1
|
Nandy A, Helderman RCM, Thapa S, Peck SH, Richards A, Jayapalan S, Narayani N, Czech MP, Rosen CJ, Rendina-Ruedy E. Enhanced fatty acid oxidation in osteoprogenitor cells provides protection from high-fat diet induced bone dysfunction. J Bone Miner Res 2025; 40:283-298. [PMID: 39657629 PMCID: PMC11789392 DOI: 10.1093/jbmr/zjae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Bone homeostasis within the skeletal system is predominantly maintained by bone formation and resorption, where formation of new bone involves maturation of stromal cells to mineral and matrix secreting mature osteoblasts, which requires cellular energy or adenosine triphosphate. Alterations in systemic metabolism can influence osteoblast function. In line with this, type 2 diabetes mellitus (T2DM), a common metabolic disorder is also associated with reduced bone formation and increased risk of fracture. Impairment in lipid metabolism is one of the key features associated with T2DM-related pathologies in multiple tissues. Therefore, we tested the hypothesis that the reduced bone formation reported in obese murine models of impaired glucose tolerance is a function of disrupted lipid metabolism in osteoblasts. We first confirmed that mice fed a high-fat diet (HFD) have reduced bone microarchitecture along with lower bone formation rates. Interestingly, osteoblasts from obese mice harbor higher numbers of cytosolic lipid droplets along with decreased bioenergetic profiles compared to control cells. Further supporting this observation, bone cortex demonstrated higher total lipid content in HFD fed mice compared to control-fed mice. As a further proof of principle, we generated a novel murine model to conditionally delete Plin2 in osteoblast-progenitor cells using Prrx1-Cre, to enhance lipid droplet breakdown. Our data demonstrate that knocking down Plin2 in an osteoprogenitor specific manner protects from HFD induced osteoblast dysfunction. Furthermore, the mechanism of action involves enhanced osteoblast fatty acid oxidation. In conclusion, the current studies establish that HFD induced glucose intolerance leads to perturbations in osteoblast lipid metabolism, thus causing lower bone formation, which can be protected against by increasing fatty acid oxidation.
Collapse
Affiliation(s)
- Ananya Nandy
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Ron C M Helderman
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Frank H. Netter M.D. School of Medicine, Quinnipiac University, North Haven, CT 06518, United States
| | - Santosh Thapa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sun H Peck
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, United States
- Department of Veterans Affairs, Nashville Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
| | - Alison Richards
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Shobana Jayapalan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Nikita Narayani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Clifford J Rosen
- Maine Health Institute for Research, Scarborough, ME 04074, United States
| | - Elizabeth Rendina-Ruedy
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, United States
| |
Collapse
|
2
|
Zhang Z, Zhang Z, Pei L, Zhang X, Li B, Meng Y, Zhou X. How high-fat diet affects bone in mice: A systematic review and meta-analysis. Obes Rev 2022; 23:e13493. [PMID: 35822276 DOI: 10.1111/obr.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
High-fat diet (HFD) feeding for mice is commonly used to model obesity. However, conflicting results have been reported on the relationship between HFD and bone mass. In this systematic review and meta-analysis, we synthesized data from 80 articles to determine the alterations in cortical and trabecular bone mass of femur, tibia, and vertebrae in C57BL/6 mice after HFD. Overall, we detected decreased trabecular bone mass as well as deteriorated architecture, in femur and tibia of HFD treated mice. The vertebral trabecula was also impaired, possibly due to its reshaping into a more fragmentized pattern. In addition, pooled cortical thickness declined in femur, tibia, and vertebrae. Combined with changes in other cortical parameters, HFD could lead to a larger femoral bone marrow cavity, and a thinner and more fragile cortex. Moreover, we conducted subgroup analyses to explore the influence of mice's sex and age as well as HFD's ingredients and intervention period. Based on our data, male mice or mice aged 6-12 weeks old are relatively susceptible to HFD. HFD with > 50% of energy from fats and intervention time of 10 weeks to 5 months are more likely to induce skeletal alterations. Altogether, these findings supported HFD as an appropriate model for obesity-associated bone loss and can guide future studies.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaozhou Zhang
- College of Letters & Science, University of California Berkeley, Berkeley, California, USA
| | - Boyuan Li
- Fountain Valley School of Colorado, Colorado Springs, Colorado, USA
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| |
Collapse
|
3
|
Romero-Márquez JM, Varela-López A, Navarro-Hortal MD, Badillo-Carrasco A, Forbes-Hernández TY, Giampieri F, Domínguez I, Madrigal L, Battino M, Quiles JL. Molecular Interactions between Dietary Lipids and Bone Tissue during Aging. Int J Mol Sci 2021; 22:ijms22126473. [PMID: 34204176 PMCID: PMC8233828 DOI: 10.3390/ijms22126473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Age-related bone disorders such as osteoporosis or osteoarthritis are a major public health problem due to the functional disability for millions of people worldwide. Furthermore, fractures are associated with a higher degree of morbidity and mortality in the long term, which generates greater financial and health costs. As the world population becomes older, the incidence of this type of disease increases and this effect seems notably greater in those countries that present a more westernized lifestyle. Thus, increased efforts are directed toward reducing risks that need to focus not only on the prevention of bone diseases, but also on the treatment of persons already afflicted. Evidence is accumulating that dietary lipids play an important role in bone health which results relevant to develop effective interventions for prevent bone diseases or alterations, especially in the elderly segment of the population. This review focuses on evidence about the effects of dietary lipids on bone health and describes possible mechanisms to explain how lipids act on bone metabolism during aging. Little work, however, has been accomplished in humans, so this is a challenge for future research.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alberto Badillo-Carrasco
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Tamara Y. Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Francesca Giampieri
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irma Domínguez
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Lorena Madrigal
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Correspondence:
| |
Collapse
|
4
|
Chen X, Yang K, Jin X, Meng Z, Liu B, Yu H, Lu P, Wang K, Fan Z, Tang Z, Zhang F, Liu C. Bone Autophagy: A Potential Way of Exercise-Mediated Meg3/P62/Runx2 Pathway to Regulate Bone Formation in T2DM Mice. Diabetes Metab Syndr Obes 2021; 14:2753-2764. [PMID: 34168475 PMCID: PMC8216663 DOI: 10.2147/dmso.s299744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Meg3 has been shown to attenuate T2DM bone autophagy by activating p62 to inhibit bone formation. However, whether exercise can reverse this process to promote T2DM bone formation and its mechanism remains unknown. METHODS A T2DM mouse model was established by a high-fat diet and STZ injection, and the mice were trained with 8-week HIIT and downhill running exercise. Micro-CT was used to scan the bone microstructure. Bone morphology was observed by HE staining, and the osteoblast (OB) activity in bones was observed by AKP staining. Calcium ion and phosphorus concentration in serum was detected by ELISA; RT-PCR was used to detect the mRNA level, and Western blot was used to detect the protein level of related indexes in Meg3/p62/Runx2 pathway. RESULTS The inhibition of bone autophagy, in the bones of T2DM mice, resulted in the degradation of the bone tissue morphology and structure, with the increase of the expressions of Meg3, PI3K, Akt, mTOR, p62 and NF-κB. However, 8-week HIIT and downhill running could reverse this process, especially downhill running, manifested with the up-regulation of miR-16 mRNA level, along with Beclin-1, LC3 II and Runx2 mRNA and protein level. CONCLUSION T2DM leads to pathology in model mice. Eight-week HIIT and downhill running exercise can inhibit Meg3, activate autophagy of osteoblasts and promote bone formation in T2DM mice.
Collapse
Affiliation(s)
- Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Xing Jin
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
- Correspondence: Xing Jin; Zhaoxiang Meng Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China Email
| | - Zhaoxiang Meng
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
- Zhaoxiang Meng Email
| | - Bo Liu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huilin Yu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Pengcheng Lu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Kui Wang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhangling Fan
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Ziang Tang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Feng Zhang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Chengye Liu
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
5
|
Different Stages of Alveolar Bone Repair Process Are Compromised in the Type 2 Diabetes Condition: An Experimental Study in Rats. BIOLOGY 2020; 9:biology9120471. [PMID: 33339217 PMCID: PMC7766949 DOI: 10.3390/biology9120471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Type 2 diabetes (T2D) affects more than 90% of all patients diagnosed with diabetes, and among its risk factors, unhealthy eating habits are worth mentioning. With the notorious increase in the incidence of diabetic patients, there has also been an increase in surgical complications in dentistry, so this work presents a study model that mimics the T2D condition in rats, where animals receive a diet composed of foods rich in sugar and fat equivalent to the poor diet of the current population. The animals were submitted to dental extraction to perform analyzes at different stages of the alveolar bone. It is important to highlight that with the development of this experimental model it will be possible to simulate different conditions that are observed in clinics and in consequence and improve the characterization of the cellular responses involved in this complex condition of T2D. The scientific evidence presented in this study shows that T2D prolongs the local inflammatory process, which impairs the organization and maturation of collagen fibers, delaying bone formation and bone turnover. This fact implies in a series of disorders in dental practice, that would need to compensate in other ways, either with systemic medications or local therapies. Abstract The aim of this study was to analyze the stages of the alveolar bone repair in type 2 diabetic rats evaluating the mechanism of mineralization and bone remodeling processes after dental extraction. Forty-eight rats were divided into normoglycemic (NG) and type 2 diabetes (T2D) groups. The upper right incisor was extracted and after 3, 7, 14 and 42 days the animals were euthanized. The following analyses were performed: immunolabeling against antibodies TNFα, TGFβ, IL6, WNT, OCN and TRAP, collagen fibers maturation, microtomography and confocal microscopy. Data were submitted to statistical analysis. The immunolabeling analysis showed that the T2D presented a more pronounced alveolar inflammation than NG. Labeling of proteins responsible for bone formation and mineralization was higher in NG than T2D, which presented greater resorptive activity characterized by TRAP labeling. Also, T2D group showed a decrease in the amount of collagen fibers. Micro-CT analysis showed that T2D causes a decrease in bone volume percentage due to deficient trabecular parameters and higher porosity. The T2D bone dynamics show a loss in bone remodeling process. T2D prolongs the local inflammatory process, which impairs the organization and maturation of collagen fibers, delaying bone formation that generates impact on mineralization and bone turnover.
Collapse
|
6
|
Zhai F, Song N, Ma J, Gong W, Tian H, Li X, Jiang C, Wang H. FGF18 inhibits MC3T3-E1 cell osteogenic differentiation via the ERK signaling pathway. Mol Med Rep 2017; 16:4127-4132. [DOI: 10.3892/mmr.2017.7088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/12/2017] [Indexed: 11/05/2022] Open
|