1
|
Ji C, Yang X, Zhang L, Chen X, Sun Y, Lin B. Microcrack behavior in bone: Stress field analysis at osteon cement line tips. Proc Inst Mech Eng H 2024; 238:909-921. [PMID: 39177050 DOI: 10.1177/09544119241272854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Bone microstructure governs microcrack propagation complexity. Current research, relying on linear elastic fracture mechanics, inadequately considers authentic multi-level structures, like cement lines and osteons, impacting stress intensity at cracks. This study, by constructing models encompassing single or multiple osteons, delves into the influence of factors like crack length, osteon radius, and modulus ratio on the stress intensity factor at the crack tip. Employing a fracture mechanics phase-field approach to simulate crack propagation paths, it particularly explores the role of cement lines as weak interfaces in crack extension. The aim is to comprehensively and systematically elucidate the critical factors of bone microstructure in the context of crack propagation.
Collapse
Affiliation(s)
- Chunhui Ji
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiuyan Yang
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Liang Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Xicheng Chen
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Yadi Sun
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Bin Lin
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Niroobakhsh M, Laughrey LE, Dallas SL, Johnson ML, Ganesh T. Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging. Biomech Model Mechanobiol 2024; 23:129-143. [PMID: 37642807 DOI: 10.1007/s10237-023-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Exercise and physical activity exert mechanical loading on the bones which induces bone formation. However, the relationship between the osteocyte lacunar-canalicular morphology and mechanical stress experienced locally by osteocytes transducing signals for bone formation is not fully understood. In this study, we used computational modeling to predict the effect of canalicular density, the number of fluid inlets, and load direction on fluid flow shear stress (FFSS) and bone strains and how these might change following the microstructural deterioration of the lacunar-canalicular network that occurs with aging. Four distinct computational models were initially generated of osteocytes with either ten or eighteen dendrites using a fluid-structure interaction method with idealized geometries. Next, a young and a simulated aged osteocyte were developed from confocal images after FITC staining of the femur of a 4-month-old C57BL/6 mouse to estimate FFSS using a computational fluid dynamics approach. The models predicted higher fluid velocities in the canaliculi versus the lacunae. Comparison of idealized models with five versus one fluid inlet indicated that with four more inlets, one-half of the dendrites experienced FFSS greater than 0.8 Pa, which has been associated with osteogenic responses. Confocal image-based models of real osteocytes indicated a six times higher ratio of canalicular to lacunar surface area in the young osteocyte model than the simulated aged model and the average FFSS in the young model (FFSS = 0.46 Pa) was three times greater than the aged model (FFSS = 0.15 Pa). Interestingly, the surface area with FFSS values above 0.8 Pa was 23 times greater in the young versus the simulated aged model. These findings may explain the impaired mechano-responsiveness of osteocytes with aging.
Collapse
Affiliation(s)
- Mohammad Niroobakhsh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Loretta E Laughrey
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Thiagarajan Ganesh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA.
| |
Collapse
|
3
|
Buccino F, Zagra L, Longo E, D'Amico L, Banfi G, Berto F, Tromba G, Vergani LM. Osteoporosis and Covid-19: Detected similarities in bone lacunar-level alterations via combined AI and advanced synchrotron testing. MATERIALS & DESIGN 2023; 231:112087. [PMID: 37323219 PMCID: PMC10257887 DOI: 10.1016/j.matdes.2023.112087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
While advanced imaging strategies have improved the diagnosis of bone-related pathologies, early signs of bone alterations remain difficult to detect. The Covid-19 pandemic has brought attention to the need for a better understanding of bone micro-scale toughening and weakening phenomena. This study used an artificial intelligence-based tool to automatically investigate and validate four clinical hypotheses by examining osteocyte lacunae on a large scale with synchrotron image-guided failure assessment. The findings indicate that trabecular bone features exhibit intrinsic variability related to external loading, micro-scale bone characteristics affect fracture initiation and propagation, osteoporosis signs can be detected at the micro-scale through changes in osteocyte lacunar features, and Covid-19 worsens micro-scale porosities in a statistically significant manner similar to the osteoporotic condition. Incorporating these findings with existing clinical and diagnostic tools could prevent micro-scale damages from progressing into critical fractures.
Collapse
Affiliation(s)
- Federica Buccino
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Italy
| | - Luigi Zagra
- I.R.C.C.S Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy
| | - Elena Longo
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | - Lorenzo D'Amico
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | - Giuseppe Banfi
- I.R.C.C.S Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy
| | - Filippo Berto
- Università La Sapienza, Rome 00185, Italy
- NTNU, Norway
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | | |
Collapse
|
4
|
Sang W, Ural A. Evaluating the Role of Canalicular Morphology and Perilacunar Region Properties on Local Mechanical Environment of Lacunar-Canalicular Network Using Finite Element Modeling. J Biomech Eng 2023; 145:1156059. [PMID: 36629002 DOI: 10.1115/1.4056655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Physiological and pathological processes such as aging, diseases, treatments, and lactation can alter lacunar-canalicular network (LCN) morphology and perilacunar region properties. These modifications can impact the mechanical environment of osteocytes which in turn can influence osteocyte mechanosensitivity and the remodeling process. In this study, we aim to evaluate how the modifications in the canalicular morphology, lacunar density, and the perilacunar region properties influence the local mechanical environment of LCN and the apparent bone properties using three-dimensional finite element (FE) modeling. The simulation results showed that a 50% reduction in perilacunar elastic modulus led to about 7% decrease in apparent elastic modulus of the bone. The increase in canalicular density, length, and diameter did not influence the strain amplification in the models but they increased the amount of highly strained bone around LCN. Change in lacunar density did not influence the strain amplification and the amount of highly strained regions on LCN surfaces. Reduction in perilacunar elastic modulus increased both the strain amplification and the volume of highly strained tissue around and on the surface of LCN. The FE models of LCN in this study can be utilized to quantify the influence of modifications in canalicular morphology, lacunar density, and perilacunar region properties on the apparent bone properties and the local mechanical environment of LCN. Although this is a numerical study with idealized models, it provides important information on how mechanical environment of osteocytes is influenced by the modifications in LCN morphology and perilacunar region properties due to physiological and pathological processes.
Collapse
Affiliation(s)
- Wen Sang
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085
| |
Collapse
|
5
|
Abstract
PURPOSE OF THE REVIEW Bone adapts structure and material properties in response to its mechanical environment, a process called mechanoadpatation. For the past 50 years, finite element modeling has been used to investigate the relationships between bone geometry, material properties, and mechanical loading conditions. This review examines how we use finite element modeling in the context of bone mechanoadpatation. RECENT FINDINGS Finite element models estimate complex mechanical stimuli at the tissue and cellular levels, help explain experimental results, and inform the design of loading protocols and prosthetics. FE modeling is a powerful tool to study bone adaptation as it complements experimental approaches. Before using FE models, researchers should determine whether simulation results will provide complementary information to experimental or clinical observations and should establish the level of complexity required. As imaging technics and computational capacity continue increasing, we expect FE models to help in designing treatments of bone pathologies that take advantage of mechanoadaptation of bone.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Osteocytes are the conductors of bone adaptation and remodelling. Buried inside the calcified matrix, they sense mechanical cues and signal osteoclasts in case of low activity, and osteoblasts when stresses are high. How do osteocytes detect mechanical stress? What physical signal do they perceive? Finite element analysis is a useful tool to address these questions as it allows calculating stresses, strains and fluid flow where they cannot be measured. The purpose of this review is to evaluate the capabilities and challenges of finite element models of bone, in particular the osteocytes and load-induced activation mechanisms. RECENT FINDINGS High-resolution imaging and increased computational power allow ever more detailed modelling of osteocytes, either in isolation or embedded within the mineralised matrix. Over the years, homogeneous models of bone and osteocytes got replaced by heterogeneous and microstructural models, including, e.g. the lacuno-canalicular network and the cytoskeleton. The lacuno-canalicular network induces strain amplifications and the osteocyte protrusions seem to be stimulated much more than the cell body, both by strain and fluid flow. More realistic cell geometries, like minute constrictions of the canaliculi, increase this effect. Microstructural osteocyte models describe the transduction of external stimuli to the nucleus. Supracellular multiscale models (e.g. of a tunnelling osteon) allow to study differential loading of osteocytes and to distinguish between strain and fluid flow as the pivotal stimulatory cue. In the future, the finite element models may be enhanced by including chemical transport and intercellular communication between osteocytes, osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Abstract
Bone is an outstanding, well-designed composite. It is constituted by a multi-level structure wherein its properties and behavior are dependent on its composition and structural organization at different length scales. The combination of unique mechanical properties with adaptive and self-healing abilities makes bone an innovative model for the future design of synthetic biomimetic composites with improved performance in bone repair and regeneration. However, the relation between structure and properties in bone is very complex. In this review article, we intend to describe the hierarchical organization of bone on progressively greater scales and present the basic concepts that are fundamental to understanding the arrangement-based mechanical properties at each length scale and their influence on bone’s overall structural behavior. The need for a better understanding of bone’s intricate composite structure is also highlighted.
Collapse
|
8
|
Sang W, Li Y, Guignon J, Liu XS, Ural A. Structural role of osteocyte lacunae on mechanical properties of bone matrix: A cohesive finite element study. J Mech Behav Biomed Mater 2022; 125:104943. [PMID: 34736032 PMCID: PMC8670554 DOI: 10.1016/j.jmbbm.2021.104943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/05/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
Despite the extensive studies on biological function of osteocytes, there are limited studies that evaluated the structural role of osteocyte lacunae on local mechanical properties of the bone matrix. As a result, the goal of this study was to elucidate the independent contribution of osteocyte lacunae structure on mechanical properties and fracture behavior of the bone matrix uncoupled from its biological effects and bone tissue composition variation. This study combined cohesive finite element modeling with experimental data from a lactation rat model to evaluate the influence of osteocyte lacunar area porosity, density, size, axis ratio, and orientation on the elastic modulus, ultimate strength, and ultimate strain of the bone matrix as well as on local crack formation and propagation. It also performed a parametric study to isolate the influence of a single osteocyte lacunae structural property on the mechanical properties of the bone matrix. The experimental measurements demonstrated statistically significant differences in lacunar size between ovariectomized rats with lactation history and virgin groups (both ovariectomized and intact) and in axis ratio between rats with lactation history and virgins. There were no differences in mechanical properties between virgin and lactation groups as determined by the finite element simulations. However, there were statistically significant linear relationships between the physiological range of osteocyte lacunar area porosity, density, size, and orientation and the elastic modulus and ultimate strength of the bone matrix in virgin and lactation rats. The parametric study also revealed similar but stronger relationships between elastic modulus and ultimate strength and lacunar density, size, and orientation. The simulations also demonstrated that the osteocyte lacunae guided the crack propagation through local stress concentrations. In summary, this study enhanced the limited knowledge on the structural role of osteocyte lacunae on local mechanical properties of the bone matrix. These data are important in gaining a better understanding of the mechanical implications of the local modifications due to osteocytes in the bone matrix.
Collapse
Affiliation(s)
- Wen Sang
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 332A Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, USA
| | - Jane Guignon
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 332A Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA.
| |
Collapse
|
9
|
Hemmatian H, Conrad S, Furesi G, Mletzko K, Krug J, Faila AV, Kuhlmann JD, Rauner M, Busse B, Jähn-Rickert K. Reorganization of the osteocyte lacuno-canalicular network characteristics in tumor sites of an immunocompetent murine model of osteotropic cancers. Bone 2021; 152:116074. [PMID: 34174502 DOI: 10.1016/j.bone.2021.116074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
Mechanosensitive osteocytes are central regulators of bone resorption and formation. However, during the formation of bone metastases, which arise as consequences of breast and prostate cancer and skew homeostatic bone remodeling to favor osteolytic, osteosclerotic or mixed lesions, only a paucity of data exists on tumor-associated osteocyte interaction. Herein, we used a suite of high-resolution imaging and histological techniques to evaluate the effect of osteotropic cancer on cortical bone microarchitecture. Confocal imaging highlighted a direct contact between tumor cells residing in the bone marrow and osteocytes. High-resolution microcomputed tomography revealed a 10-12% larger osteocyte lacuna volume in the presence of tumor cells at day 21 after intratibial injection of EO771-Luc breast and RM1-Luc prostate cancer cells. The 3D representative of the spatial distribution of cortical bone microporosity showed i) a regional accumulation of vascular canals and large lacunae with low connectivity in osteosclerotic regions of interest and ii) an absence of vascular canals and large lacunae in osteolytic regions. These findings pinpoint the relationship between the presence of tumor cells in the bone marrow microenvironment and osteocyte lacunar characteristics and cortical bone blood vessel structure.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Stefanie Conrad
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Giulia Furesi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Kathrin Mletzko
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Antonio Virgilio Faila
- Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany; Forum Medical Technology Health Hamburg (FMTHH), Hamburg, Germany.
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg.
| |
Collapse
|
10
|
Jackson E, Lara-Castillo N, Akhter MP, Dallas M, Scott JM, Ganesh T, Johnson ML. Osteocyte Wnt/β-catenin pathway activation upon mechanical loading is altered in ovariectomized mice. Bone Rep 2021; 15:101129. [PMID: 34584905 PMCID: PMC8455641 DOI: 10.1016/j.bonr.2021.101129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Estrogen levels decline in both sexes with age, but more dramatically in females. Activation of the Wnt/β-catenin signaling pathway is central to the regulation of bone mass accrual and maintenance and in response to mechanical loading. Using the ovariectomized mouse model we examined the effect of estrogen loss on the osteocyte's ability to activate the Wnt/β-catenin pathway following mechanical loading. Female TOPGAL mice underwent ovariectomy (OVX) (n = 10) or sham surgery (n = 10) at 16 weeks of age. Four weeks post-surgery, a single loading session (global strain of 2200 με for 100 cycles at 2 Hz) was performed on the right forearm with the left as a non-loaded control. Mice (n = 5) were sacrificed at 1 or 24 hr post-load. Ulnae were stained for β-catenin activation, femurs were used for μCT and 3-pt bending/biomechanical testing, and tibiae were used for histology analysis and to determine osteocyte lacunar size using SEM and high resolution micro-XCT. A 2.2-fold increase in β-catenin signaling activation was observed 24 hr post-load in the Sham group but did not occur in the OVX group. The OVX group versus control had significant losses (p < 0.05) in trabecular BMD (−8%), BV/TV (−35%) and thickness (−23%), along with cortical thickness (−6%) and periosteal perimeter (−4%). The OVX group had significantly higher trabecular bone osteoclast numbers (63%), OCS/BS (77%) and N.OC/BPm (94%) and a significant decrease in osteoblast number (53%), OBS/BS (37%) and N.OB/BPm (40%) compared to the sham group (p < 0.05). Cortical bone lacunar number/lacunar volume and bone biomechanical properties did not change between groups. Given that the ulna is a cortical bone loading model and the lack of changes in osteocyte lacunar number/volume in cortical bone, which would alter strains experienced by osteocytes, these data suggest the absence of estrogen resulted in intrinsic changes in the ability of the osteocyte to respond to mechanical load, rather than changes in the biomechanical and architectural properties of bone. In vivo mechanical loading activates β-catenin signaling in osteocytes. Ovariectomy induced estrogen loss attenuates in vivo loading induced β-catenin signaling in osteocytes. Changes in bone material and architectural properties do not appear to explain attenuated pathway activation. Our data suggests estrogen loss alters the intrinsic ability of the osteocyte to respond to mechanical load.
Collapse
Affiliation(s)
- Erica Jackson
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | | | - Mohammed P. Akhter
- Creighton University, Osteoporosis Research Center, Omaha, NE 68122, United States of America
| | - Mark Dallas
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | - JoAnna M. Scott
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | - Thiagarajan Ganesh
- UMKC, School of Computing and Engineering, Kansas City, MO 64110, United States of America
| | - Mark L. Johnson
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
- Corresponding author.
| |
Collapse
|
11
|
Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH. Alterations in osteocyte lacunar morphology affect local bone tissue strains. J Mech Behav Biomed Mater 2021; 123:104730. [PMID: 34438250 DOI: 10.1016/j.jmbbm.2021.104730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
Osteocytes are capable of remodeling their perilacunar bone matrix, which causes considerable variations in the shape and size of their lacunae. If these variations in lacunar morphology cause changes in the mechanical environment of the osteocytes, in particular local strains, they would subsequently affect bone mechanotransduction, since osteocytes are likely able to directly sense these strains. The purpose of this study is to quantify the effect of alterations in osteocyte lacunar morphology on peri-lacunar bone tissue strains. To this end, we related the actual lacunar shape in fibulae of six young-adult (5-month) and six old (23-month) mice, quantified by high-resolution micro-computed tomography, to microscopic strains, analyzed by micro-finite element modeling. We showed that peak effective strain increased by 12.6% in osteocyte cell bodies (OCYs), 9.6% in pericellular matrix (PCM), and 5.3% in extra cellular matrix (ECM) as the lacunae volume increased from 100-200 μm3 to 500-600 μm3. Lacunae with a larger deviation (>8°) in orientation from the longitudinal axis of the bone are exposed to 8% higher strains in OCYs, 6.5% in PCM, 4.2% in ECM than lacunae with a deviation in orientation below 8°. Moreover, increased lacuna sphericity from 0 to 0.5 to 0.7-1 led to 25%, 23%, and 13% decrease in maximum effective strains in OCYs, PCM, and ECM, respectively. We further showed that due to the presence of smaller and more round lacunae in old mice, local bone tissue strains are on average 5% lower in the vicinity of lacunae and their osteocytes of old mice compared to young. Understanding how changes in lacunar morphology affect the micromechanical environment of osteocytes presents a first step in unraveling their potential role in impaired bone mechanoresponsiveness with e.g. aging.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|
13
|
Schemenz V, Gjardy A, Chamasemani FF, Roschger A, Roschger P, Zaslansky P, Helfen L, Burghammer M, Fratzl P, Weinkamer R, Brunner R, Willie BM, Wagermaier W. Heterogeneity of the osteocyte lacuno-canalicular network architecture and material characteristics across different tissue types in healing bone. J Struct Biol 2020; 212:107616. [PMID: 32920138 DOI: 10.1016/j.jsb.2020.107616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Various tissue types, including fibrous connective tissue, bone marrow, cartilage, woven and lamellar bone, coexist in healing bone. Similar to most bone tissue type, healing bone contains a lacuno-canalicular network (LCN) housing osteocytes. These cells are known to orchestrate bone remodeling in healthy bone by sensing mechanical strains and translating them into biochemical signals. The structure of the LCN is hypothesized to influence mineralization processes. Hence, the aim of the present study was to visualize and match spatial variations in the LCN topology with mineral characteristics, within and at the interfaces of the different tissue types that comprise healing bone. We applied a correlative multi-method approach to visualize the LCN architecture and quantify mineral particle size and orientation within healing femoral bone in a mouse osteotomy model (26 weeks old C57BL/6 mice). This approach revealed structural differences across several length scales during endochondral ossification within the following regions: calcified cartilage, bony callus, cortical bone and a transition zone between the cortical and callus region analyzed 21 days after the osteotomy. In this transition zone, we observed a continuous convergence of mineral characteristics and osteocyte lacunae shape as well as discontinuities in the lacunae volume and LCN connectivity. The bony callus exhibits a 34% higher lacunae number density and 40% larger lacunar volume compared to cortical bone. The presented correlations between LCN architecture and mineral characteristics improves our understanding of how bone develops during healing and may indicate a contribution of osteocytes to bone (re)modeling.
Collapse
Affiliation(s)
- Victoria Schemenz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - André Gjardy
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | - Andreas Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany; Paris-Lodron-University of Salzburg, Department of Chemistry and Physics of Materials, Salzburg, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of ÖGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitaetsmedizin Berlin, Berlin 14197, Germany
| | - Lukas Helfen
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany; Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | | | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Richard Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Roland Brunner
- Materials Center Leoben Forschung GmbH, 8700 Leoben, Austria
| | - Bettina M Willie
- Research Centre, Shriners Hospitals for Children-Canada, Department of Pediatric Surgery, McGill University, 1003 Decarie Blvd, Montreal, Quebec H4A 0A9, Canada
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
14
|
Dallas SL, Moore DS. Using confocal imaging approaches to understand the structure and function of osteocytes and the lacunocanalicular network. Bone 2020; 138:115463. [PMID: 32512167 PMCID: PMC7423610 DOI: 10.1016/j.bone.2020.115463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Although overlooked in the past, osteocytes have come to the forefront of skeletal biology and are now recognized as a key cell type that integrates hormonal, mechanical and other signals to control bone mass through regulation of both osteoblast and osteoclast activity. With the surge of recent interest in osteocytes as bone regulatory cells and the discovery that they also function as endocrine regulators of phosphate homeostasis, there has been renewed interest in understanding the structure and function of these unique and relatively inaccessible cells. Osteocytes are embedded within the mineralized bone matrix and are housed within a complex lacunocanalicular system which connects them with the circulation and with other organ systems. This has presented unique challenges for imaging these cells. This review summarizes recent advances in confocal imaging approaches for visualizing osteocytes and their lacunocanalicular networks in both living and fixed bone specimens and discusses how computational approaches can be combined with live and fixed cell imaging techniques to generate quantitative outputs and predictive models. The integration of advanced imaging with computational approaches promises to lead to a more in depth understanding of the structure and function of osteocyte networks and the lacunocanalicular system in the healthy and aging state as well as in pathological conditions in bone.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, United States of America.
| | - David S Moore
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, United States of America
| |
Collapse
|