1
|
Xia Y, Wang C, Wang Y, Liang F. A Computational Model-Based Study on Trans-Stenotic Pressure Ratio of Carotid Artery Stenosis and Its Predictive Value for Cerebral Ischemia. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e70044. [PMID: 40329481 DOI: 10.1002/cnm.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/25/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Trans-stenotic pressure ratio (herein denoted by dpPR) has been proposed as a complementary index to stenosis rate (SR) for assessing the functional severity of carotid artery stenosis (CAS); however, it remains unclear how well dpPR can indicate cerebral ischemia. In this study, a physiology-based computational model of the cerebral circulation was developed to yield a tool for generating large-scale in silico data to characterize the changes of the dpPR of the left internal CAS in response to variations in SR and various anatomical/pathophysiological factors that represent inter-patient differences. In addition, a cerebral ischemia index (CII) was defined to evaluate the predictive value of dpPR for cerebral ischemia. Results showed that dpPR was affected by many factors unrelated to the severity of stenosis, such as the anatomical structure and geometrical size of cerebral arteries, mean systemic arterial blood pressure (MAP), flow autoregulation function of cerebral microcirculation (quantified by CFAI), and coexisting contralateral CAS. In comparison with SR, dpPR exhibited a stronger correlation with CII. In particular, the relationship between dpPR and CII was found to be describable by a mathematical function if MAP and CFAI were fixed. The findings not only deepen our understanding of the physiological implications of dpPR but also provide valuable theoretical insights to guide the application of dpPR in clinical practice.
Collapse
Affiliation(s)
- Yingjie Xia
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Changpeng Wang
- Department of Neurovascular Intervention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Neurovascular Intervention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Hydrodynamics (MOE), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute for Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
2
|
Li M, Ma T, Yin X, Zhang X, Long T, Zeng M, Wang J, Cui Q, Li S, Sessler DI, Wang R, Peng Y. Cerebral oximetry index indicates delirium or stroke after carotid endarterectomy: An observational study. J Clin Anesth 2025; 101:111733. [PMID: 39721162 DOI: 10.1016/j.jclinane.2024.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUNDS The cerebral oximetry index (COx) uses near-infrared spectroscopy to estimate cerebral autoregulation during cardiac surgery. However, the relationship between intraoperative loss of cerebral autoregulation and postoperative delirium or stroke remains unclear in patients recovering from carotid endarterectomy (CEA). METHODS Our prospective observational cohort study enrolled patients scheduled for CEA. COx was estimated as the coefficient of a continuous, moving Spearman correlation between mean arterial pressure and cerebral oxygen saturation. A receiver operating characteristics curve with Youden's index identified the optimal COx threshold for predicting a composite of postoperative delirium or new-onset overt stroke. RESULTS One hundred and forty patients scheduled for CEA were enrolled. The incidence of delirium was 10.7 % (15/140) and the incidence of stroke was 3.6 % (5/140), including 1 patient who had both. The cumulative anesthesia time when COx exceeded 0.3 was longer in patients with complications than those without. When COx > 0.6, the corresponding predictive ability was AUC = 0.69, Youden index = 0.61, P = 0.0003, with a positive predictive value of 100 %. In the post hoc subgroup analyses, before clamping, the greatest increase in the risk was observed when COx > 0.7 for 20 min (Odds ratio = 3.10, 95 % CI 2.20, 3.78). In contrast, COx was not predictive during clamping. After clamping, the optimal COx threshold was 0.4 (AUC = 0.85, Youden index = 0.82, P < 0.0001), with the positive predictive value being 100 %. CONCLUSIONS COx is a promising metric for predicting postoperative delirium or new-onset overt stroke in patients having CEA. The optimal COx threshold was 0.7 in the pre-clamping phase and 0.4 in the post-clamping phase.
Collapse
Affiliation(s)
- Muhan Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Tingting Ma
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Xueke Yin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Xin Zhang
- Casibrain Technology Limited Company, Beijing 100190, China.
| | - Tenghai Long
- Casibrain Technology Limited Company, Beijing 100190, China.
| | - Min Zeng
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Juan Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Qianyu Cui
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Shu Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, TX, USA; Outcomes Research Consortium®, Houston, TX, USA.
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Yuming Peng
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Outcomes Research Consortium®, Houston, TX, USA.
| |
Collapse
|
3
|
Fedriga M, Martini S, Iodice FG, Sortica da Costa C, Pezzato S, Moscatelli A, Beqiri E, Czosnyka M, Smielewski P, Agrawal S. Cerebral autoregulation in pediatric and neonatal intensive care: A scoping review. J Cereb Blood Flow Metab 2024; 44:1208-1226. [PMID: 38867574 PMCID: PMC11542144 DOI: 10.1177/0271678x241261944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Deranged cerebral autoregulation (CA) is associated with worse outcome in adult brain injury. Strategies for monitoring CA and maintaining the brain at its 'best CA status' have been implemented, however, this approach has not yet developed for the paediatric population. This scoping review aims to find up-to-date evidence on CA assessment in children and neonates with a view to identify patient categories in which CA has been measured so far, CA monitoring methods and its relationship with clinical outcome if any. A literature search was conducted for studies published within 31st December 2022 in 3 bibliographic databases. Out of 494 papers screened, this review includes 135 studies. Our literature search reveals evidence for CA measurement in the paediatric population across different diagnostic categories and age groups. The techniques adopted, indices and thresholds used to assess and define CA are heterogeneous. We discuss the relevance of available evidence for CA assessment in the paediatric population. However, due to small number of studies and heterogeneity of methods used, there is no conclusive evidence to support universal adoption of CA monitoring, technique, and methodology. This calls for further work to understand the clinical impact of CA monitoring in paediatric and neonatal intensive care.
Collapse
Affiliation(s)
- Marta Fedriga
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOUBO, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca G Iodice
- Paediatric Cardiac Anaesthesia and Intensive Care Unit, IRCCS, Bambino Gesu’ Hospital, Rome, Italy
| | | | - Stefano Pezzato
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Shruti Agrawal
- Department of Paediatric Intensive Care, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Petrovčič R, Rakusa M, Markota A. Monitoring of Cerebral Blood Flow Autoregulation after Cardiac Arrest. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1381. [PMID: 39336422 PMCID: PMC11433513 DOI: 10.3390/medicina60091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Background: Cardiac arrest remains one of the leading causes of death. After successful resuscitation of patients in cardiac arrest, post-cardiac arrest syndrome develops, part of it being an impaired cerebral blood flow autoregulation. Monitoring cerebral blood flow autoregulation after cardiac arrest is important for optimizing patient care and prognosticating patients' survival, yet remains a challenge. There are still gaps in clinical implications and everyday use. In this article, we present a systematic review of studies with different methods of monitoring cerebral blood flow autoregulation after non-traumatic cardiac arrest. Methods: A comprehensive literature search was performed from 1 June 2024 to 27 June 2024 by using multiple databases: PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials. Inclusion criteria were studies with an included description of the measurement of cerebral blood flow autoregulation in adult patients after non-traumatic cardiac arrest. Results: A total of 16 studies met inclusion criteria. Our data show that the most used methods in the reviewed studies were near-infrared spectroscopy and transcranial Doppler. The most used mathematical methods for calculating cerebral autoregulation were cerebral oximetry index, tissue oxygenation reactivity index, and mean flow index. Conclusions: The use of various monitoring and mathematical methods for calculating cerebral blood flow autoregulation poses a challenge for standardization, validation, and daily use in clinical practice. In the future studies, focus should be considered on clinical validation and transitioning autoregulation monitoring techniques to everyday clinical practice, which could improve the survival outcomes of patients after cardiac arrest.
Collapse
Affiliation(s)
- Rok Petrovčič
- Emergency Department, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Department of Neurologic Diseases, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Andrej Markota
- Department of Intensive Internal Medicine, Division of Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| |
Collapse
|
5
|
Di Filippo S, Messina A, Pelosi P, Robba C. Eight rules for the haemodynamic management of traumatic brain-injured patients. EUROPEAN JOURNAL OF ANAESTHESIOLOGY AND INTENSIVE CARE 2023; 2:e0029. [PMID: 39917068 PMCID: PMC11783677 DOI: 10.1097/ea9.0000000000000029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Traumatic brain injury (TBI), a leading cause of death and poor neurological outcomes in trauma patients, is a primary cause of severe disability among survivors and a major public health burden globally. Optimal haemodynamic management is a keystone of care in avoiding secondary brain injury, and contributes to minimising mortality and morbidity. Although some important progress has been achieved, a paucity of high-quality recommendations still exists. The purpose of this article is to review the current knowledge on TBI-associated haemodynamic tenets, in order to summarise the most important aspects of this heterogeneous and complex field.
Collapse
Affiliation(s)
- Simone Di Filippo
- From the Department of Biotechnology and Sciences of Life, Anesthesia and Intensive Care, ASST Sette Laghi, University of Insubria, Varese (SDF), IRCCS Humanitas Research Hospital, Via Alessandro Manzoni, Rozzano (AM), Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan (AM), IRCCS Ospedale Policlinico San Martino (PP, CR) and Department of Surgical Sciences and Integrated Diagnostics, DISC, University of Genoa, Genoa, Italy (PP, CR)
| | - Antonio Messina
- From the Department of Biotechnology and Sciences of Life, Anesthesia and Intensive Care, ASST Sette Laghi, University of Insubria, Varese (SDF), IRCCS Humanitas Research Hospital, Via Alessandro Manzoni, Rozzano (AM), Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan (AM), IRCCS Ospedale Policlinico San Martino (PP, CR) and Department of Surgical Sciences and Integrated Diagnostics, DISC, University of Genoa, Genoa, Italy (PP, CR)
| | - Paolo Pelosi
- From the Department of Biotechnology and Sciences of Life, Anesthesia and Intensive Care, ASST Sette Laghi, University of Insubria, Varese (SDF), IRCCS Humanitas Research Hospital, Via Alessandro Manzoni, Rozzano (AM), Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan (AM), IRCCS Ospedale Policlinico San Martino (PP, CR) and Department of Surgical Sciences and Integrated Diagnostics, DISC, University of Genoa, Genoa, Italy (PP, CR)
| | - Chiara Robba
- From the Department of Biotechnology and Sciences of Life, Anesthesia and Intensive Care, ASST Sette Laghi, University of Insubria, Varese (SDF), IRCCS Humanitas Research Hospital, Via Alessandro Manzoni, Rozzano (AM), Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan (AM), IRCCS Ospedale Policlinico San Martino (PP, CR) and Department of Surgical Sciences and Integrated Diagnostics, DISC, University of Genoa, Genoa, Italy (PP, CR)
| |
Collapse
|
6
|
Sen S, An H, Oakes J, Eron J, Robertson K, Powers W. Effects of early human immunodeficiency virus infection on cerebral white matter blood flow autoregulation. AIDS 2023; 37:359-361. [PMID: 36111546 PMCID: PMC9780146 DOI: 10.1097/qad.0000000000003378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Blood flow autoregulation in cerebral white matter was measured before and after acute nicardipine-induced changes in mean arterial pressure of 10-21% in 21 treatment naïve HIV-positive adults and 32 controls. The autoregulatory index (-% cerebral blood flow change/% mean arterial pressure change) was not different at baseline ( P = 0.71) or after 1 year of treatment ( n = 11, P = 0.17). We found no autoregulatory defect to explain the increased stroke risk or the development of cerebral white damage in people with HIV.
Collapse
Affiliation(s)
- Souvik Sen
- University of South Carolina, Columbia, SC
| | - Hongyu An
- Washington University, Saint Louis, MO
| | | | | | | | - William Powers
- University of North Carolina, Chapel Hill
- Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Gude P, Weber TP, Dazert S, Teig N, Mathmann P, Georgevici AI, Neumann K. Comparison of cerebral oxygen desaturation events between children under general anesthesia and chloral hydrate sedation - a randomized controlled trial. BMC Pediatr 2022; 22:720. [PMID: 36529729 PMCID: PMC9762051 DOI: 10.1186/s12887-022-03739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND During pediatric general anesthesia (GA) and sedation, clinicians aim to maintain physiological parameters within normal ranges. Accordingly, regional cerebral oxygen saturation (rScO2) should not drop below preintervention baselines. Our study compared rScO2 desaturation events in children undergoing GA or chloral hydrate sedation (CHS). METHODS Ninety-two children undergoing long auditory assessments were randomly assigned to two study arms: CHS (n = 40) and GA (n = 52). Data of 81 children (mean age 13.8 months, range 1-36 months) were analyzed. In the GA group, we followed a predefined 10 N concept (no fear, no pain, normovolemia, normotension, normocardia, normoxemia, normocapnia, normonatremia, normoglycemia, and normothermia). In this group, ENT surgeons performed minor interventions in 29 patients based on intraprocedural microscopic ear examinations. In the CHS group, recommendations for monitoring and treatment of children undergoing moderate sedation were met. Furthermore, children received a double-barreled nasal oxygen cannula to measure end-tidal carbon dioxide (etCO2) and allow oxygen administration. Chloral hydrate was administered in the parent's presence. Children had no intravenous access which is an advantage of sedation techniques. In both groups, recommendations for fasting were followed and an experienced anesthesiologist was present during the entire procedure. Adverse event (AE) was a decline in cerebral oxygenation to below 50% or below 20% from the baseline for ≥1 min. The primary endpoint was the number of children with AE across the study arms. Secondary variables were: fraction of inspired oxygen (FIO2), oxygen saturation (SpO2), etCO2, systolic and mean blood pressure (BP), and heart rate (HR); these variables were analyzed for their association with drop in rScO2 to below baseline (%drop_rScO2). RESULTS The incidence of AE across groups was not different. The analysis of secondary endpoints showed evidence that %drop_rScO2 is more dependent on HR and FIO2 than on BP and etCO2. CONCLUSIONS This study highlights the strong association between HR and rScO2 in children aged < 3 years, whereas previous studies had primarily discussed the role of BP and etCO2. Prompt HR correction may result in shorter periods of cerebral desaturation. TRIAL REGISTRATION The study was retrospectively registered with the German Clinical Trials Registry (DRKS00024362, 04/02/2021).
Collapse
Affiliation(s)
- Philipp Gude
- Department of Anesthesiology and Intensive Care Medicine, St. Josef and St. Elisabeth-Hospital, Ruhr University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany.
| | - Thomas P Weber
- Department of Anesthesiology and Intensive Care Medicine, St. Josef and St. Elisabeth-Hospital, Ruhr University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Norbert Teig
- University Children's Hospital, Ruhr University Bochum, Bochum, Germany
| | - Philipp Mathmann
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany
| | - Adrian I Georgevici
- Department of Anesthesiology and Intensive Care Medicine, St. Josef and St. Elisabeth-Hospital, Ruhr University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany
| | - Katrin Neumann
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Small C, Lucke-Wold B, Patel C, Abou-Al-Shaar H, Moor R, Mehkri Y, Still M, Goldman M, Miller P, Robicsek S. What are we measuring? A refined look at the process of disrupted autoregulation and the limitations of cerebral perfusion pressure in preventing secondary injury after traumatic brain injury. Clin Neurol Neurosurg 2022; 221:107389. [PMID: 35961231 DOI: 10.1016/j.clineuro.2022.107389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
Abstract
The cerebral perfusion pressure (CPP) and its relationship between intracranial pressure and mean arterial pressure is a concept ubiquitous in caring for the critically ill patient. CPP is often used as a surrogate measure for cerebral blood flow (CBF); however, this view fails to account for changes in cerebral vascular resistance (CVR). Changes in CVR occur due to cerebral autoregulation, which has classically been taught on a sigma shaped curve with a decline and increase at either end of a plateau. Historically, the conceptualized regulation maintains careful homeostatic levels despite external or internal dynamic changes; however, moderate and severe traumatic brain injury (TBI) has been postulated to bring about cerebral autoregulation dysfunction. We review the current application of CPP is limited by the dynamic changes in cerebral autoregulation after TBI. This review highlights CPP's role as a surrogate measure for CBF and the inherent limitations of current clinical management, due to the lack of monitoring capable of capture continuous variables to assist real-time decision making. This review evaluates the known literature and introduces topics for discussion that warrant further investigation via pre-clinical and clinical experimentation.
Collapse
Affiliation(s)
- Coulter Small
- University of Florida, College of Medicine, Department of Neurosurgery, Gainesville, FL, United States.
| | - Brandon Lucke-Wold
- University of Florida, College of Medicine, Department of Neurosurgery, Gainesville, FL, United States
| | - Chhaya Patel
- University of Florida, College of Medicine, Department of Neurosurgery, Gainesville, FL, United States
| | - Hussam Abou-Al-Shaar
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, United States
| | - Rachel Moor
- University of Florida, College of Medicine, Department of Neurosurgery, Gainesville, FL, United States
| | - Yusuf Mehkri
- University of Florida, College of Medicine, Department of Neurosurgery, Gainesville, FL, United States
| | - Megan Still
- University of Florida, College of Medicine, Department of Neurosurgery, Gainesville, FL, United States
| | - Matthew Goldman
- University of Florida, College of Medicine, Department of Neurosurgery, Gainesville, FL, United States
| | - Patricia Miller
- University of Florida, College of Medicine, Department of Neurosurgery, Gainesville, FL, United States
| | - Steven Robicsek
- University of Florida, College of Medicine, Department of Anesthesiology Medicine, Gainesville, FL, United States
| |
Collapse
|
9
|
Second- and Third-Tier Therapies for Severe Traumatic Brain Injury. J Clin Med 2022; 11:jcm11164790. [PMID: 36013029 PMCID: PMC9410180 DOI: 10.3390/jcm11164790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Intracranial hypertension is a common finding in patients with severe traumatic brain injury. These patients need treatment in the intensive care unit, where intracranial pressure monitoring and, whenever possible, multimodal neuromonitoring can be applied. A three-tier approach is suggested in current recommendations, in which higher-tier therapies have more significant side effects. In this review, we explain the rationale for this approach, and analyze the benefits and risks of each therapeutic modality. Finally, we discuss, based on the most recent recommendations, how this approach can be adapted in low- and middle-income countries, where available resources are limited.
Collapse
|
10
|
Skow RJ, Brothers RM, Claassen JAHR, Day TA, Rickards CA, Smirl JD, Brassard P. On the use and misuse of cerebral hemodynamics terminology using Transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 2022; 323:H350-H357. [PMID: 35839156 DOI: 10.1152/ajpheart.00107.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral hemodynamics (e.g., cerebral blood flow) can be measured and quantified using many different methods, with Transcranial Doppler ultrasound (TCD) being one of the most commonly utilized approaches. In human physiology, the terminology used to describe metrics of cerebral hemodynamics are inconsistent, and in some instances technically inaccurate; this is especially true when evaluating, reporting, and interpreting measures from TCD. Therefore, this perspectives article presents recommended terminology when reporting cerebral hemodynamic data. We discuss the current use and misuse of the terminology in the context of using TCD to measure and quantify cerebral hemodynamics and present our rationale and consensus on the terminology that we recommend moving forward. For example, one recommendation is to discontinue use of the term "cerebral blood flow velocity" in favor of "cerebral blood velocity" with precise indication of the vessel of interest. We also recommend clarity when differentiating between discrete cerebrovascular regulatory mechanisms, namely cerebral autoregulation, neurovascular coupling, and cerebrovascular reactivity. This will be a useful guide for investigators in the field of cerebral hemodynamics research.
Collapse
Affiliation(s)
- Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Canada
| |
Collapse
|
11
|
Liu M, He E, Fu X, Gong S, Han Y, Deng F. Cerebral blood flow self-regulation in depression. J Affect Disord 2022; 302:324-331. [PMID: 35032508 DOI: 10.1016/j.jad.2022.01.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Depression is a common neuropsychiatric disease with a high prevalence rate. Sleep problems, memory decline, dizziness and headaches are the most common neurological symptoms in depressed patients. Abnormality of cerebral blood flow (CBF) has been observed in depressive patients, but those patients did not have intracranial structural damage. Both of those phenomena might be related to cerebral blood flow self-regulation (CBFSR: cerebral blood flow self-regulation). CBFSR can maintain CBF relatively stable in response to changes in neurological and metabolic factors. Therefore, this review aimed to discuss CBFSR in depression. METHODS We searched for keywords such as "depression", "cerebral blood flow", "cerebral autoregulation", "cerebrovascular reactivity" and the words related to depression. We analyzed whether there is a change in the CBFSR in depression, further explored whether there is a relationship between the pathogenesis of depression and the CBFSR, and discussed the possible mechanism of impaired CBFSR in patients with depression. RESULTS Discovered by the literature review, CBFSR is significantly impaired in depressed patients. The level of circulating markers of endothelial dysfunction, nitric oxide, inflammatory cytokines, glucocorticoid and monoamine neurotransmitters is mostly abnormal in depression, which affected the CBFSR to varying degrees. LIMITATIONS Limitations include the small number of direct studies about depression and CBFSR mechanisms. CONCLUSION CBFSR is impaired in depression. The underlying mechanisms include endothelial dysfunction, overactivation of microglia and changes of cytokines, hyperactivation of the HPA axis, increased oxidative stress, monoamine neurotransmitter disorders, etc. These deepened our understanding of the clinical symptoms of depressed patients.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Enling He
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Xiyao Fu
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Sizhu Gong
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Yue Han
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China.
| |
Collapse
|
12
|
Zeng L, Li G, Zhang M, Zhu R, Chen J, Li M, Yin S, Bai Z, Zhuang W, Sun J. A noninvasive and comprehensive method for continuous assessment of cerebral blood flow pulsation based on magnetic induction phase shift. PeerJ 2022; 10:e13002. [PMID: 35228911 PMCID: PMC8881914 DOI: 10.7717/peerj.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 01/11/2023] Open
Abstract
Cerebral blood flow (CBF) monitoring is of great significance for treating and preventing strokes. However, there has not been a fully accepted method targeting continuous assessment in clinical practice. In this work, we built a noninvasive continuous assessment system for cerebral blood flow pulsation (CBFP) that is based on magnetic induction phase shift (MIPS) technology and designed a physical model of the middle cerebral artery (MCA). Physical experiments were carried out through different simulations of CBF states. Four healthy volunteers were enrolled to perform the MIPS and ECG synchronously monitoring trials. Then, the components of MIPS related to the blood supply level and CBFP were investigated by signal analysis in time and frequency domain, wavelet decomposition and band-pass filtering. The results show that the time-domain baseline of MIPS increases with blood supply level. A pulse signal was identified in the spectrum (0.2-2 Hz in 200-2,000 ml/h groups, respectively) of MIPS when the simulated blood flow rate was not zero. The pulsation frequency with different simulated blood flow rates is the same as the squeezing frequency of the feeding pump. Similar to pulse waves, the MIPS signals on four healthy volunteers all had periodic change trends with obvious peaks and valleys. Its frequency is close to that of the ECG signal and there is a certain time delay between them. These results indicate that the CBFP component can effectively be extracted from MIPS, through which different blood supply levels can be distinguished. This method has the potential to become a new solution for non-invasive and comprehensive monitoring of CBFP.
Collapse
Affiliation(s)
- Lingxi Zeng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Maoting Zhang
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Rui Zhu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jingbo Chen
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Mingyan Li
- College of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Shengtong Yin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zelin Bai
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Wei Zhuang
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Jian Sun
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To give an overview of cerebral monitoring techniques for surgical ICU patients. RECENT FINDINGS As the burden of postsurgical neurological and neurocognitive complications becomes increasingly recognized, cerebral monitoring in the surgical ICU might gain a relevant role in detecting and possibly preventing adverse outcomes. However, identifying neurological alterations in surgical ICU patients, who are often sedated and mechanically ventilated, can be challenging. Various noninvasive and invasive techniques are available for cerebral monitoring, providing an assessment of cortical electrical activity, cerebral oxygenation, blood flow autoregulation, intracranial pressure, and cerebral metabolism. These techniques can be used for the diagnosis of subclinical seizures, the assessment of sedation depth and delirium, the detection of an impaired cerebral blood flow, and the diagnosis of neurosurgical complications. SUMMARY Cerebral monitoring can be a valuable tool in the early detection of adverse outcomes in surgical ICU patients, but the evidence is limited, and clear clinical indications are still lacking.
Collapse
|
14
|
Ye S, Yang M, Zhu Y, Gao X, Meng F, Wu R, Yu B. Numerical analysis of hemodynamic effect under different enhanced external counterpulsation (EECP) frequency for cerebrovascular disease: a simulation study. Comput Methods Biomech Biomed Engin 2021; 25:1169-1179. [PMID: 34797199 DOI: 10.1080/10255842.2021.2005034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Based on the changes in phase characteristics of blood flow and pressure, enhanced external counterpulsation (EECP) reduces cardiac load and improves cerebral perfusion in patients with cerebrovascular diseases. However, increased cerebral blood flow (CBF) is associated with the rise in blood pressure and its complications. Increased EECP frequency is a valuable solution when combined with the electrical equivalent impedance characteristics of the lumped parameter model (LPM) of the human blood circulation system. Herein, to investigate the effect of different EECP frequencies on CBF perfusion, an LPM was established with cardiopulmonary circulation and eight systemic blood flow units with cerebral autoregulation module of ischemic stroke patients. Then, using differential equations, we analyzed those parameters through hemodynamic simulations in four EECP modes. With related influencing parameters remaining constant, we adjusted the pressure frequency of EECP and found that when compared to the traditional sequential EECP mode, the relative increase rate of CBF was 16.68%, 18.95%, and 21.21% from 1 to 3 Hz, respectively. This study validates the effect of improving blood prefusion with increasing EECP frequency through numerical analysis.
Collapse
Affiliation(s)
- Siwei Ye
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanfei Zhu
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochen Gao
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Meng
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiliang Wu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai, China
| | - Bo Yu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
15
|
Cerebral autoregulation assessed by near-infrared spectroscopy: validation using transcranial Doppler in patients with controlled hypertension, cognitive impairment and controls. Eur J Appl Physiol 2021; 121:2165-2176. [PMID: 33860383 PMCID: PMC8260523 DOI: 10.1007/s00421-021-04681-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/02/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Cerebral autoregulation (CA) aims to attenuate the effects of blood pressure variation on cerebral blood flow. This study assessed the criterion validity of CA derived from near-infrared spectroscopy (NIRS) as an alternative for Transcranial Doppler (TCD). METHODS Measurements of continuous blood pressure (BP), oxygenated hemoglobin (O2Hb) using NIRS and cerebral blood flow velocity (CBFV) using TCD (gold standard) were performed in 82 controls, 27 patients with hypertension and 94 cognitively impaired patients during supine rest (all individuals) and repeated sit to stand transitions (cognitively impaired patients). The BP-CBFV and BP-O2Hb transfer function phase shifts (TFφ) were computed as CA measures. Spearman correlations (ρ) and Bland Altman limits of agreement (BAloa) between NIRS- and TCD-derived CA measures were computed. BAloa separation < 50° was considered a high absolute agreement. RESULTS NIRS- and TCD-derived CA estimates were significantly correlated during supine rest (ρ = 0.22-0.30, N = 111-120) and repeated sit-to-stand transitions (ρ = 0.46-0.61, N = 19-32). BAloa separation ranged between 87° and 112° (supine rest) and 65°-77° (repeated sit to stand transitions). CONCLUSION Criterion validity of NIRS-derived CA measures allows for comparison between groups but was insufficient for clinical application in individuals.
Collapse
|
16
|
Kreft B, Bergs J, Shahryari M, Danyel LA, Hetzer S, Braun J, Sack I, Tzschätzsch H. Cerebral Ultrasound Time-Harmonic Elastography Reveals Softening of the Human Brain Due to Dehydration. Front Physiol 2021; 11:616984. [PMID: 33505319 PMCID: PMC7830390 DOI: 10.3389/fphys.2020.616984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Hydration influences blood volume, blood viscosity, and water content in soft tissues - variables that determine the biophysical properties of biological tissues including their stiffness. In the brain, the relationship between hydration and stiffness is largely unknown despite the increasing importance of stiffness as a quantitative imaging marker. In this study, we investigated cerebral stiffness (CS) in 12 healthy volunteers using ultrasound time-harmonic elastography (THE) in different hydration states: (i) during normal hydration, (ii) after overnight fasting, and (iii) within 1 h of drinking 12 ml of water per kg body weight. In addition, we correlated shear wave speed (SWS) with urine osmolality and hematocrit. SWS at normal hydration was 1.64 ± 0.02 m/s and decreased to 1.57 ± 0.04 m/s (p < 0.001) after overnight fasting. SWS increased again to 1.63 ± 0.01 m/s within 30 min of water drinking, returning to values measured during normal hydration (p = 0.85). Urine osmolality at normal hydration (324 ± 148 mOsm/kg) increased to 784 ± 107 mOsm/kg (p < 0.001) after fasting and returned to normal (288 ± 128 mOsm/kg, p = 0.83) after water drinking. SWS and urine osmolality correlated linearly (r = -0.68, p < 0.001), while SWS and hematocrit did not correlate (p = 0.31). Our results suggest that mild dehydration in the range of diurnal fluctuations is associated with significant softening of brain tissue, possibly due to reduced cerebral perfusion. To ensure consistency of results, it is important that cerebral elastography with a standardized protocol is performed during normal hydration.
Collapse
Affiliation(s)
- Bernhard Kreft
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bergs
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Stefan Hetzer
- Bernstein Center of Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
[Near-infrared spectroscopy : Technique, development, current use and perspectives]. Anaesthesist 2020; 70:190-203. [PMID: 32930804 DOI: 10.1007/s00101-020-00837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Near-infrared spectroscopy (NIRS) has been available in research and clinical practice for more than four decades. Recently, there have been numerous publications and substantial developments in the field. This article describes the clinical application of NIRS in relation to current guidelines, with a focus on pediatric and cardiac anesthesia. It discusses technical and physiological principles, pitfalls in clinical use and presents (patho)physiological influencing factors and derived variables, such as fractional oxygen extraction (FOE) and the cerebral oxygen index (COx). Recommendations for the interpretation of NIRS values in connection with influencing factors, such as oxygen transport capacity, gas exchange and circulation as well as an algorithm for cardiac anesthesia are presented. Limitations of the method and the lack of comparability of values from different devices as well as generally accepted standard values are explained. Technical differences and advantages compared to pulse oxymetry and transcranial Doppler sonography are illuminated. Finally, the prognostic significance and requirements for future clinical studies are discussed.
Collapse
|
18
|
Bajpai BK, Zakelis R, Deimantavicius M, Imbrasiene D. Comparative Study of Novel Noninvasive Cerebral Autoregulation Volumetric Reactivity Indices Reflected by Ultrasonic Speed and Attenuation as Dynamic Measurements in the Human Brain. Brain Sci 2020; 10:brainsci10040205. [PMID: 32244750 PMCID: PMC7226251 DOI: 10.3390/brainsci10040205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 11/20/2022] Open
Abstract
This is a comparative study of two novel noninvasive cerebrovascular autoregulation (CA) monitoring methods based on intracranial blood volume (IBV) changes in the human brain. We investigated the clinical applicability of the new volumetric reactivity index (VRx2), reflected by intracranial ultrasonic attenuation dynamics for noninvasive CA monitoring. The CA was determined noninvasively on 43 healthy participants by calculating the volumetric reactivity index (VRx1 from time-of-flight of ultrasound, VRx2 from attenuation of ultrasound). The VRx was calculated as a moving correlation coefficient between the arterial blood pressure and noninvasively measured IBV slow waves. Linear regression between VRx1 and VRx2 (averaged per participants) showed a significant correlation (r = 0.731, p < 0.0001, 95% confidence interval [0.501–0.895]) in data filtered by bandpass filtering. On the other hand, FIR filtering demonstrated a slightly better correlation (r = 0.769, p < 0.0001, 95% confidence interval [0.611–0.909]). The standard deviation of the difference by bandpass filtering was 0.1647 and bias −0.3444; and by FIR filtering 0.1382 and bias −0.3669. This comparative study showed a significant coincidence of the VRx2 index compared to that of VRx1. Hence, VRx2 could be used as an alternative, cost-effective noninvasive cerebrovascular autoregulation index in the same way as VRx1 values are used.
Collapse
Affiliation(s)
- Basant K. Bajpai
- Health Telematics Science Institute, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-6478-3364
| | - Rolandas Zakelis
- Health Telematics Science Institute, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
| | - Mantas Deimantavicius
- Health Telematics Science Institute, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
| | - Daiva Imbrasiene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| |
Collapse
|