem Mostafa Amer
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Priya Vijayaraghavan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sathyadevi Palanisamy
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
10
|
Pizza FX, Buckley KH. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them? Int J Mol Sci 2023; 24:12545. [PMID: 37628725 PMCID: PMC10454182 DOI: 10.3390/ijms241612545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Injury to skeletal muscle through trauma, physical activity, or disease initiates a process called muscle regeneration. When injured myofibers undergo necrosis, muscle regeneration gives rise to myofibers that have myonuclei in a central position, which contrasts the normal, peripheral position of myonuclei. Myofibers with central myonuclei are called regenerating myofibers and are the hallmark feature of muscle regeneration. An important and underappreciated aspect of muscle regeneration is the maturation of regenerating myofibers into a normal sized myofiber with peripheral myonuclei. Strikingly, very little is known about processes that govern regenerating myofiber maturation after muscle injury. As knowledge of myofiber formation and maturation during embryonic, fetal, and postnatal development has served as a foundation for understanding muscle regeneration, this narrative review discusses similarities and differences in myofiber maturation during muscle development and regeneration. Specifically, we compare and contrast myonuclear positioning, myonuclear accretion, myofiber hypertrophy, and myofiber morphology during muscle development and regeneration. We also discuss regenerating myofibers in the context of different types of myofiber necrosis (complete and segmental) after muscle trauma and injurious contractions. The overall goal of the review is to provide a framework for identifying cellular and molecular processes of myofiber maturation that are unique to muscle regeneration.
Collapse
Affiliation(s)
- Francis X. Pizza
- Department of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
11
|
Lowen GB, Garrett KA, Moore-Lotridge SN, Uppuganti S, Guelcher SA, Schoenecker JG, Nyman JS. Effect of Intramedullary Nailing Patterns on Interfragmentary Strain in a Mouse Femur Fracture: A Parametric Finite Element Analysis. J Biomech Eng 2022; 144:051007. [PMID: 34802060 PMCID: PMC8822464 DOI: 10.1115/1.4053085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Delayed long bone fracture healing and nonunion continue to be a significant socioeconomic burden. While mechanical stimulation is known to be an important determinant of the bone repair process, understanding how the magnitude, mode, and commencement of interfragmentary strain (IFS) affect fracture healing can guide new therapeutic strategies to prevent delayed healing or nonunion. Mouse models provide a means to investigate the molecular and cellular aspects of fracture repair, yet there is only one commercially available, clinically-relevant, locking intramedullary nail (IMN) currently available for studying long bone fractures in rodents. Having access to alternative IMNs would allow a variety of mechanical environments at the fracture site to be evaluated, and the purpose of this proof-of-concept finite element analysis study is to identify which IMN design parameters have the largest impact on IFS in a murine transverse femoral osteotomy model. Using the dimensions of the clinically relevant IMN as a guide, the nail material, distance between interlocking screws, and clearance between the nail and endosteal surface were varied between simulations. Of these parameters, changing the nail material from stainless steel (SS) to polyetheretherketone (PEEK) had the largest impact on IFS. Reducing the distance between the proximal and distal interlocking screws substantially affected IFS only when nail modulus was low. Therefore, IMNs with low modulus (e.g., PEEK) can be used alongside commercially available SS nails to investigate the effect of initial IFS or stability on fracture healing with respect to different biological conditions of repair in rodents.
Collapse
Affiliation(s)
- Gregory B. Lowen
- Vanderbilt University, Department of Chemical and Biomolecular Engineering, 2201 West End Ave, Nashville, TN 37235
| | - Katherine A. Garrett
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232
| | - Stephanie N. Moore-Lotridge
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232;Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232;Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212
| | - Scott A. Guelcher
- Vanderbilt University, Department of Chemical and Biomolecular Engineering, 2201 West End Ave, Nashville, TN 37235; Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Vanderbilt University Medical Center, Division of Clinical Pharmacology, 1211 Medical Center Dr, Nashville, TN 37217
| | - Jonathan G. Schoenecker
- Vanderbilt University, Department of Pharmacology, 465 21 Ave South, 7124 Medical Research Building III, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, 1161 21 Ave S C-3322 Medical Center North, Nashville, TN 37232; Vanderbilt University Medical Center, Department of Pediatrics, 2200 Children's Way, Suite 2404, Nashville, TN 37232
| | - Jeffry S. Nyman
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, TN 37232; Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Tennessee Valley Healthcare System, Department of Veterans Affairs, 1310 24 Ave. S, Nashville, TN 37212
| |
Collapse
|
12
|
Wong D, Broberg DN, Doad J, Umoh JU, Bellyou M, Norley CJD, Holdsworth DW, Montero-Odasso M, Beauchet O, Annweiler C, Bartha R. Effect of Memantine Treatment and Combination with Vitamin D Supplementation on Body Composition in the APP/PS1 Mouse Model of Alzheimer's Disease Following Chronic Vitamin D Deficiency. J Alzheimers Dis 2021; 81:375-388. [PMID: 33780366 DOI: 10.3233/jad-201137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin D deficiency and altered body composition are common in Alzheimer's disease (AD). Memantine with vitamin D supplementation can protect cortical axons against amyloid-β exposure and glutamate toxicity. OBJECTIVE To study the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on whole-body composition using a mouse model of AD. METHODS Male APPswe/PS1dE9 mice were divided into four groups at 2.5 months of age: the control group (n = 14) was fed a standard diet throughout; the remaining mice were started on a vitamin D-deficient diet at month 6. The vitamin D-deficient group (n = 14) remained on the vitamin D-deficient diet for the rest of the study. Of the remaining two groups, one had memantine (n = 14), while the other had both memantine and 10 IU/g vitamin D (n = 14), added to their diet at month 9. Serum 25(OH)D levels measured at months 6, 9, 12, and 15 confirmed vitamin D levels were lower in mice on vitamin D-deficient diets and higher in the vitamin D-supplemented mice. Micro-computed tomography was performed at month 15 to determine whole-body composition. RESULTS In mice deprived of vitamin D, memantine increased bone mineral content (8.7% increase, p < 0.01) and absolute skeletal tissue mass (9.3% increase, p < 0.05) and volume (9.2% increase, p < 0.05) relative to controls. This was not observed when memantine treatment was combined with vitamin D enrichment. CONCLUSION Combination treatment of vitamin D and memantine had no negative effects on body composition. Future studies should clarify whether vitamin D status impacts the effects of memantine treatment on bone physiology in people with AD.
Collapse
Affiliation(s)
- Dickson Wong
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Dana N Broberg
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jagroop Doad
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Joseph U Umoh
- Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Chris J D Norley
- Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - David W Holdsworth
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Manuel Montero-Odasso
- Department of Medicine, Division of Geriatric Medicine, Parkwood Hospital, University of Western Ontario, London, ON, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - Olivier Beauchet
- Department of Medicine, University of Montreal and McGill University, Montreal, QC, Canada
| | - Cedric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France.,UPRES EA 4638, University of Angers, Angers, France
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Moon PM, Shao ZY, Wambiekele G, Appleton CTG, Laird DW, Penuela S, Beier F. Global Deletion of Pannexin 3 Resulting in Accelerated Development of Aging-Induced Osteoarthritis in Mice. Arthritis Rheumatol 2021; 73:1178-1188. [PMID: 33426805 DOI: 10.1002/art.41651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) results in pathologic changes in the joint tissue. The mechanisms driving disease progression remain largely unclear, and thus disease-modifying treatments are lacking. Pannexin 3 (Panx3) was identified as a potential mediator of cartilage degeneration in OA, and our previous study in mice indicated that deletion of the Panx3 gene delayed surgically induced cartilage degeneration. This study was undertaken to examine the role of Panx3 in other OA subtypes, particularly primary OA during aging, in a mouse model of aging-induced OA. METHODS Wild-type (WT) and Panx3-/- C57BL/6J (Black-6) mice, ages 18-24 months, were analyzed by micro-computed tomography to investigate bone mineral density and body composition. Joints were harvested from the mice, and histopathologic analysis of the joint tissue for OA development was conducted with a specific focus on changes in articular cartilage, subchondral bone, and synovial tissue. RESULTS Global loss of Panx3 in aging mice was not associated with increased mortality or changes in body composition. Mice lacking Panx3 had shorter appendicular skeletons than WT mice, but overall the body compositions appeared quite similar. Panx3 deletion dramatically accelerated cartilage degeneration and subchondral bone thickening with aging in both 18-month-old and 24-month-old mice, while promoting synovitis in 18-month-old mice. CONCLUSION These observations in a mouse model of OA suggest that Panx3 has a protective role against the development of primary aging-associated OA. It appears that Panx3 has opposing context-specific roles in joint health following traumatic injury versus that associated with aging. These data strongly suggest that there are differences in the molecular pathways driving different subtypes of OA, and therefore a detailed understanding of these pathways could directly improve strategies for OA diagnosis, therapy, and research.
Collapse
Affiliation(s)
- P M Moon
- University of Western Ontario, London, Ontario, Canada
| | - Z Y Shao
- University of Western Ontario, London, Ontario, Canada
| | - G Wambiekele
- University of Western Ontario, London, Ontario, Canada
| | | | - D W Laird
- University of Western Ontario, London, Ontario, Canada
| | - S Penuela
- University of Western Ontario, London, Ontario, Canada
| | - F Beier
- University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Sex-dependent effects of forced exercise in the body composition of adolescent rats. Sci Rep 2021; 11:10154. [PMID: 33980961 PMCID: PMC8115159 DOI: 10.1038/s41598-021-89584-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Determining the body composition during adolescence can predict diseases such as obesity, diabetes, and metabolic syndromes later in life; and physical activity became an effective way to restore changes in body composition. However, current available literature assessing the body composition before, during and after adolescence in female and male rodents by in vivo techniques is scarce. Thus, by using computerized tomography, we aimed to define the baseline of the weight and body composition during the adolescence and young adulthood of female and male Sprague-Dawley rats (on P30, P60 and P90) under standard diet. Then, we determined the effect of 18 days of forced exercise on the body weight and composition during the early adolescence (P27-45). The highest percentual increments in weight, body volume and relative adipose contents occurred during the female and male adolescence. Forced running during the early adolescence decreased weight, body volume and relative adipose delta and increment values in males only. The adolescence of rats is a period of drastic body composition changes, where exercise interventions have sex-dependent effects. These results support a model that could open new research windows in the field of adolescent obesity.
Collapse
|
15
|
Kerr GJ, To B, White I, Millecamps M, Beier F, Grol MW, Stone LS, Séguin CA. Diet-induced obesity leads to behavioral indicators of pain preceding structural joint damage in wild-type mice. Arthritis Res Ther 2021; 23:93. [PMID: 33752736 PMCID: PMC7983381 DOI: 10.1186/s13075-021-02463-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Obesity is one of the largest modifiable risk factors for the development of musculoskeletal diseases, including intervertebral disc (IVD) degeneration and back pain. Despite the clinical association, no studies have directly assessed whether diet-induced obesity accelerates IVD degeneration, back pain, or investigated the biological mediators underlying this association. In this study, we examine the effects of chronic consumption of a high-fat or high-fat/high-sugar (western) diet on the IVD, knee joint, and pain-associated outcomes. Methods Male C57BL/6N mice were randomized into one of three diet groups (chow control; high-fat; high-fat, high-sugar western diet) at 10 weeks of age and remained on the diet for 12, 24, or 40 weeks. At endpoint, animals were assessed for behavioral indicators of pain, joint tissues were collected for histological and molecular analysis, serum was collected to assess for markers of systemic inflammation, and IBA-1, GFAP, and CGRP were measured in spinal cords by immunohistochemistry. Results Animals fed obesogenic (high-fat or western) diets showed behavioral indicators of pain beginning at 12 weeks and persisting up to 40 weeks of diet consumption. Histological indicators of moderate joint degeneration were detected in the IVD and knee following 40 weeks on the experimental diets. Mice fed the obesogenic diets showed synovitis, increased intradiscal expression of inflammatory cytokines and circulating levels of MCP-1 compared to control. Linear regression modeling demonstrated that age and diet were both significant predictors of most pain-related behavioral outcomes, but not histopathological joint degeneration. Synovitis was associated with alterations in spontaneous activity. Conclusion Diet-induced obesity accelerates IVD degeneration and knee OA in mice; however, pain-related behaviors precede and are independent of histopathological structural damage. These findings contribute to understanding the source of obesity-related back pain and the contribution of structural IVD degeneration.
Collapse
Affiliation(s)
- Geoffrey J Kerr
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Bethia To
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Ian White
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Magali Millecamps
- Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Frank Beier
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Matthew W Grol
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Laura S Stone
- Department of Anesthesiology, Faculty of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cheryle A Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
16
|
Nachit M, De Rudder M, Thissen JP, Schakman O, Bouzin C, Horsmans Y, Vande Velde G, Leclercq IA. Myosteatosis rather than sarcopenia associates with non-alcoholic steatohepatitis in non-alcoholic fatty liver disease preclinical models. J Cachexia Sarcopenia Muscle 2021; 12:144-158. [PMID: 33244884 PMCID: PMC7890270 DOI: 10.1002/jcsm.12646] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver (NAFL) disease (NAFLD) is the most common chronic liver disease in the world. While most subjects have 'inert' NAFL, a subset will progress to non-alcoholic steatohepatitis (NASH) and its life-threatening complications. A substantial body of literature supports that a low muscle mass, low strength, and/or muscle fatty infiltration (myosteatosis) are associated with NAFLD severity. Here, we evaluated the muscle compartment in NASH preclinical models to decipher the kinetics of muscle alterations in relation with liver disease progression. METHODS We developed and validated a micro-computed tomography-based methodology to prospectively study skeletal muscle mass and density in muscle and liver (i.e. reflecting fatty infiltration) in a high-throughput and non-invasive manner in three preclinical NAFLD/NASH rodent models: fat aussie (FOZ) mice fed a high-fat diet (FOZ HF), wild-type (WT) mice fed a high-fat high-fructose diet (WT HFF), and WT mice fed a high-fat diet (WT HF). We compared them with WT mice fed a normal diet (WT ND) used as controls. RESULTS -FOZ HF with fibrosing NASH had sarcopenia characterized by a reduced muscle strength when compared with WT HF and WT HFF with early NASH and WT ND controls (165.2 ± 5.2 g vs. 237.4 ± 11.7 g, 256 ± 5.7 g, and 242.9 ± 9.3 g, respectively, P 60; 0.001). Muscle mass or strength was not lower in FOZ HF, WT HF, and WT HFF with early NASH than in controls. Myosteatosis was present in FOZ HF with fibrosing NASH, but also in FOZ HF, WT HF, and WT HFF with early NASH (muscle density = 0.50 ± 0.02, 0.62 ± 0.02, 0.70 ± 0.05, and 0.75 ± 0.03, respectively, with P 60; 0.001 when compared with respective controls). Myosteatosis degree was strongly correlated with NAFLD activity score (r = -0.87, n = 67, P 60; 0.001). In multivariate analysis, the association between myosteatosis and NASH was independent from homeostatic model assessment of insulin resistance and visceral fat area (P 60; 0.05). Myosteatosis degree powerfully discriminated NASH from benign NAFL and normal liver (area under the receiver operating characteristic = 0.96, n = 67, P 60; 0.001). CONCLUSIONS Taken together, our data support that there is no sarcopenia in obese mice with early NASH. In contrast, the severity of myosteatosis reflects on hepatocellular damage and inflammation during early NASH development. This observation prompts us to exploit myosteatosis as a novel non-invasive marker of NASH.
Collapse
Affiliation(s)
- Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Maxime De Rudder
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | | | | | - Yves Horsmans
- Service d'Hépato-Gastro-Entérologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Isabelle Anne Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| |
Collapse
|
17
|
Jorgenson KW, Phillips SM, Hornberger TA. Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells 2020; 9:E1658. [PMID: 32660165 PMCID: PMC7408414 DOI: 10.3390/cells9071658] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The maintenance of skeletal muscle mass plays a critical role in health and quality of life. One of the most potent regulators of skeletal muscle mass is mechanical loading, and numerous studies have led to a reasonably clear understanding of the macroscopic and microscopic changes that occur when the mechanical environment is altered. For instance, an increase in mechanical loading induces a growth response that is mediated, at least in part, by an increase in the cross-sectional area of the myofibers (i.e., myofiber hypertrophy). However, very little is known about the ultrastructural adaptations that drive this response. Even the most basic questions, such as whether mechanical load-induced myofiber hypertrophy is mediated by an increase in the size of the pre-existing myofibrils and/or an increase in the number myofibrils, have not been resolved. In this review, we thoroughly summarize what is currently known about the macroscopic, microscopic and ultrastructural changes that drive mechanical load-induced growth and highlight the critical gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Kent W. Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Troy A. Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
| |
Collapse
|
18
|
Bellini M, Pest MA, Miranda-Rodrigues M, Qin L, Jeong JW, Beier F. Overexpression of MIG-6 in the cartilage induces an osteoarthritis-like phenotype in mice. Arthritis Res Ther 2020; 22:119. [PMID: 32430054 PMCID: PMC7236969 DOI: 10.1186/s13075-020-02213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis and characterized by degeneration of the articular cartilage. Mitogen-inducible gene 6 (Mig-6) has been identified as a negative regulator of the epidermal growth factor receptor (EGFR). Cartilage-specific Mig-6 knockout (KO) mice display increased EGFR signaling, an anabolic buildup of the articular cartilage, and formation of chondro-osseous nodules. Since our understanding of the EGFR/Mig-6 network in the cartilage remains incomplete, we characterized mice with cartilage-specific overexpression of Mig-6 in this study. METHODS Utilizing knee joints from cartilage-specific Mig-6-overexpressing (Mig-6over/over) mice (at multiple time points), we evaluated the articular cartilage using histology, immunohistochemical staining, and semi-quantitative histopathological scoring (OARSI) at multiple ages. MicroCT analysis was employed to examine skeletal morphometry, body composition, and bone mineral density. RESULTS Our data show that cartilage-specific Mig-6 overexpression did not cause any major developmental abnormalities in the articular cartilage, although Mig-6over/over mice have slightly shorter long bones compared to the control group. Moreover, there was no significant difference in bone mineral density and body composition in any of the groups. However, our results indicate that Mig-6over/over male mice show accelerated cartilage degeneration at 12 and 18 months of age. Immunohistochemistry for SOX9 demonstrated that the number of positively stained cells in Mig-6over/over mice was decreased relative to controls. Immunostaining for MMP13 appeared increased in areas of cartilage degeneration in Mig-6over/over mice. Moreover, staining for phospho-EGFR (Tyr-1173) and lubricin (PRG4) was decreased in the articular cartilage of Mig-6over/over mice. CONCLUSION Overexpression of Mig-6 in the articular cartilage causes no major developmental phenotype; however, these mice develop earlier OA during aging. These data demonstrate that Mig-6/EGFR pathways are critical for joint homeostasis and might present a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Melina Bellini
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
| | - Michael A Pest
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
| | - Manuela Miranda-Rodrigues
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Western University Bone and Joint Institute, London, ON, Canada.
- Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
19
|
Roberts BC, Giorgi M, Oliviero S, Wang N, Boudiffa M, Dall'Ara E. The longitudinal effects of ovariectomy on the morphometric, densitometric and mechanical properties in the murine tibia: A comparison between two mouse strains. Bone 2019; 127:260-270. [PMID: 31254730 DOI: 10.1016/j.bone.2019.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Oestrogen deficiency-related bone loss in the ovariectomized (OVX) mouse is a common model for osteoporosis. However, a comprehensive in vivo assessment of intervention-related changes in multiple bone properties, and in multiple mouse strains, is required in order to identify an appropriate model for future evaluation of novel anti-osteoporotic therapies. The aim of this study was to evaluate the effect of OVX on the morphometric and densitometric properties measured in the microCT images and the mechanical properties estimated with finite element models of the tibia in two mouse strains, C57BL/6 and BALB/c. 14-weeks-old female C57BL/6 and BALB/c mice were divided into two groups per strain: (1) ovariectomized, (2) non-operated control. The right tibia was scanned at baseline (14 weeks) and then every two weeks thereafter, until 24-weeks-old, using in vivo microCT. Changes in trabecular and cortical bone morphometry, spatiotemporal changes in densitometric properties and in mechanical properties (from micro-finite element (μFE) analysis) were computed. Differences between OVX and non-operated controls were evaluated by ANCOVA, adjusted for 14-weeks baseline. In morphometry, trabecular bone mass was significantly reduced in both C57BL/6 and BALB/c from four weeks following surgery. Though the OVX-effect was transient in BALB/c as bone mass reached skeletal homeostasis. OVX inhibited the age-related thickening of cortical bone only in C57BL/6. In both strains, increments in bone mineral content were significantly lower with OVX only in the proximal tibia, with intervention-related differences increasing with time. OVX had no effect on μFE estimates of stiffness nor failure load in either strain. The results of this study show strain-, time- and region-(trabecular or cortical) dependent changes in morphometric and densitometric properties. These findings highlight the importance of choosing an appropriate mouse model and time points for research of treatments against accelerated bone resorption.
Collapse
Affiliation(s)
- Bryant C Roberts
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Mario Giorgi
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Certara QSP, Certara UK Ltd., Simcyp Division, Sheffield, UK
| | - Sara Oliviero
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, UK
| | - Maya Boudiffa
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, UK.
| |
Collapse
|