1
|
Syed MM, Doshi PJ, Bharshankh A, Dhavale DD, Kate SL, Kulkarni G, Doshi JB, Kulkarni MV. Repurposing of genistein as anti-sickling agent: elucidation by multi spectroscopic, thermophoresis, and molecular modeling techniques. J Biomol Struct Dyn 2020; 40:4038-4050. [PMID: 33305701 DOI: 10.1080/07391102.2020.1852967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sickle cell disease (SCD) is a major medical problem in which mono-therapeutic interventions have so far shown only limited effectiveness. We studied the repurpose of genistein, which could prevent sickle hemoglobin from polymerizing under hypoxic conditions in this disease. Genistein an important nutraceutical molecule found in soybean. The present study examines the repurposing genistein as an anti- sickling agent. Genistein shows inhibition of Hb S polymerization as well as a sickle reversal. Also, we have explored the interaction of the genistein with sickle hemoglobin (Hb S), using fluorescence, far-UV-CD spectroscopy, MicroScale Thermophoresis (MST), FTIR, combined with molecular modeling computations. The quenching constant decreases with increasing temperature, a characteristic that coincides with the static type of quenching mechanism. Temperature-dependent fluorescence measurements and molecular modeling studies reveal that apart from the hydrogen bonding, electrostatic interactions also play a crucial role in genistein and Hb S complex formation. In silico, distribution prediction of adsorption, digestion, metabolism, excretion, and toxicity (ADME/Tox) based on physical and chemical properties show that genistein is nontoxic and has ideal drug properties. The helicity and thermophoretic mobility of Hb S was a change in the presence of genistein, which leads to the destabilizing the Hb S polymer was examined using CD and MST, respectively. Our results open up the possibility for a promising therapeutic approach for the SCD by repurposed genistein as an anti-sickling agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntjeeb M Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Pooja J Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Ankita Bharshankh
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Dilip D Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Sudam L Kate
- Maharashtra Arogya Mandal's, Sumatibhai Shah Ayurved Ahavidyalaya - College of Ayurveda and Research Centre Hadapsar, Pune, Maharashtra, India
| | - Girish Kulkarni
- Maharashtra Arogya Mandal's, Sumatibhai Shah Ayurved Ahavidyalaya - College of Ayurveda and Research Centre Hadapsar, Pune, Maharashtra, India
| | - Jignesh B Doshi
- Toxoid Purification Department, Serum Institute of India Ltd, Hadapsar, Pune, Maharashtra, India
| | - Mohan V Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| |
Collapse
|
2
|
Abstract
Sickle cell hemoglobin (HbS) is an example of a genetic variant of human hemoglobin where a point mutation in the β globin gene results in substitution of glutamic acid to valine at sixth position of the β globin chain. Association between tetrameric hemoglobin molecules through noncovalent interactions between side chain residue of βVal6 and hydrophobic grooves formed by βAla70, βPhe85 and βLeu88 amino acid residues of another tetramer followed by the precipitation of the elongated polymer leads to the formation of sickle-shaped RBCs in the deoxygenated state of HbS. There are multiple non-covalent interactions between residues across intra- and inter-strands that stabilize the polymer. The clinical phenotype of sickling of RBCs manifests as sickle cell anemia, which was first documented in the year 1910 in an African patient. Although the molecular reason of the disease has been understood well over the decades of research and several treatment procedures have been explored to date, an effective therapeutic strategy for sickle cell anemia has not been discovered yet. Surprisingly, it has been observed that the oxy form of HbS and glutathionylated form of deoxy HbS inhibits polymerization. In addition to describe the residue level interactions in the HbS polymer that provides its stability, here we explain the mechanism of inhibition in the polymerization of HbS in its oxy state. Additionally, we reported the molecular insights of inhibition in the polymerization for glutathionyl HbS, a posttranslational modification of hemoglobin, even in its deoxy state. In this chapter we briefly consider the available treatment procedures of sickle cell anemia and propose that the elevation of glutathionylation of HbS within RBCs, without inducing oxidative stress, might be an effective therapeutic strategy for sickle cell anemia.
Collapse
Affiliation(s)
- Amit Kumar Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India.
| | - Amrita Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100 ft road, Koramangala, Bangalore, 560034, India
| | - Rajdeep Das
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100 ft road, Koramangala, Bangalore, 560034, India
| |
Collapse
|
3
|
Molecular insights of inhibition in sickle hemoglobin polymerization upon glutathionylation: hydrogen/deuterium exchange mass spectrometry and molecular dynamics simulation-based approach. Biochem J 2018; 475:2153-2166. [DOI: 10.1042/bcj20180306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022]
Abstract
In sickle cell anemia, polymerization of hemoglobin in its deoxy state leads to the formation of insoluble fibers that result in sickling of red blood cells. Stereo-specific binding of isopropyl group of βVal6, the mutated amino-acid residue of a tetrameric sickle hemoglobin molecule (HbS), with hydrophobic groove of another HbS tetramer initiates the polymerization. Glutathionylation of βCys93 in HbS was reported to inhibit the polymerization. However, the mechanism of inhibition in polymerization is unknown to date. In our study, the molecular insights of inhibition in polymerization were investigated by monitoring the conformational dynamics in solution phase using hydrogen/deuterium exchange-based mass spectrometry. The conformational rigidity imparted due to glutathionylation of HbS results in solvent shielding of βVal6 and perturbation in the conformation of hydrophobic groove of HbS. Additionally, molecular dynamics simulation trajectory showed that the stereo-specific localization of glutathione moiety in the hydrophobic groove across the globin subunit interface of tetrameric HbS might contribute to inhibition in polymerization. These conformational insights in the inhibition of HbS polymerization upon glutathionylation might be translated in the molecularly targeted therapeutic approaches for sickle cell anemia.
Collapse
|
4
|
Kassa T, Strader MB, Nakagawa A, Zapol WM, Alayash AI. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects. Metallomics 2018; 9:1260-1270. [PMID: 28770911 DOI: 10.1039/c7mt00104e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a β globin gene mutation of hemoglobin (HbS). The polymerization of deoxyHbS and its subsequent aggregation (into long fibers) is the primary molecular event which leads to red blood cell (RBC) sickling and ultimately hemolytic anemia. We have recently suggested that HbS oxidative toxicity may also contribute to SCD pathophysiology due to its defective pseudoperoxidase activity. As a consequence, a persistently higher oxidized ferryl heme is formed which irreversibly oxidizes "hotspot" residues (particularly βCys93) causing protein unfolding and subsequent heme loss. In this report we confirmed first, the allosteric effect of a newly developed reagent (di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide) (TD-1) on oxygen affinity within SS RBCs. There was a considerable left shift in oxygen equilibrium curves (OECs) representing treated SS cells. Under hypoxic conditions, TD-1 treatment of HbS resulted in an approximately 200 s increase in the delay time of HbS polymerization over the untreated HbS control. The effect of TD-1 binding to HbS was also tested on oxidative reactions by incrementally treating HbS with increasing hydrogen peroxide (H2O2) concentrations. Under these experimental conditions, ferryl levels were consistently reduced by approximately 35% in the presence of TD-1. Mass spectrometric analysis confirmed that upon binding to βCys93, TD-1 effectively blocked irreversible oxidation of this residue. In conclusion, TD-1 appears to shield βCys93 (the end point of radical formation in HbS) and when coupled with its allosteric effect on oxygen affinity may provide new therapeutic modalities for the treatment of SCD.
Collapse
Affiliation(s)
- Tigist Kassa
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | | | | | | | | |
Collapse
|
5
|
Pathak KV, Chiu TL, Amin EA, Turesky RJ. Methemoglobin Formation and Characterization of Hemoglobin Adducts of Carcinogenic Aromatic Amines and Heterocyclic Aromatic Amines. Chem Res Toxicol 2016; 29:255-69. [PMID: 26824300 PMCID: PMC4801648 DOI: 10.1021/acs.chemrestox.5b00418] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Arylamines (AAs) and heterocyclic aromatic amines (HAAs) are structurally related carcinogens formed during the combustion of tobacco or cooking of meat. They undergo cytochrome P450 mediated N-hydroxylation to form metabolites which bind to DNA and lead to mutations. The N-hydroxylated metabolites of many AAs also can undergo a co-oxidation reaction with oxy-hemolgobin (HbO2) to form methemoglobin (met-Hb) and the arylnitroso intermediates, which react with the β-Cys(93) chain of Hb to form Hb-arylsulfinamide adducts. The biochemistry of arylamine metabolism has been exploited to biomonitor certain AAs through their Hb arylsulfinamide adducts in humans. We examined the reactivity of HbO2 with the N-hydroxylated metabolites of 4-aminobiphenyl (ABP, HONH-ABP), aniline (ANL, HONH-ANL), and the HAAs 2-amino-9H-pyrido[2,3-b]indole (AαC, HONH-AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP, HONH-PhIP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx, HONH-MeIQx). HONH-ABP, HO-ANL, and HONH-AαC induced methemoglobinemia and formed Hb sulfinamide adducts. However, HONH-MeIQx and HONH-PhIP did not react with the oxy-heme complex, and met-Hb formation and chemical modification of the β-Cys(93) residue were negligible. Molecular modeling studies showed that the distances between the H-ON-AA or H-ON-HAA substrates and the oxy-heme complex of HbO2 were too far away to induce methemoglobinemia. Different conformational changes in flexible helical and loop regions around the heme pocket induced by the H-ON-AA or H-ON-HAAs may explain the different proclivities of these chemicals to induce methemoglobinemia. Hb-Cys(93β) sulfinamide and sulfonamide adducts of ABP, ANL, and AαC were identified, by Orbitrap MS, following the proteolysis of Hb with trypsin, Glu-C, or Lys-C. Hb sulfinamide and sulfonamide adducts of ABP were identified in the blood of mice exposed to ABP, by Orbitrap MS. This is the first report of the identification of intact Hb sulfinamide adducts of carcinogenic AAs in vivo. The high reactivity of HONH-AαC with HbO2 suggests that the Hb sulfinamide adduct of AαC may be a promising biomarker of exposure to this HAA in humans.
Collapse
Affiliation(s)
| | - Ting-Lan Chiu
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Nakagawa A, Lui FE, Wassaf D, Yefidoff-Freedman R, Casalena D, Palmer MA, Meadows J, Mozzarelli A, Ronda L, Abdulmalik O, Bloch KD, Safo MK, Zapol WM. Identification of a small molecule that increases hemoglobin oxygen affinity and reduces SS erythrocyte sickling. ACS Chem Biol 2014; 9:2318-25. [PMID: 25061917 PMCID: PMC4205001 DOI: 10.1021/cb500230b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Small
molecules that increase the oxygen affinity of human hemoglobin
may reduce sickling of red blood cells in patients with sickle cell
disease. We screened 38 700 compounds using small molecule
microarrays and identified 427 molecules that bind to hemoglobin.
We developed a high-throughput assay for evaluating the ability of
the 427 small molecules to modulate the oxygen affinity of hemoglobin.
We identified a novel allosteric effector of hemoglobin, di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide
(TD-1). TD-1 induced a greater increase in oxygen affinity of human
hemoglobin in solution and in red blood cells than did 5-hydroxymethyl-2-furfural
(5-HMF), N-ethylmaleimide (NEM), or diformamidine disulfide. The three-dimensional
structure of hemoglobin complexed with TD-1 revealed that monomeric
units of TD-1 bound covalently to β-Cys93 and β-Cys112,
as well as noncovalently to the central water cavity of the hemoglobin
tetramer. The binding of TD-1 to hemoglobin stabilized the relaxed
state (R3-state) of hemoglobin. TD-1 increased the oxygen affinity
of sickle hemoglobin and inhibited in vitro hypoxia-induced
sickling of red blood cells in patients with sickle cell disease without
causing hemolysis. Our study indicates that TD-1 represents a novel
lead molecule for the treatment of patients with sickle cell disease.
Collapse
Affiliation(s)
- Akito Nakagawa
- Anesthesia Center
for Critical Care Research, Department of Anesthesia, Critical Care,
and Pain Medicine, Massachusetts General Hospital and Harvard Medical
School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Francine E. Lui
- Anesthesia Center
for Critical Care Research, Department of Anesthesia, Critical Care,
and Pain Medicine, Massachusetts General Hospital and Harvard Medical
School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Dina Wassaf
- The Broad Institute
of MIT and Harvard, Chemical Biology Platform, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Revital Yefidoff-Freedman
- Anesthesia Center
for Critical Care Research, Department of Anesthesia, Critical Care,
and Pain Medicine, Massachusetts General Hospital and Harvard Medical
School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Dominick Casalena
- The Broad Institute
of MIT and Harvard, Chemical Biology Platform, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Michelle A. Palmer
- The Broad Institute
of MIT and Harvard, Chemical Biology Platform, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Jacqueline Meadows
- Department
of Medicinal Chemistry, Institute for Structural Biology and Drug
Discovery, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23219, United States
| | - Andrea Mozzarelli
- Department
of Pharmacy, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Luca Ronda
- Department
of Neuroscience, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Osheiza Abdulmalik
- Division of Hematology,
The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Kenneth D. Bloch
- Anesthesia Center
for Critical Care Research, Department of Anesthesia, Critical Care,
and Pain Medicine, Massachusetts General Hospital and Harvard Medical
School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Martin K. Safo
- Department
of Medicinal Chemistry, Institute for Structural Biology and Drug
Discovery, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23219, United States
| | - Warren M. Zapol
- Anesthesia Center
for Critical Care Research, Department of Anesthesia, Critical Care,
and Pain Medicine, Massachusetts General Hospital and Harvard Medical
School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
7
|
Kuypers FA. Hemoglobin S Polymerization and Red Cell Membrane Changes. Hematol Oncol Clin North Am 2014; 28:155-79. [DOI: 10.1016/j.hoc.2013.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Kan HI, Chen IY, Zulfajri M, Wang CC. Subunit disassembly pathway of human hemoglobin revealing the site-specific role of its cysteine residues. J Phys Chem B 2013; 117:9831-9. [PMID: 23902424 DOI: 10.1021/jp402292b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cysteine residues play a unique role in human hemoglobin (Hb) by affecting its cooperative oxygen binding behavior and the stability of its tetrameric structure. However, how these cysteine residues fulfill their biophysical functions from the molecular level is yet unclear. Here we study the subunit disassembly pathway of human hemoglobin using the sulfhydryl reagent, p-hydroxymercuribenzoate (PMB) and investigate the functional roles of cysteine residues in human hemoglobin. We show evidence from the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry that all three types of cysteine residues, including the surface-exposed βCys93 and the shielded αCys104 and βCys112 are reactive to PMB, resolving an issue long under debate. It is demonstrated that all three types of cysteine residues must be blocked by PMB to accomplish the subunit disassembly, and the PMB-cysteine reactions proceed in a stepwise manner with an order of βCys93, αCys104, and βCys112. The PMB reactions with the three different cysteine residues demonstrate strong site-specificity. The possible influence of PMB-cysteine reactions to the stability of various intersubunit salt bridges has been discussed based on the crystallographic structure of hemoglobin, providing insights in understanding the hemoglobin subunit disassembly pathway and the site-specific functional role of each cysteine residue in hemoglobin.
Collapse
Affiliation(s)
- Heng-I Kan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. 80424
| | | | | | | |
Collapse
|
9
|
Knee KM, Mukerji I. Real Time Monitoring of Sickle Cell Hemoglobin Fiber Formation by UV Resonance Raman Spectroscopy. Biochemistry 2009; 48:9903-11. [DOI: 10.1021/bi901352m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kelly M. Knee
- Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Ishita Mukerji
- Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|
10
|
Wang Y, Petty S, Trojanowski A, Knee K, Goulet D, Mukerji I, King J. Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gammaC-crystallin. Invest Ophthalmol Vis Sci 2009; 51:672-8. [PMID: 19684009 DOI: 10.1167/iovs.09-3987] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mature-onset cataract results from the formation of light-scattering aggregates of lens crystallins. Although oxidative or mutational damage may be a prerequisite, little is known of the initiation or nucleation of these aggregated states. In mice carrying mutations in gamma-crystallin genes, a truncated form of gamma-crystallin formed intranuclear filamentous inclusions within lens fiber cells. Previous studies have shown that bovine crystallins and human gammaD-crystallin form amyloid fibrils under denaturing conditions in vitro. The amyloid fibril formation of human gammaC-crystallin (HgammaC-Crys) induced by low pH, together with characterization of a partially unfolded intermediate in the process were investigated. METHODS HgammaC-Crys was expressed and purified from Escherichia coli. Partially unfolded intermediates were detected by tryptophan fluorescence spectroscopy and UV resonance Raman spectroscopy. The aggregation into amyloid fibrils was monitored by solution turbidity and fluorescence assay. The morphology of aggregates was characterized using transmission electron microscopy (TEM). Secondary structure of the peptides in their fibrillar state was characterized using Fourier transform infrared spectroscopy (FTIR). RESULTS The structure of HgammaC-Crys was perturbed at low pH. Partially unfolded intermediates were detected when solution pH was lowered to pH 3. At pH 3, HgammaC-Crys aggregated into amyloid fibrils. The kinetics and extent of the reaction was dependent on protein concentration, pH, and temperature. TEM images of aggregates revealed aggregation stages from short to long fibrils and from long fibrils to light-scattering fibril networks. FTIR spectroscopy confirmed the cross-beta character of the secondary structure of these fibrils. CONCLUSIONS HgammaC-Crys formed amyloid fibrils on incubation at low pH via a partially unfolded intermediate. This process could contribute to the early stages of the formation of light-scattering species in the eye lens.
Collapse
Affiliation(s)
- Yongting Wang
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|