1
|
Misra SK, Rosenholm JM, Pathak K. Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles. Molecules 2023; 28:4701. [PMID: 37375256 DOI: 10.3390/molecules28124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu, 6A, 20520 Turku, Finland
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
2
|
S Allemailem K, Almatroudi A, Alsahli MA, Aljaghwani A, M El-Kady A, Rahmani AH, Khan AA. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations. Int J Nanomedicine 2021; 16:3907-3936. [PMID: 34135584 PMCID: PMC8200140 DOI: 10.2147/ijn.s303832] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Salimpour Abkenar S, Malek RMA, Mazaheri F. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 163:53-61. [PMID: 26292774 DOI: 10.1016/j.jenvman.2015.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent.
Collapse
|
4
|
Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:315-29. [PMID: 25348382 PMCID: PMC4397104 DOI: 10.1002/wnan.1305] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Mitochondria, the so-called 'energy factory of cells' not only produce energy but also contribute immensely in cellular mortality management. Mitochondrial dysfunctions result in various diseases including but not limited to cancer, atherosclerosis, and neurodegenerative diseases. In the recent years, targeting mitochondria emerged as an attractive strategy to control mitochondrial dysfunction-related diseases. Despite the desire to direct therapeutics to the mitochondria, the actual task is more difficult due to the highly complex nature of the mitochondria. The potential benefits of integrating nanomaterials with properties such as biodegradability, magnetization, and fluorescence into a single object of nanoscale dimensions can lead to the development of hybrid nanomedical platforms for targeting therapeutics to the mitochondria. Only a handful of nanoparticles based on metal oxides, gold nanoparticles, dendrons, carbon nanotubes, and liposomes were recently engineered to target mitochondria. Most of these materials face tremendous challenges when administered in vivo due to their limited biocompatibility. Biodegradable polymeric nanoparticles emerged as eminent candidates for effective drug delivery. In this review, we highlight the current advancements in the development of biodegradable nanoparticle platforms as effective targeting tools for mitochondrial medicine.
Collapse
Affiliation(s)
- Rakesh K. Pathak
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
| | - Nagesh Kolishetti
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
- PartiKula LLC, 7777 Davie Rd., Hollywood, FL 33024
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
| |
Collapse
|
5
|
Cai M, Zhang Z, Su X, Dong H, Zhong Z, Zhuo R. Guanidinated multi-arm star polyornithines with a polyethylenimine core for gene delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Wrobel D, Kolanowska K, Gajek A, Gomez-Ramirez R, de la Mata J, Pedziwiatr-Werbicka E, Klajnert B, Waczulikova I, Bryszewska M. Interaction of cationic carbosilane dendrimers and their complexes with siRNA with erythrocytes and red blood cell ghosts. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:882-9. [PMID: 24316171 PMCID: PMC7094680 DOI: 10.1016/j.bbamem.2013.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/01/2013] [Accepted: 11/26/2013] [Indexed: 11/20/2022]
Abstract
We have investigated the interactions between cationic NN16 and BDBR0011 carbosilane dendrimers with red blood cells or their cell membranes. The carbosilane dendrimers used possess 16 cationic functional groups. Both the dendrimers are made of water-stable carbon-silicon bonds, but NN16 possesses some oxygen-silicon bonds that are unstable in water. The nucleic acid used in the experiments was targeted against GAG-1 gene from the human immunodeficiency virus, HIV-1. By binding to the outer leaflet of the membrane, carbosilane dendrimers decreased the fluidity of the hydrophilic part of the membrane but increased the fluidity of the hydrophobic interior. They induced hemolysis, but did not change the morphology of the cells. Increasing concentrations of dendrimers induced erythrocyte aggregation. Binding of short interfering ribonucleic acid (siRNA) to a dendrimer molecule decreased the availability of cationic groups and diminished their cytotoxicity. siRNA-dendrimer complexes changed neither the fluidity of biological membranes nor caused cell hemolysis. Addition of dendriplexes to red blood cell suspension induced echinocyte formation.
Collapse
Affiliation(s)
- Dominika Wrobel
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Katarzyna Kolanowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Javier de la Mata
- Departamento Quimica Inorganica, Universidad de Alcala de Henares, Spain
| | - Elżbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Barbara Klajnert
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Iveta Waczulikova
- Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Application of a biopolymer chitosan-poly(propylene)imine dendrimer hybrid as an antimicrobial agent on the wool fabrics. IRANIAN POLYMER JOURNAL 2013. [DOI: 10.1007/s13726-013-0193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012; 33:4773-82. [PMID: 22469294 DOI: 10.1016/j.biomaterials.2012.03.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/10/2012] [Indexed: 11/23/2022]
Abstract
Dendrimers have emerged as promising carriers for the delivery of a wide variety of pay-loads including therapeutic drugs, imaging agents and nucleic acid materials into biological systems. The current work aimed to develop a novel mitochondria-targeted generation 5 poly(amidoamine) (PAMAM) dendrimer (G(5)-D). To achieve this goal, a known mitochondriotropic ligand triphenylphosphonium (TPP) was conjugated on the surface of the dendrimer. A fraction of the cationic surface charge of G(5)-D was neutralized by partial acetylation of the primary amine groups. Next, the mitochondria-targeted dendrimer was synthesized via the acid-amine-coupling conjugation reaction between the acid group of (3-carboxypropyl)triphenyl-phosphonium bromide and the primary amines of the acetylated dendrimer (G(5)-D-Ac). These dendrimers were fluorescently labeled with fluorescein isothiocyanate (FITC) to quantify cell association by flow cytometry and for visualization under confocal laser scanning microscopy to assess the mitochondrial targeting in vitro. The newly developed TPP-anchored dendrimer (G(5)-D-Ac-TPP) was efficiently taken up by the cells and demonstrated good mitochondrial targeting. In vitro cytotoxicity experiments carried out on normal mouse fibroblast cells (NIH-3T3) had greater cell viability in the presence of the G(5)-D-Ac-TPP compared to the parent unmodified G(5)-D. This mitochondria-targeted dendrimer-based nanocarrier could be useful for imaging as well as for selective delivery of bio-actives to the mitochondria for the treatment of diseases associated with mitochondrial dysfunction.
Collapse
|
9
|
Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE. Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond) 2012; 7:245-56. [DOI: 10.2217/nnm.11.105] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aims: Thrombogenicity associated with the induction of leukocyte procoagulant activity (PCA) is a common complication in sepsis and cancer. Since nanoparticles are increasingly used for drug delivery, their interaction with coagulation systems is an important part of the safety assessment. The purpose of this study was to investigate the effects of nanoparticle physicochemical properties on leukocyte PCA, and to get insight into the mechanism of PCA induction. Materials & Methods: A total of 12 formulations of polyamidoamine (PAMAM) dendrimers, varying in size and surface charge, were studied in vitro using recalcification time assay. Results: Irrespective of their size, anionic and neutral dendrimers did not induce leukocyte PCA in vitro. Cationic particles induced PCA in a size- and charge-dependent manner. The mechanism of PCA induction was similar to that of doxorubicin. Cationic dendrimers were also found to exacerbate endotoxin-induced PCA. Conclusion: PAMAM dendrimer-induced leukocyte PCA depends on particle size, charge and density of surface groups.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Anil K Patri
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Timothy M Potter
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Jamie C Rodriguez
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Jennifer B Hall
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Scott E McNeil
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| |
Collapse
|
10
|
PAMAM dendrimer with a 1,2-diaminoethane surface facilitates endosomal escape for enhanced pDNA delivery. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.10.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Posadas I, Guerra FJ, Ceña V. Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine (Lond) 2010; 5:1219-36. [DOI: 10.2217/nnm.10.105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While efficient methods for cell line transfection are well described, for primary neurons a high-yield method different from those relying on viral vectors is lacking. Viral vector-based primary neuronal infection has several drawbacks, including complexity of vector preparation, safety concerns and the generation of immune and inflammatory responses, when used in vivo. This article will cover the different approaches that are being used to efficiently deliver genetic material (both DNA and small interfering RNA) to neuronal tissue using nonviral vectors, including the use of cationic lipids, polyethylenimine derivatives, dendrimers, carbon nanotubes and the combination of carbon-made nanoparticles with dendrimers. The effectiveness, both in vivo and in vitro, of the different methods to deliver genetic material to neural tissue is discussed.
Collapse
Affiliation(s)
- Inmaculada Posadas
- Unidad Asociada Neurodeath, CSIC-Universidad de Castilla-La Mancha. Departamento de Ciencias Médicas. Albacete, Spain Unidad Asociada Neurodeath, Facultad de Medicina, Avda. Almansa, 14, 02006 Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Spain
| | - Francisco Javier Guerra
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Química-IRICA, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- NanoDrugs, S.L. Parque Científico y Tecnológico, Albacete, Spain
| | | |
Collapse
|
12
|
Microscopic basis for the mesoscopic extensibility of dendrimer-compacted DNA. Biophys J 2010; 98:834-42. [PMID: 20197037 DOI: 10.1016/j.bpj.2009.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 11/23/2022] Open
Abstract
The mechanism of DNA compaction by dendrimers is key to the design of nanotechnologies that can deliver genetic material into cells. We present atomistic simulations, mesoscopic modeling and single-molecule pulling experiments describing DNA dendrimer interactions. All-atom molecular dynamics were used to characterize pulling-force-dependent interactions between DNA and generation-3 PAMAM amine-terminated dendrimers, and a free energy profile and mean forces along the interaction coordinate are calculated. The energy, force, and geometry parameters computed at the atomic level are input for a Monte Carlo model yielding mesoscopic force-extension curves. Actual experimental single-molecule curves obtained with optical tweezers are also presented, and they show remarkable agreement with the virtual curves from our model. The calculations reveal the microscopic origin of the hysteresis observed in the phase transition underlying compaction. A broad range of ionic and pulling parameters is sampled, and suggestions for windows of conditions to probe new single-molecule behavior are made.
Collapse
|
13
|
Shcharbin D, Pedziwiatr E, Blasiak J, Bryszewska M. How to study dendriplexes II: Transfection and cytotoxicity. J Control Release 2009; 141:110-27. [PMID: 19815039 DOI: 10.1016/j.jconrel.2009.09.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 09/22/2009] [Indexed: 12/23/2022]
Abstract
This paper reviews different techniques for analyzing the transfection efficiencies and cytotoxicities of dendriplexes-complexes of nucleic acids with dendrimers. Analysis shows that three plasmids are mainly used in transfection experiments: plasmid DNA encoding luciferase from the firefly Photinus pyralis, beta-galactosidase, or green fluorescent protein. The effective charge ratio of transfection does not directly correlate with the charge ratio obtained from gel electrophoresis, zeta-potential or ethidium bromide intercalation data. The most popular cells for transfection studies are human embryonic kidney cells (HEK293), mouse embryonic cells (NIH/3T3), SV40 transformed monkey kidney fibroblasts (COS-7) and human epithelioid cervical carcinoma cells (HeLa). Cellular uptake is estimated using fluorescently-labeled dendrimers or nucleic acids. Transfection efficiency is measured by the luciferase reporter assay for luciferase, X-Gal staining or beta-galactosidase assay for beta-galactosidase, and confocal microscopy for green fluorescent protein. Cytotoxicity is determined by the MTT test and lactate dehydrogenase assays. On the basis of the papers reviewed, a standard essential set of techniques for characterizing dendriplexes was constructed: (1) analysis of size and shape of dendriplexes in dried/frozen state by electron or atomic force microscopy; (2) analysis of charge/molar ratio of complexes by gel electrophoresis or ethidium bromide intercalation assay or zeta-potential measurement; (3) analysis of hydrodynamic diameter of dendriplexes in solution by dynamic light scattering. For the evaluation of transfection efficiency the essential techniques are (4) luciferase reporter assay, beta-galactosidase assay or green fluorescent protein microscopy, and (5) cytotoxicity by the MTT test. All these tests allow the transfection efficiencies and cytotoxicities of different kinds of dendrimers to be compared.
Collapse
Affiliation(s)
- Dzmitry Shcharbin
- Institute of Biophysics and Cellular Engineering of NASB, Minsk, Belarus.
| | | | | | | |
Collapse
|
14
|
Yellepeddi VK, Kumar A, Palakurthi S. Surface modified poly(amido)amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin Drug Deliv 2009; 6:835-50. [DOI: 10.1517/17425240903061251] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Shcharbin D, Pedziwiatr E, Bryszewska M. How to study dendriplexes I: Characterization. J Control Release 2009; 135:186-97. [DOI: 10.1016/j.jconrel.2009.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|