1
|
Gao Y, He J, Kang J, Peng J, Bian H. Molecular Insights into Anion-Specific Freezing Point Depression in Lithium Salt Solutions. J Phys Chem B 2025; 129:2730-2738. [PMID: 40011199 DOI: 10.1021/acs.jpcb.5c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The depression of freezing points in electrolyte aqueous solutions, a well-known colligative property, is traditionally attributed to entropy increases arising from ion-induced disruption of the hydrogen-bonding networks. However, the microscopic mechanisms governing this phenomenon remain poorly understood, particularly at concentrated salt concentrations where ion-specific effects emerge. In this study, we combined Raman spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations to investigate the hydrogen-bonding structures of water in lithium salt solutions containing typical anions. MD simulations reveal that diffusion barriers of water are influenced by the anion identity, while DFT calculations indicate that anions with lower surface electrostatic potentials weaken the disruption of the hydrogen-bonding network caused by the cation. By systematically evaluating five lithium salts─LiClO4, LiNO3, LiBF4, LiCl, and LiTFSI─we show that freezing point depression in lithium salt solutions arises from a complex interplay of anion-water, cation-anion, and cation-water interactions. Notably, the freezing point trends deviate from the Hofmeister series, suggesting the critical role of ion-pairing and aggregate formation in determining solution behavior. Our results further indicate that rather than the intrinsic structure─disrupting ability of Hofmeister anions, the mobility of water molecules within the ions' hydration shells is a primary determinant of freezing behavior, challenging the conventional view and revealing the critical influence of local water dynamics on solid/liquid transitions. These findings provide molecular-level insights into the ion-specific effects governing freezing point depression in electrolyte solutions, with implications for lithium-ion battery electrolytes and other concentrated ionic systems.
Collapse
Affiliation(s)
- Yuting Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiman He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiajia Kang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiahui Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Chen MW, Ren X, Song X, Qian N, Ma Y, Yu W, Yang L, Min W, Zare RN, Dai Y. Transition-State-Dependent Spontaneous Generation of Reactive Oxygen Species by Aβ Assemblies Encodes a Self-Regulated Positive Feedback Loop for Aggregate Formation. J Am Chem Soc 2025; 147:8267-8279. [PMID: 39999421 DOI: 10.1021/jacs.4c15532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Amyloid-β (Aβ) peptides exhibit distinct biological activities across multiple physical length scales, including monomers, oligomers, and fibrils. The transition from Aβ monomers to pathological aggregates correlates with the emergence of chemical toxicity, which plays a critical role in the progression of neurodegenerative disorders. However, the relationship between the physical state of Aβ assemblies and their chemical toxicity remains poorly understood. Here, we show that Aβ assemblies can spontaneously generate reactive oxygen species (ROS) through transition-state-specific inherent nonenzymatic redox activity. During the transition from initial monomers to intermediate oligomers or condensates to final fibrils, interfacial electrochemical environments emerge and vary at the liquid-liquid and liquid-solid interfaces. Determined by the vibrational Stark effect using electronic pre-resonance stimulated Raman scattering microscopy, the interfacial field of such assemblies is on the order of 10 MV/cm. Interfacial activity, which depends on the Aβ transition state, can modulate the spontaneous oxidation of hydroxide anions, which leads to the formation of hydroxyl radicals. Interestingly, this redox activity modifies the chemical composition of Aβ and establishes a self-regulated positive feedback loop that accelerates aggregation and promotes fibril formation, which represents a new functioning mechanism of Aβ aggregation beyond physical cross-linking. Leveraging this mechanistic insight, we identified small molecules capable of disrupting the feedback loop by scavenging hydroxyl radicals or perturbing the interface, thereby inhibiting fibril formation. Our findings provide a nonenzymatic model of neurotoxicity and reveal the critical role of physical interfaces in modulating the chemical dynamics of biomolecular assemblies. These results offer a novel framework for therapeutic intervention in Alzheimer's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael W Chen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaokang Ren
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Leshan Yang
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Warmbier-Wytykowska E, Williams AP, Rozanski J, Fischer P, Lutz-Bueno V, Handschin S, Baraldi L, Warmbier J, Wagner P, Różańska S. How Do the Valency and Radii of Cations Affect the Rheological Properties of Aqueous Solutions of Zwitterionic and Anionic Surfactant Mixtures? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3561-3571. [PMID: 39879074 PMCID: PMC11823622 DOI: 10.1021/acs.langmuir.4c04689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na+, Ca2+, and Mg2+) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM. We characterized the macroscale properties through rheological measurements and obtained detailed structural insights using small-angle X-ray scattering (SAXS) and cryogenic electron microscopy (cryo-EM). The findings reveal that increasing the concentration of cations in the CAPB/SDBS mixture induces the formation of peaks in the zero-shear viscosity as a function of salt concentration (salt curve). Analysis through cryo-EM and SAXS showed that these viscosity peaks are related to the change of micellar assemblies from entangled worm-like micelles to branched worm-like micelles and then to bilayer structures (vesicles). The specific cation concentration at which the zero-shear viscosity peak occurs, as well as the maximum viscosity, is strongly influenced by the type of cation present in the CAPB/SDBS solutions, a phenomenon explained by the Hofmeister series. Notably, the differing affinities of cations for the carboxylate COO- and sulfite SO3- groups and the partial dehydration of micelles contribute to the lower concentration of magnesium cations required to reach the viscosity peak compared to calcium cations.
Collapse
Affiliation(s)
- Ewelina Warmbier-Wytykowska
- Institute
of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland
| | - Ashley Peter Williams
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Jacek Rozanski
- Institute
of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland
| | - Peter Fischer
- Institute
of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Viviane Lutz-Bueno
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Stephan Handschin
- Scientific
Center for Optical and Electron Microscopy, ETH Zürich, Auguste-Piccard-Hof
1, 8093 Zürich, Switzerland
| | - Laura Baraldi
- Institute
of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Jarosław Warmbier
- Faculty
of Control, Robotics and Electrical Engineering, Division of Control
and Robotics, Poznan University of Technology, ul. Piotrowo 3a, 60-965 Poznan, Poland
| | - Patrycja Wagner
- Institute
of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland
| | - Sylwia Różańska
- Institute
of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland
| |
Collapse
|
4
|
Rezaie F, Kowsari MH. Capturing the Effect of Anion Type on the Intermolecular Interactions between Water and Imidazolium-Based Ionic Liquids: A Comparative DFT Study. J Phys Chem B 2025; 129:1343-1359. [PMID: 39836764 DOI: 10.1021/acs.jpcb.4c06749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The studies on ionic liquids (ILs) and their interaction with different solvents have always been an interesting topic for experimental and computational chemists. Recently, however, deep insights on the molecular structures of the IL-water binary mixtures have been mainly performed through classical simulations. Here, a comprehensive quantum mechanical study is presented on seven 1-butyl-3-methylimidazolium-based ILs in the absence and presence of water. As the most important intermolecular interaction between ionic moieties of ILs and water molecules, hydrogen bonding is studied through different bonding analyses. The effect of different anions, [NO3]-, [HSO4]-, [SCN]-, [DCA]-, [BF4]-, [PF6]-, and [NTf2]-, on the behavior of ILs interacting with a sample of water molecules is investigated. Comparing the implicit and explicit approaches to consider water solvent indicated that the structure of ILs in the solvent depends on the selected solvent model. By considering explicit water molecules, we analyzed the intermolecular interactions between ILs and the water sample. The energy decomposition analysis indicated that the stability of the IL···water systems is mainly due to the electrostatic component of the total interaction energy. The interaction region indicator (IRI) analysis discovered that chemical bond and van der Waals (vdW) interactions are important in the IL···water systems. Indeed, investigation of each ion/ion pair surrounded by ten nearest neighbor water molecules discovered that the vdW interactions are responsible for the cation···anion and the cation···water interactions, while chemical bonding is important in the anion···water and the water···water interactions. Therefore, the anion···water interaction requires further analysis. The quantum theory of atoms in molecules verified the ionic nature of the H-bond in the anion···water interaction. The IRI analysis showed that the interaction between water molecules and cyano-based anions, [SCN]- and [DCA]-, is only due to chemical bonding, while in the oxygenated anions, [NO3]- and [HSO4]-, the vdW forces are also important. For the other anions, [BF4]-, [PF6]-, and [NTf2]-, the vdW forces have the main contribution in the anion···water interaction. Natural bond orbital analysis indicated that these intermolecular interactions originate from nanion → σO-H* electron transfer. Finally, the law of matching water affinity (LMWA) using energy-based parameters was used to predict the hydrophilicity of ILs as follows: [BMIM][NO3] > [BMIM][SCN] > [BMIM][DCA] > [BMIM][HSO4] > [BMIM][BF4] > [BMIM][NTf2] > [BMIM][PF6]. Results obtained in the current work give insights into the electronic nature of intermolecular interactions between ILs and water molecules, which is necessary due to importance of water in modifying properties of ILs in various applications.
Collapse
Affiliation(s)
- Forough Rezaie
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mohammad H Kowsari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
5
|
Sun Q, Chen YN, Liu YZ. Wetting Transition from Wenzel to Cassie States: Thermodynamic Analysis. MATERIALS (BASEL, SWITZERLAND) 2025; 18:543. [PMID: 39942210 PMCID: PMC11818709 DOI: 10.3390/ma18030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Superhydrophobicity is closely linked to the chemical composition and geometric characteristics of surface roughness. Building on our structural studies on water and air-water interfaces, this work aims to elucidate the mechanism underlying the wetting transition from the Wenzel to the Cassie state on a hydrophobic surface. In the Wenzel state, the grooves are filled with water, meaning that the surface roughness becomes embedded in the liquid. To evaluate the effects of surface roughness on water structure, a wetting parameter (WRoughness) is proposed, which is closely related to the geometric characteristics of roughness, such as pillar size, width, and height. During the wetting transition from Wenzel to Cassie states, the critical wetting parameter (WRoughness,c) may be expected, which corresponds to the critical pillar size (ac), width (wc), and height (hc). The Cassie state is expected when the WRoughness is less than WRoughness,c (ac), decreasing width (hc). Additionally, molecular dynamic (MD) simulations are conducted to demonstrate the effects of surface roughness on superhydrophobicity.
Collapse
Affiliation(s)
- Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China; (Y.-N.C.); (Y.-Z.L.)
| | | | | |
Collapse
|
6
|
Acar M, Tatini D, Ninham BW, Lo Nostro P. The Role of Polarizability in Isoelectronic Ions: The Case of Pseudohalides. Molecules 2025; 30:323. [PMID: 39860193 PMCID: PMC11767347 DOI: 10.3390/molecules30020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Specific ion effects are widespread and have been studied for over a century, yet they remain poorly understood. Terms like "kosmotropes" and "chaotropes" are convenient rules of thumb but the frequent reversal of the Hofmeister series implies their limitations. Polarizability is often used to classify ions, with kosmotropes considered low in polarizability and chaotropes high. However, for polyatomic ions, this framework becomes misleading. The anisotropic nature of polarizability in polyatomic ions plays a decisive role in shaping their behavior. In this work, we study pseudohalides (KOCN, KSCN, and KSeCN) aqueous solutions to explore these effects. We evaluate properties of these anions through experimental measurements of conductivity, density, viscosity, infrared spectra, and polarizability. Our results demonstrate that, even for linear isoelectronic polyatomic ions, the anisotropy of polarizability governs their hydration behavior.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Barry W. Ninham
- Materials Physics (Formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
7
|
Zuev YF, Derkach SR, Lunev IV, Nikiforova AA, Klimovitskaya MA, Bogdanova LR, Skvortsova PV, Kurbanov RK, Kazantseva MA, Zueva OS. Water as a Structural Marker in Gelatin Hydrogels with Different Cross-Linking Nature. Int J Mol Sci 2024; 25:11738. [PMID: 39519286 PMCID: PMC11545959 DOI: 10.3390/ijms252111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
We have studied the molecular properties of water in physically and chemically cross-linked gelatin hydrogels by FTIR-spectroscopy, NMR relaxation, and diffusivity and broadband dielectric spectroscopy, which are sensitive to dynamical properties of water, being a structural marker of polymer network. All experiments demonstrated definite reinforcement of the hydrogel net structure and an increase in the amount of hydrate water. FTIR experiments have shown that the chemical cross-linking of gelatin molecules initiates an increase in the collagen-like triple helices "strength", as a result of infused restriction on protein molecular mobility. The "strengthening" of protein chains hinders the mobility of protein fragments, introducing complex modifications into the structural properties of water which are remained practically unchanged up to up to 30-40 °C.
Collapse
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, 420111 Kazan, Russia; (I.V.L.); (A.A.N.); (M.A.K.); (P.V.S.); (R.K.K.); (M.A.K.)
| | - Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, 183010 Murmansk, Russia;
| | - Ivan V. Lunev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, 420111 Kazan, Russia; (I.V.L.); (A.A.N.); (M.A.K.); (P.V.S.); (R.K.K.); (M.A.K.)
- Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Alena A. Nikiforova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, 420111 Kazan, Russia; (I.V.L.); (A.A.N.); (M.A.K.); (P.V.S.); (R.K.K.); (M.A.K.)
- Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Mariya A. Klimovitskaya
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, 420111 Kazan, Russia; (I.V.L.); (A.A.N.); (M.A.K.); (P.V.S.); (R.K.K.); (M.A.K.)
- Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Liliya R. Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, 420111 Kazan, Russia; (I.V.L.); (A.A.N.); (M.A.K.); (P.V.S.); (R.K.K.); (M.A.K.)
| | - Polina V. Skvortsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, 420111 Kazan, Russia; (I.V.L.); (A.A.N.); (M.A.K.); (P.V.S.); (R.K.K.); (M.A.K.)
| | - Rauf Kh. Kurbanov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, 420111 Kazan, Russia; (I.V.L.); (A.A.N.); (M.A.K.); (P.V.S.); (R.K.K.); (M.A.K.)
| | - Mariia A. Kazantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, 420111 Kazan, Russia; (I.V.L.); (A.A.N.); (M.A.K.); (P.V.S.); (R.K.K.); (M.A.K.)
- School of Applied Mathematics, HSE University, Tallinskaya Str. 34, 123458 Moscow, Russia
| | - Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, Krasnoselskaya Str. 51, 420066 Kazan, Russia;
| |
Collapse
|
8
|
Alasadi E, Baiz CR. Ion effects on minimally hydrated polymers: hydrogen bond populations and dynamics. SOFT MATTER 2024; 20:8291-8302. [PMID: 39387354 DOI: 10.1039/d4sm00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Compared to bulk water, the effect of ions in confined environments or heterogeneous aqueous solutions is less understood. In this study, we characterize the influence of ions on hydrogen bond populations and dynamics within minimally hydrated polyethylene glycol diacrylate (PEGDA) solutions using Fourier-transform infrared (FTIR) and two-dimensional infrared (2D IR) spectroscopies. We demonstrate that hydrogen bond populations and lifetimes are directly related to ion size and hydration levels within the polymer matrix. Specifically, larger monovalent cation sizes (Li+, Na+, K+) as well as anion sizes (F-, Cl-, Br-) increase hydrogen bond populations and accelerate hydrogen bond dynamics, with anions having more pronounced effects compared to cations. These effects can be attributed to the complex interplay between ion hydration shells and the polymer matrix, where larger ions with diffuse charge distributions are less efficiently solvated, leading to a more pronounced disruption of the local hydrogen bonding network. Additionally, increased overall water content results in a significant slowdown of dynamics. Increased water content enhances the hydrogen bonding network, yet simultaneously provides greater ionic mobility, resulting in a delicate balance between stabilization and dynamic restructuring of hydrogen bonds. These results contribute to the understanding of ion-specific effects in complex partially-hydrated polymer systems, highlighting the complex interplay between ion concentration, water structuring, and polymer hydration state. The study provides a framework for designing polymer membrane compositions with ion-specific properties.
Collapse
Affiliation(s)
- Eman Alasadi
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Lau K, Sharpe S, Cerruti M. Initiation of Medial Calcification: Revisiting Calcium Ion Binding to Elastin. J Phys Chem B 2024; 128:9631-9642. [PMID: 39324564 DOI: 10.1021/acs.jpcb.4c04464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Pathological calcification of elastin, a key connective tissue protein in the medial layers of blood vessels, starts with the binding of calcium ions. This Mini-Review focuses on understanding how calcium ions interact with elastin to initiate calcification at a molecular level, and emphasizes water's critical role in mediating this interaction. In the past decade, great strides have been made in understanding and modeling ion-specific hydration and its effects on biomolecule interactions. However, these advances have been largely absent from our understanding of elastin calcification. Historically, charge-neutral backbone carbonyls and negatively charged carboxyl groups have been proposed as elastin's calcium binding sites. Recently, tropoelastin's only four carboxyl groups have been identified as binding sites from classical molecular dynamics (MD). While carboxyl groups have a much higher affinity for binding calcium ions than backbone carbonyls, conflicting evidence persists for both functional group's importance in elastin calcification. This can be attributed to the fact that divalent ions strongly polarize water, leading to a hydration shell that shields electrostatic forces. The hydration shell surrounding both a calcium ion and either of the proposed binding sites must be displaced to enable binding. Providing our own extended X-ray absorption fine structure (EXAFS) data and complementary simulations, we discuss the potential structures of calcium binding in elastin and review prior knowledge regarding the relative importance of the two proposed binding sites.
Collapse
Affiliation(s)
- Kirklann Lau
- Department of Mining and Materials Engineering, McGill University, 3610 University Street Wong Building, 2250, Montreal, QC H3A 0C5, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning 686 Bay St., Room 20.9714, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 5207, Toronto, ON M5S 1A8, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 University Street Wong Building, 2250, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
10
|
Huang B, Yun L, Yang Y, Han R, Chen K, Wang Z, Wang Y, Chen H, Du Y, Hao Y, Lv P, Ji P, Tan Y, Zheng L, Liu L, Li R, Yang J. Structural Study of Aqueous Electrolyte Solution by MeV Liquid Electron Scattering. J Phys Chem B 2024; 128:9197-9205. [PMID: 39268827 DOI: 10.1021/acs.jpcb.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The impact of ions on water has long been a subject of great interest, as it is closely tied to the hydration structure, dynamics, and properties of electrolyte solutions. Over centuries of investigation, the influence of ions on water's structure remains highly debated. Prevailing techniques, such as neutron and X-ray scattering, primarily focus on the microscopic structure of salt solutions at very high concentrations, mostly above 1 mol/L. In this study, we measured the structure of aqueous potassium iodide (KI) and potassium chloride (KCl) solutions using MeV liquid electron scattering (MeV-LES) across a concentration range of 0.10 to 0.75 mol/L. The obtained results provide detailed insights into the variations in ion-oxygen and oxygen-oxygen correlations as a function of concentration. The observed structural differences between KI and KCl solutions are in line with the structure maker/breaker theory, which suggests that iodide ions exert a more pronounced effect than chloride ions on disrupting the water shell. This work demonstrates the potency of MeV-LES for investigating the atomic structure in liquids, augmenting the modern analytical toolbox.
Collapse
Affiliation(s)
- Bo Huang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Longteng Yun
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yining Yang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Ruinong Han
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Keke Chen
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Yian Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Haowei Chen
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingchao Du
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Yuxia Hao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Peng Lv
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Pengju Ji
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuemei Tan
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Lianmin Zheng
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Lihong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renkai Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China
| | - Jie Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Musiał M, Riccardi D, Suiter CL, Sontarp EJ, Miller SL, Lirette RL, Rehmeier KC, Mahata A, Muzny CD, Stelson AC, Schwarz KA, Widegren JA. NMR Spectroscopy and Multiscale Modeling Shed Light on Ion-Solvent Interactions and Ion Pairing in Aqueous NaF Solutions. J Phys Chem B 2024; 128:8974-8983. [PMID: 39253766 DOI: 10.1021/acs.jpcb.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The balance between ion solvation and ion pairing in aqueous solutions modulates chemical and physical processes from catalysis to protein folding. Yet, despite more than a century of investigation, experimental determination of the distribution of ion-solvation and ion-pairing states remains elusive, even for archetypal systems like aqueous alkali halides. Here, we combine nuclear magnetic resonance (NMR) spectroscopy and multiscale modeling to disentangle ion-solvent interactions from ion pairing in aqueous sodium fluoride solutions. We have developed a high-accuracy method to collect experimental NMR resonance frequencies for both ions as functions of temperature and concentration. Comparison of these data with resonance frequencies for nonassociating salts allows us to differentiate the influence of solvation and ion pairing on NMR spectra. These high-quality experimental NMR data are used to validate our modeling framework comprising polarizable force field molecular dynamics (MD) simulations and quantum chemical calculations of NMR resonance frequencies. Our experimental and theoretical resonance frequency shifts agree over a wide range of temperatures and concentrations. Structural analysis reveals how both trends are dominated by interactions with water molecules. For the more sensitive 19F nucleus, the NMR resonance frequency decreases as hydrogen bonds between fluoride and water molecules are reduced in number with increased temperature and molality. Through a detailed analysis of the theoretical NMR resonance frequencies for both ions, we show that NMR spectroscopy can distinguish both contact ion pairs and single-solvent-separated ion pairs from free ions. This quantitative framework can be applied directly to other systems.
Collapse
Affiliation(s)
- Małgorzata Musiał
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Demian Riccardi
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Christopher L Suiter
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Ethan J Sontarp
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Samantha L Miller
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Robert L Lirette
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- RF Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Kyle Covington Rehmeier
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Avik Mahata
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Chris D Muzny
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Angela C Stelson
- RF Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Kathleen A Schwarz
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jason A Widegren
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| |
Collapse
|
12
|
Arakawa T, Tomioka Y, Akuta T, Shiraki K. The contrasting roles of co-solvents in protein formulations and food products. Biophys Chem 2024; 312:107282. [PMID: 38944944 DOI: 10.1016/j.bpc.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Protein aggregation is a major hurdle in developing biopharmaceuticals, in particular protein formulation area, but plays a pivotal role in food products. Co-solvents are used to suppress protein aggregation in pharmaceutical proteins. On the contrary, aggregation is encouraged in the process of food product making. Thus, it is expected that co-solvents play a contrasting role in biopharmaceutical formulation and food products. Here, we show several examples that utilize co-solvents, e.g., salting-out salts, sugars, polyols and divalent cations in promoting protein-protein interactions. The mechanisms of co-solvent effects on protein aggregation and solubility have been studied on aqueous protein solution and applied to develop pharmaceutical formulation based on the acquired scientific knowledge. On the contrary, co-solvents have been used in food industries based on empirical basis. Here, we will review the mechanisms of co-solvent effects on protein-protein interactions that can be applied to both pharmaceutical and food industries and hope to convey knowledge acquired through research on co-solvent interactions in aqueous protein solution and formulation to those involved in food science and provide those involved in protein solution research with the observations on aggregation behavior of food proteins.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130, USA.
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd, 3333-26, Aza-Asayama, Kamitezuna Tahahagi, Ibaraki 318-0004, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd, 3333-26, Aza-Asayama, Kamitezuna Tahahagi, Ibaraki 318-0004, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
13
|
Mengel SD, DeStefano AJ, Webber T, Semerdjiev A, Han S, Segalman RA. Salt-Screened Transition toward Bulk-Like Water Dynamics near Polymeric Zwitterions. ACS Macro Lett 2024; 13:928-934. [PMID: 38995998 DOI: 10.1021/acsmacrolett.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The superior antifouling performance of zwitterionic materials is commonly linked to their hydration structure, in which tight surface binding of water molecules inhibits solute adsorption. However, there is comparatively little direct experimental data on the hydration water structure and dynamics around zwitterionic moieties, including the longer-range behavior of the hydration shell that modulates the approach of solutes to the polymer surface. This work experimentally probes the dynamics of the diffusing hydration water molecules around a series of zwitterion chemistries using Overhauser dynamic nuclear polarization relaxometry. Surprisingly, water dynamics measured within ∼1 nm of the zwitterions were minimally inhibited compared to those near uncharged hydrophilic or cationic side chains. Specific dissolved ions further enhance the water diffusivity near the zwitterions, rendering the hydration shell bulk water-like. These results that the hydration of a zwitterion surface is nearly indistinguishable from bulk water suggest that these surfaces are "invisible" to biological constituents in a manner tunable by the ionic environment and the chemical design of the zwitterionic surface.
Collapse
Affiliation(s)
- Shawn D Mengel
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Audra J DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Anton Semerdjiev
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Sun Q, Chen YN, Liu YZ. The Effects of External Interfaces on Hydrophobic Interactions I: Smooth Surface. Molecules 2024; 29:3128. [PMID: 38999080 PMCID: PMC11243484 DOI: 10.3390/molecules29133128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
External interfaces, such as the air-water and solid-liquid interfaces, are ubiquitous in nature. Hydrophobic interactions are considered the fundamental driving force in many physical and chemical processes occurring in aqueous solutions. It is important to understand the effects of external interfaces on hydrophobic interactions. According to the structural studies on liquid water and the air-water interface, the external interface primarily affects the structure of the topmost water layer (interfacial water). Therefore, an external interface may affect hydrophobic interactions. The effects of interfaces on hydrophobicity are related not only to surface molecular polarity but also to the geometric characteristics of the external interface, such as shape and surface roughness. This study is devoted to understanding the effects of a smooth interface on hydrophobicity. Due to hydrophobic interactions, the solutes tend to accumulate at external interfaces to maximize the hydrogen bonding of water. Additionally, these can be demonstrated by the calculated potential mean forces (PMFs) using molecular dynamic (MD) simulations.
Collapse
Affiliation(s)
- Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China (Y.-Z.L.)
| | | | | |
Collapse
|
15
|
Liu YZ, Chen YN, Sun Q. The Dependence of Hydrophobic Interactions on the Shape of Solute Surface. Molecules 2024; 29:2601. [PMID: 38893477 PMCID: PMC11173737 DOI: 10.3390/molecules29112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
According to our recent studies on hydrophobicity, this work is aimed at understanding the dependence of hydrophobic interactions on the shape of a solute's surface. It has been observed that dissolved solutes primarily affect the structure of interfacial water, which refers to the top layer of water at the interface between the solute and water. As solutes aggregate in a solution, hydrophobic interactions become closely related to the transition of water molecules from the interfacial region to the bulk water. It is inferred that hydrophobic interactions may depend on the shape of the solute surface. To enhance the strength of hydrophobic interactions, the solutes tend to aggregate, thereby minimizing their surface area-to-volume ratio. This also suggests that hydrophobic interactions may exhibit directional characteristics. Moreover, this phenomenon can be supported by calculated potential mean forces (PMFs) using molecular dynamics (MD) simulations, where different surfaces, such as convex, flat, or concave, are associated with a sphere. Furthermore, this concept can be extended to comprehend the molecular packing parameter, commonly utilized in studying the self-assembly behavior of amphiphilic molecules in aqueous solutions.
Collapse
Affiliation(s)
| | | | - Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China; (Y.-Z.L.); (Y.-N.C.)
| |
Collapse
|
16
|
Lifshiz-Simon S, Kunz W, Zemb T, Talmon Y. Ion effects on co-existing pseudo-phases in aqueous surfactant solutions: cryo-TEM, rheometry, and quantification. J Colloid Interface Sci 2024; 660:177-191. [PMID: 38241866 DOI: 10.1016/j.jcis.2024.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
HYPOTHESIS Specific alkaline cation effects control the area per headgroup of alkylester sulphates, which modifies the spontaneous packing of the surfactants. The resulting effective packing minimizes the total bending energy frustration and results in a Boltzmann distribution of coexisting pseudo-phases. These pseudo-phases constitute of micelles and other structures of complex morphology: cylindrical sections, end-caps, branching points, and bilayers, all in dynamic equilibrium. According to our model, excess of end-caps or excess of branching points lead to low viscosity, whereas comparable amounts of both structures lead to viscosity maxima. Relative occurrence of branching points and end-caps is the molecular mechanism at the origin of the salt-sensitive viscosity peak in the "salt-curve" (viscosity against salt concentration at fixed surfactant concentration). Up to now, and as indicated in former papers, this has been a pure model without microscopic verification. EXPERIMENTS In this work, we introduce explicit counting of the number of coexisting pseudo-phases as observed by state-of-the-art cryogenic transmission electron microscopy (cryo-TEM). The model system used, i.e., sodium laurylethersulfate (SLES)/salt/water, is very common as part of cosmetic formulations. As added salts, we used Li+, Na+, K+, and Cs+ chlorides. In parallel to imaging, we measured the macroscopic viscosities of the different solutions. FINDINGS With cryogenic transmission electron microscopy (cryo-TEM), we imaged a variety of morphologies (pseudo-phases) in the different aqueous surfactant/salt solutions: cylindrical micelles with end-caps, discs surrounded by "rims", entangled thread-like micelles with branching points, networks with gliding branching points, and bilayers. The relative chemical potentials of these morphologies could be approximated simply by counting the relative proportion of their occurrence. This simple multi-scale approach avoids any ad-hoc "specificity" assumption of ions, and is based on the bending energy model in an extended version of the Benedek "ladder model". It is capable of explaining and even quantifying the location of all viscosity peaks in the "salt-curves" for the different cations investigated, thus confirming the previously proposed model experimentally, and - thanks to cryo-TEM - for the first time on a microscopic scale. Moreover, this approach can also be applied when the added cations lead to newly observed pseudo-phases, such as discs and vesicles. To the best of our knowledge, this is the first time that cryo-TEM is used, together with a mesoscopic model, to describe a macroscopic property such as viscosity and specific ion effects on it, without any a priori assumption about these effects. So, in total, we could a) confirm the predictions of the previously developed model, b) use cryo-TEM imaging and viscosity measurements to predict and find unusual morphologies when varying the cations of the added salt, and c) count the pseudo-phases in cryo-TEM micrographs to quantitatively explain the different nanostructures.
Collapse
Affiliation(s)
- Sapir Lifshiz-Simon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg 93040, Germany
| | - Thomas Zemb
- Institute for Separation Chemistry ICSM, CEA, CNRS, University of Montpellier, ENSCM, Marcoule 30207, France
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
17
|
Biro RA, Tyrode EC, Thormann E. Reducing Ice Adhesion to Polyelectrolyte Surfaces by Counterion-Mediated Nonfrozen Hydration Water. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38602190 DOI: 10.1021/acsami.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of the counterion identity on the shear ice adhesion strength to cationic polymer coatings having quaternary alkyl ammonium moieties as chargeable groups. Temperature-dependent molecular information on the hydrated polymer films is obtained using total internal reflection (TIR) Raman spectroscopy, complemented with differential scanning calorimetry (DSC) and ellipsometry. Ice adhesion measurements show a pronounced counterion-specific behavior with a sharp increase in adhesion at temperatures that depend on the anion identity, following the order Cl- < F- < SCN- < Br- < I-. Linked to the freezing of hydration water, the specific ordering results from differences in ion pairing and the amount of water present within the polymer film. Moreover, similar effects can be promoted by varying the cross-linking density in the coating while keeping the anion identity fixed. These findings shed new light on low ice adhesion mechanisms and may inspire novel approaches for improved anti-icing coatings.
Collapse
Affiliation(s)
- Robert A Biro
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eric C Tyrode
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Lau S, Bilodeau CL. Effect of Monovalent Cations on the Structure and Dynamics of Multimodal Chromatographic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6694-6702. [PMID: 38518252 PMCID: PMC10993413 DOI: 10.1021/acs.langmuir.3c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
While multimodal (MM) chromatography is a promising approach for purifying proteins, the lack of a fundamental understanding of how ion-ligand interactions govern selectivity limits its use in the biopharmaceutical industry. This study uses molecular dynamics simulations to study the interactions between simple monovalent cations and two commonly used structurally similar multimodal chromatography ligands, the Capto ligand and Nuvia cPrime, immobilized on the surface. On the Capto ligand surface, ion presence and type play a key role in modulating the formation of phenyl rings and carboxylate clusters. The flexible linkage attaching the Capto ligand to the self-assembled monolayer (SAM) surface allowed multiple ligands to form interactions with the small cations, while large cations interacted less strongly, following the order Li+ > Na+ > K+ > Cs+. Thus, smaller cations resulted in greater ordering on the surface and lower ion diffusivities, while larger cations resulted in less ordering and higher ion diffusivities, following the order Li+ < Na+ < K+ < Cs+. In contrast, due to the rigid attachment of Nuvia cPrime to the SAM surfaces, the cations bound less strongly and had a much smaller effect on ligand clustering or ordering. Additionally, ions in the presence of the Nuvia cPrime surface had generally greater diffusivities than those in the presence of the Capto ligand. Overall, the interaction of cations with the multimodal ligands can lead to unique configurations on the SAM that likely contribute to differential behavior in biological separations.
Collapse
Affiliation(s)
- Sabrina
C. Lau
- Dublin
High School, Dublin, California 94568, United States
| | - Camille L. Bilodeau
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
19
|
Shi Y, Li M, Jia N, Shi R, Su Y. Structures and bonding characteristics of KCl(H2O)n clusters with n = 1-10 based on density functional theory. J Chem Phys 2024; 160:114316. [PMID: 38506288 DOI: 10.1063/5.0194237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Aqueous inorganic salt solutions play a prominent role in both physiological and chemical experiments, and significant attention has been directed toward understanding the mechanisms underlying salt dissolution. In our effort to elucidate the hydration process of potassium chloride, we employed a comprehensive genetic algorithm to explore the structures of KCl(H2O)n (n = 1-10). A series of stable structures were identified by high-level ab initio optimization and single-point energy calculations with a zero-point energy correction. An analysis of the probability distribution of KCl(H2O)1-10 revealed that clusters with high probability at low temperatures exhibit reduced probabilities at higher temperatures, while others become more prevalent. When n = 1-9, the contact ion pair configurations or partially dissociated structures dominate in the system, and the probability distribution plot shows that the proportion of the solvent-separated ion pair (SSIP) structures of KCl(H2O)n is very small, while the SSIP configuration in KCl(H2O)10 becomes a stable structure with increasing temperature. The results from natural bond orbital analysis reveal a stronger interaction between chloride ions and water molecules. These findings provide valuable insights for a more comprehensive understanding of the intricacies of potassium chloride dissolution in water.
Collapse
Affiliation(s)
- Ying Shi
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Mengxu Li
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Nan Jia
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Ruili Shi
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
20
|
Lounasvuori M, Zhang T, Gogotsi Y, Petit T. Tuning the Microenvironment of Water Confined in Ti 3C 2T x MXene by Cation Intercalation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2803-2813. [PMID: 38414833 PMCID: PMC10895661 DOI: 10.1021/acs.jpcc.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The local microenvironment has recently been found to play a major role in the electrocatalytic activity of nanomaterials. Modulating the microenvironment by adding alkali metal cations into the electrolyte can be used to either suppress hydrogen or oxygen evolution, thereby extending the electrochemical window of energy storage systems, or to tune the selectivity of electrocatalysts. MXenes are a large family of two-dimensional transition metal carbides, nitrides, and carbonitrides that have shown potential for use in electrochemical energy storage applications. Due to their negatively charged surfaces, MXenes can accommodate cations and water molecules between the layers. Nevertheless, the nature of the aqueous microenvironment in the MXene interlayer space is poorly understood. Here, we apply Fourier transform infrared spectroscopy (FTIR) to probe the hydrogen bonding of intercalated water in Ti3C2Tx as a function of intercalated cation and relative humidity. Substantial changes in the FTIR spectra after cation exchange demonstrate that the hydrogen bonding of water molecules confined between the MXene layers is strongly cation-dependent. Furthermore, the IR absorbance of the confined water correlates with resistivity estimated by 4-point probe measurements and interlayer distance calculated from XRD patterns. This work demonstrates that cation intercalation strongly modulates the confined microenvironment, which can be used to tune the activity or selectivity of electrochemical reactions in the interlayer space of MXenes in the future.
Collapse
Affiliation(s)
- Mailis Lounasvuori
- Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Teng Zhang
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Tristan Petit
- Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| |
Collapse
|
21
|
Chen YN, Liu YZ, Sun Q. The Molecular Mechanism of Ion Selectivity in Nanopores. Molecules 2024; 29:853. [PMID: 38398605 PMCID: PMC10891634 DOI: 10.3390/molecules29040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Ion channels exhibit strong selectivity for specific ions over others under electrochemical potentials, such as KcsA for K+ over Na+. Based on the thermodynamic analysis, this study is focused on exploring the mechanism of ion selectivity in nanopores. It is well known that ions must lose part of their hydration layer to enter the channel. Therefore, the ion selectivity of a channel is due to the rearrangement of water molecules when entering the nanopore, which may be related to the hydrophobic interactions between ions and channels. In our recent works on hydrophobic interactions, with reference to the critical radius of solute (Rc), it was divided into initial and hydrophobic solvation processes. Additionally, the different dissolved behaviors of solutes in water are expected in various processes, such as dispersed and accumulated distributions in water. Correspondingly, as the ion approaches the nanopore, there seems to exist the "repulsive" or "attractive" forces between them. In the initial process (
Collapse
Affiliation(s)
| | | | - Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, The School of Earth and Space Sciences, Ministry of Education, Peking University, Beijing 100871, China; (Y.-N.C.); (Y.-Z.L.)
| |
Collapse
|
22
|
Požar M, Bolle J, Dogan-Surmeier S, Schneider E, Paulus M, Sternemann C, Perera A. On the dual behaviour of water in octanol-rich aqueous n-octanol mixtures: an X-ray scattering and computer simulation study. Phys Chem Chem Phys 2024; 26:4099-4110. [PMID: 38226462 DOI: 10.1039/d3cp04651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Aqueous n-octanol (n = 1, 2, 3, and 4) mixtures from the octanol rich side are studied by X-ray scattering and computer simulation, with a focus on structural changes, particularly in what concerns the hydration of the hydroxyl-group aggregated chain-like structures, under the influence of various branching of the alkyl tails. Previous studies have indicated that hydroxyl-group chain-cluster formation is hindered in proportion to the branching number. Here, water mole fractions up to x = 0.2 are examined, i.e. up to the miscibility limit. It is found that water molecules within the hydroxyl-chain domains participate in the chain formations in a different manner for 1-octanol and the branched octanols. The hydration of the octanol hydroxyl chains is confirmed by the shifting of the scattering pre-peak position kPP to smaller values, both from measured and simulated X-ray scattering intensities, which corresponds to an increased size of the clusters. Experimental pre-peak amplitudes are seen to increase with increasing water content for 1-octanol, while this trend is reversed in all branched octanols, with the amplitudes decreasing with the increase of the branching number. Conjecturing that the amplitudes of pre-peaks are related to the density of the corresponding aggregates, these results are interpreted as water breaking large OH hydroxyl chains in 1-octanol, hence increasing the density of aggregates, while enhancing hydroxyl aggregates in branched alcohols by inserting itself into the OH chains. The analysis of the cluster distributions from computer simulations provide more details on the role of water. For cluster sizes smaller than dc = 2π/kPP, water is found to always play the role of a structure enforcer for all n-octanols, while for clusters of size dc water is always a destructor. For cluster sizes larger than dc, the role of water differs from 1-octanol and the branched ones: it acts as a structure maker or breaker in inverse proportion to the hindering of OH hydroxyl chain structures arising from the topology of the alkyl tails (branched or not).
Collapse
Affiliation(s)
- Martina Požar
- Faculty of Science, University of Split, Ru era Boškovic'a 33, 21000 Split, Croatia.
| | - Jennifer Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | | | - Eric Schneider
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252, Paris cedex 05, France.
| |
Collapse
|
23
|
Mallette AJ, Espindola G, Varghese N, Rimer JD. Highly efficient synthesis of zeolite chabazite using cooperative hydration-mismatched inorganic structure-directing agents. Chem Sci 2024; 15:573-583. [PMID: 38179517 PMCID: PMC10763616 DOI: 10.1039/d3sc05625b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024] Open
Abstract
Chabazite (CHA type) zeolite is notoriously difficult to synthesize in the absence of organic structure-directing agents owing to long synthesis times and/or impurity formation. The ability to tailor organic-free syntheses of zeolites is additionally challenging due to the lack of molecular level understanding of zeolite nucleation and growth pathways, particularly the role of inorganic cations. In this study, we reveal that zeolite CHA can be synthesized using six different combinations of inorganic cations, including the first reported seed- and organic-free synthesis without the presence of potassium. We show that lithium, when present in small quantities, is an effective accelerant of CHA crystallization; and that ion pairings can markedly reduce synthesis times and temperatures, while expanding the design space of zeolite CHA formation in comparison to conventional methods utilizing potassium as the sole structure-directing agent. Herein, we posit the effects of cation pairings on zeolite CHA crystallization are related to their hydrated ionic radii. We also emphasize the broader implications for considering the solvated structure and cooperative role of inorganic cations in zeolite synthesis within the context of the reported findings for chabazite.
Collapse
Affiliation(s)
- Adam J Mallette
- Department of Chemical and Biomolecular Engineering, University of Houston 4226 Martin Luther King Boulevard Houston TX 77204 USA
| | - Gabriel Espindola
- Department of Chemical and Biomolecular Engineering, University of Houston 4226 Martin Luther King Boulevard Houston TX 77204 USA
| | - Nathan Varghese
- Department of Chemical and Biomolecular Engineering, University of Houston 4226 Martin Luther King Boulevard Houston TX 77204 USA
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston 4226 Martin Luther King Boulevard Houston TX 77204 USA
| |
Collapse
|
24
|
Chialvo AA. On the Elusive Links between Solution Microstructure, Dynamics, and Solvation Thermodynamics: Demystifying the Path through a Bridge over Troubled Conjectures and Misinterpretations. J Phys Chem B 2023; 127:10792-10813. [PMID: 38060479 DOI: 10.1021/acs.jpcb.3c04707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We build a fundamentally based bridge between the solute-induced microstructural perturbation of the species environment and the dynamic as well as thermodynamic responses of the fluid system, regardless of the state conditions, composition, nature of the solvent, and either the magnitude or the type of solute-solvent intermolecular-interaction asymmetries. For that purpose, we advance a fluctuation-based solvation formalism of fluid mixtures to provide meaningful descriptors of solvation phenomena, the microstructural signatures of their solute-solvent intermolecular interaction asymmetry, and the thermodynamic manifestations linked to the solution nonideality. The rigorous foundations afford us to address some crucial issues frequently invoked in the literature including the microstructural perturbation domain, its proper identification and molecular-based meaning toward the interpretation of the solvation process, and the potential impact of the local differential behavior between anions and cations on the actual salt-induced perturbation of the solvent microstructure. Indeed, we link the precisely characterized species solvation behavior to fundamental thermodynamic residual-property relations, and the dynamics associated with either the viscous flow or diffusive behavior of the solvent, to finally illustrate their outcome with experimental data of aqueous electrolyte solutions from the available literature. Ultimately, this effort provides a highly desirable unambiguous identification of the cause-effect connections between the microstructurally perturbed domains and the experimentally measured macroscopic solvation properties, including their effect on the dynamics of the solvent environment. More importantly, it lends a well-established solvation framework to bridge rigorously the microstructural details of the mixture, its dynamics, and its solvation thermodynamics to enhance our understanding of well-defined ranked Hofmeister series, i.e., by avoiding ad hoc conjectures and unsupported microscopic interpretations of solvation phenomena.
Collapse
Affiliation(s)
- Ariel A Chialvo
- Retired Scientist, Knoxville, Tennessee 37922-3108, United States
| |
Collapse
|
25
|
Chremos A, Mussel M, Douglas JF, Horkay F. Ion Partition in Polyelectrolyte Gels and Nanogels. Gels 2023; 9:881. [PMID: 37998971 PMCID: PMC10670699 DOI: 10.3390/gels9110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Polyelectrolyte gels provide a load-bearing structural framework for many macroscopic biological tissues, along with the organelles within the cells composing tissues and the extracellular matrices linking the cells at a larger length scale than the cells. In addition, they also provide a medium for the selective transportation and sequestration of ions and molecules necessary for life. Motivated by these diverse problems, we focus on modeling ion partitioning in polyelectrolyte gels immersed in a solution with a single type of ionic valence, i.e., monovalent or divalent salts. Specifically, we investigate the distribution of ions inside the gel structure and compare it with the bulk, i.e., away from the gel structure. In this first exploratory study, we neglect solvation effects in our gel by modeling the gels without an explicit solvent description, with the understanding that such an approach may be inadequate for describing ion partitioning in real polyelectrolyte gels. We see that this type of model is nonetheless a natural reference point for considering gels with solvation. Based on our idealized polymer network model without explicit solvent, we find that the ion partition coefficients scale with the salt concentration, and the ion partition coefficient for divalent ions is higher than for monovalent ions over a wide range of Bjerrum length (lB) values. For gels having both monovalent and divalent salts, we find that divalent ions exhibit higher ion partition coefficients than monovalent salt for low divalent salt concentrations and low lB. However, we also find evidence that the neglect of an explicit solvent, and thus solvation, provides an inadequate description when compared to experimental observations. Thus, in future work, we must consider both ion and polymer solvation to obtain a more realistic description of ion partitioning in polyelectrolyte gels.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matan Mussel
- Department of Physics, University of Haifa, Haifa 3103301, Israel
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Havemeister F, Ghaeidamini M, Esbjörner EK. Monovalent cations have different effects on the assembly kinetics and morphology of α-synuclein amyloid fibrils. Biochem Biophys Res Commun 2023; 679:31-36. [PMID: 37660641 DOI: 10.1016/j.bbrc.2023.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Formation of α-synuclein amyloid fibrils is a pathological hallmark of Parkinson's disease and a phenomenon that is strongly modulated by environmental factors. Here, we compared effects of different monovalent cations (Li+, Na+, K+) on the formation and properties of α-synuclein amyloid fibrils. Na+ > Li+ were found to have concentration-dependent catalytic effects on primary nucleation whereas K+ ions acted inhibitory. We discuss this discrepancy in terms of a superior affinity of Na+ and Li+ to carboxylic protein groups, resulting in reduced Columbic repulsion and by considering K+ as an ion with poor protein binding and slight chaotropic character, which could promote random coil protein structure. K+ ions, furthermore, appeared to lower the β-sheet content of the fibrils and increase their persistence lengths, the latter we interpret as a consequence of lesser ion binding and hence higher line charge of the fibrils. The finding that Na+ and K+ have opposite effects on α-synuclein aggregation is intriguing in relation to the significant transient gradients of these ions across axonal membranes, but also important for the design and interpretation of biophysical assays where buffers containing these monovalent cations have been intermixedly used.
Collapse
Affiliation(s)
- Fritjof Havemeister
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden
| | - Marziyeh Ghaeidamini
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden.
| |
Collapse
|
27
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free-electron lasers. SCIENCE ADVANCES 2023; 9:eadj3509. [PMID: 37756398 PMCID: PMC10530093 DOI: 10.1126/sciadv.adj3509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Boyn JN, Carter EA. Probing pH-Dependent Dehydration Dynamics of Mg and Ca Cations in Aqueous Solutions with Multi-Level Quantum Mechanics/Molecular Dynamics Simulations. J Am Chem Soc 2023; 145:20462-20472. [PMID: 37672633 DOI: 10.1021/jacs.3c06182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The dehydration of aqueous calcium and magnesium cations is the most fundamental process controlling their reactivity in chemical and biological phenomena, such as the formation of ionic solids or passing through ion channels. It holds particular relevance in light of recent advancements in the development of carbon capture techniques that rely on mineralization for long-term carbon storage. Specifically, dehydration of Ca2+ and Mg2+ is a key step in proposed carbon capture processes aiming to exploit the relatively high concentration of dissolved carbon dioxide in seawater via the formation of carbonate minerals from solvated Ca2+ and Mg2+ cations for sequestration and storage. Nevertheless, atomic-scale understanding of the dehydration of aqueous Ca2+ and Mg2+ cations remains limited. Here, we utilize rare event sampling via density functional theory molecular dynamics and embedded wavefunction theory calculations to elucidate the dehydration dynamics of aqueous Ca2+ and Mg2+. Emphasis is placed on the investigation of the effect pH has on the stability of the different coordination environments. Our results reveal significant differences in the dehydration dynamics of the two cations and provide insight into how they may be modulated by pH changes.
Collapse
Affiliation(s)
- Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, the Andlinger Center for Energy and the Environment, and the Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, the Andlinger Center for Energy and the Environment, and the Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
29
|
Zhi J, Liu X, Xu Y, Wang D, Kim YR, Luo K. Metal ion-mediated modulation of morphology, physicochemical properties, and digestibility of type 3 resistant starch microparticle. Carbohydr Polym 2023; 316:121027. [PMID: 37321725 DOI: 10.1016/j.carbpol.2023.121027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Short-chain glucan (SCG) derived from debranched amylopectin has emerged as a promising candidate for the production of resistant starch particle (RSP) due to its controllable self-assembly features. Here, we investigated the effect of metal cations with different valencies and concentrations on the morphology, physicochemical properties, and digestibility of RSP formed by the self-assembly of SCG. The effect of cations on the formation of RSP followed the valency in the following order: Na+, Ka+, Mg2+, Ca2+, Fe3+, and Al3+, of which 10 mM trivalent cations increased the particle size of RSP over 2 μm and considerably decreased the crystallinity by 49.5 % ~ 50.9 %, which were significantly different from that of mono- and divalent ones. Importantly, RSP formed with divalent cations switched the surface charge from -18.6 mV to 12.9 mV, which significantly increased the RS level, indicating that metal cations would be useful for regulating physicochemical properties and digestibility of RSP.
Collapse
Affiliation(s)
- Jinglei Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Xinling Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
30
|
Nie X, You W, Zhang Z, Gao F, Zhou XH, Wang HL, Wang LH, Chen G, Wang CH, Hong CY, Shao Q, Wang F, Xia L, Li Y, You YZ. DPA-Zinc around Polyplexes Acts Like PEG to Reduce Protein Binding While Targeting Cancer Cells. Adv Healthc Mater 2023; 12:e2203252. [PMID: 37154112 DOI: 10.1002/adhm.202203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Gene therapy holds great promise as an effective treatment for many diseases of genetic origin. Gene therapy works by employing cationic polymers, liposomes, and nanoparticles to condense DNA into polyplexes via electronic interactions. Then, a therapeutic gene is introduced into target cells, thereby restoring or changing cellular function. However, gene transfection efficiency remains low in vivo due to high protein binding, poor targeting ability, and substantial endosomal entrapment. Artificial sheaths containing PEG, anions, or zwitterions can be introduced onto the surface of gene carriers to prevent interaction with proteins; however, they reduce the cellular uptake efficacy, endosomal escape, targeting ability, thereby, lowering gene transfection. Here, it is reported that linking dipicolylamine-zinc (DPA-Zn) ions onto polyplex nanoparticles can produce a strong hydration water layer around the polyplex, mimicking the function of PEGylation to reduce protein binding while targeting cancer cells, augmenting cellular uptake and endosomal escape. The polyplexes with a strong hydration water layer on the surface can achieve a high gene transfection even in a 50% serum environment. This strategy provides a new solution for preventing protein adsorption while improving cellular uptake and endosomal escape.
Collapse
Affiliation(s)
- Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fan Gao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Hong Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Li Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Long-Hai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guang Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chang-Hui Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qi Shao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
31
|
Gao L, Zhong L, Wei Y, Li L, Wu A, Nie L, Yue J, Wang D, Zhang H, Dong Q, Zang H. A new perspective in understanding the processing mechanisms of traditional Chinese medicine by near-infrared spectroscopy with Aquaphotomics. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
32
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free electron lasers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541763. [PMID: 37292849 PMCID: PMC10245879 DOI: 10.1101/2023.05.24.541763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences; University at Buffalo, Buffalo, NY 14203 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
33
|
Li W, Gao N, Zhang W, Feng K, Zhou K, Zhao H, He G, Liu W, Li G. Visual demonstration and prediction of the Hofmeister series based on a poly(ionic liquid) photonic array. NANOSCALE 2023. [PMID: 37194393 DOI: 10.1039/d3nr01531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Hofmeister effect and associated Hofmeister series (HS) are ubiquitous in physicochemical phenomena and have demonstrated fundamental importance in a myriad of fields ranging from chemistry to biology. Visualization of the HS not only helps to straightforwardly understand the underpinning mechanism, but also enables the prediction of new ion positions in the HS and directs the applications of the Hofmeister effect. Owing to the difficulties of sensing and reporting complete multiple and subtle inter- and intramolecular interactions involved in the Hofmeister effect, facile and accurate visual demonstration and prediction of the HS remain highly challenging. Herein, a poly(ionic liquid) (PIL)-based photonic array containing 6 inverse opal microspheres was rationally constructed to efficiently sense and report the ion effects of the HS. The PILs can not only directly conjugate with HS ions due to their ion-exchange properties, but also provide sufficient noncovalent binding diversity with these ions. Meanwhile, subtle PIL-ion interactions can be sensitively amplified to optical signals owing to their photonic structures. Therefore, synergistic integration of PILs and photonic structures gives rise to accurate visualization of the ion effect of the HS, as demonstrated by correctly ranking 7 common anions. More importantly, assisted by principal component analysis (PCA), the developed PIL photonic array can serve as a general platform to facilely, accurately, and robustly predict the HS positions of an unprecedented amount of important and useful anions and cations. These findings indicate that the PIL photonic platform is very promising for addressing challenges in the visual demonstration and prediction of HS and promoting a molecular-level understanding of the Hoffmeister effect.
Collapse
Affiliation(s)
- Wenyun Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Wanlin Zhang
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Kai Feng
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Kang Zhou
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Hongwei Zhao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Guokang He
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Weigang Liu
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
34
|
Min L, Duan J, Song C, Chen Y, Zhang W, Wang Y. Decarbonating layered double hydroxides using a carbonated salt solution. Dalton Trans 2023; 52:7330-7335. [PMID: 37183595 DOI: 10.1039/d3dt01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Layered double hydroxides (LDHs) intercalated with tunable anionic species are finding increasingly wide applications. While LDHs with intercalated CO32- anions (LDH-CO3) are usually synthesized to achieve high crystallinity, the substitution of the intercalated CO32- with other desired anions is rather difficult because of the ultra-high affinity of CO32- to LDHs' main plates. Herein, we report a novel and facile method to overcome this difficulty. LDH-CO3 is decarbonated via submerging in a carbonated NaCl solution with CO2 bubbling. Complete deintercalation of CO32- is achieved quickly without damaging the main plates, i.e., the hydroxide layers, even in the case of Mg2Al-LDH-CO3 having the most stable CO32- anions. It is shown that carbonic acid H2CO3 in the salt solution reacts with intercalated CO32- to form bicarbonate (HCO3-), which exhibits a much lower affinity to the main plates and thus is easily substituted by chloride ions (Cl-) from the salt solution.
Collapse
Affiliation(s)
- Luofu Min
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jingying Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Chuan Song
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yanan Chen
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yuxin Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
35
|
Reynolds JG. Zavitsas’ model of aqueous NaF solution activities utilizing hydration numbers reported from Dielectric Relaxation spectroscopy. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
36
|
Weichselbaum E, Galimzyanov T, Batishchev OV, Akimov SA, Pohl P. Proton Migration on Top of Charged Membranes. Biomolecules 2023; 13:352. [PMID: 36830721 PMCID: PMC9953355 DOI: 10.3390/biom13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Proton relay between interfacial water molecules allows rapid two-dimensional diffusion. An energy barrier, ΔGr‡, opposes proton-surface-to-bulk release. The ΔGr‡-regulating mechanism thus far has remained unknown. Here, we explored the effect interfacial charges have on ΔGr‡'s enthalpic and entropic constituents, ΔGH‡ and ΔGS‡, respectively. A light flash illuminating a micrometer-sized membrane patch of a free-standing planar lipid bilayer released protons from an adsorbed hydrophobic caged compound. A lipid-anchored pH-sensitive dye reported protons' arrival at a distant membrane patch. Introducing net-negative charges to the bilayer doubled ΔGH‡, while positive net charges decreased ΔGH‡. The accompanying variations in ΔGS‡ compensated for the ΔGH‡ modifications so that ΔGr‡ was nearly constant. The increase in the entropic component of the barrier is most likely due to the lower number and strength of hydrogen bonds known to be formed by positively charged residues as compared to negatively charged moieties. The resulting high ΔGr‡ ensured interfacial proton diffusion for all measured membranes. The observation indicates that the variation in membrane surface charge alone is a poor regulator of proton traffic along the membrane surface.
Collapse
Affiliation(s)
- Ewald Weichselbaum
- Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Timur Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology “MISiS”, Moscow 119991, Russia
| | - Oleg V. Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Sergey A. Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology “MISiS”, Moscow 119991, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| |
Collapse
|
37
|
Licari G, Martin KP, Crames M, Mozdzierz J, Marlow MS, Karow-Zwick AR, Kumar S, Bauer J. Embedding Dynamics in Intrinsic Physicochemical Profiles of Market-Stage Antibody-Based Biotherapeutics. Mol Pharm 2023; 20:1096-1111. [PMID: 36573887 PMCID: PMC9906779 DOI: 10.1021/acs.molpharmaceut.2c00838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Adequate stability, manufacturability, and safety are crucial to bringing an antibody-based biotherapeutic to the market. Following the concept of holistic in silico developability, we introduce a physicochemical description of 91 market-stage antibody-based biotherapeutics based on orthogonal molecular properties of variable regions (Fvs) embedded in different simulation environments, mimicking conditions experienced by antibodies during manufacturing, formulation, and in vivo. In this work, the evaluation of molecular properties includes conformational flexibility of the Fvs using molecular dynamics (MD) simulations. The comparison between static homology models and simulations shows that MD significantly affects certain molecular descriptors like surface molecular patches. Moreover, the structural stability of a subset of Fv regions is linked to changes in their specific molecular interactions with ions in different experimental conditions. This is supported by the observation of differences in protein melting temperatures upon addition of NaCl. A DEvelopability Navigator In Silico (DENIS) is proposed to compare mAb candidates for their similarity with market-stage biotherapeutics in terms of physicochemical properties and conformational stability. Expanding on our previous developability guidelines (Ahmed et al. Proc. Natl. Acad. Sci. 2021, 118 (37), e2020577118), the hydrodynamic radius and the protein strand ratio are introduced as two additional descriptors that enable a more comprehensive in silico characterization of biotherapeutic drug candidates. Test cases show how this approach can facilitate identification and optimization of intrinsically developable lead candidates. DENIS represents an advanced computational tool to progress biotherapeutic drug candidates from discovery into early development by predicting drug properties in different aqueous environments.
Collapse
Affiliation(s)
- Giuseppe Licari
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| | - Kyle P. Martin
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Maureen Crames
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Joseph Mozdzierz
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Michael S. Marlow
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Anne R. Karow-Zwick
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| | - Sandeep Kumar
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Joschka Bauer
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| |
Collapse
|
38
|
Gao A, Remsing RC, Weeks JD. Local Molecular Field Theory for Coulomb Interactions in Aqueous Solutions. J Phys Chem B 2023; 127:809-821. [PMID: 36669139 DOI: 10.1021/acs.jpcb.2c06988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coulomb interactions play a crucial role in a wide array of processes in aqueous solutions but present conceptual and computational challenges to both theory and simulations. We review recent developments in an approach addressing these challenges─local molecular field (LMF) theory. LMF theory exploits an exact and physically suggestive separation of intermolecular Coulomb interactions into strong short-range and uniformly slowly varying long-range components. This allows us to accurately determine the averaged effects of the long-range components on the short-range structure using effective single particle fields and analytical corrections, greatly reducing the need for complex lattice summation techniques used in most standard approaches. The simplest use of these ideas in aqueous solutions leads to the short solvent (SS) model, where both solvent-solvent and solute-solvent Coulomb interactions have only short-range components. Here we use the SS model to give a simple description of pairing of nucleobases and biologically relevant ions in water.
Collapse
Affiliation(s)
- Ang Gao
- Department of Physics, Beijing University of Posts and Telecommunications, Beijing, China 100876
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - John D Weeks
- Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
39
|
Izarra AD, Coudert FX, Fuchs AH, Boutin A. Alchemical Osmostat for Monte Carlo Simulation: Sampling Aqueous Electrolyte Solution in Open Systems. J Phys Chem B 2023; 127:766-776. [PMID: 36634303 DOI: 10.1021/acs.jpcb.2c07902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molecular simulations involving electrolytes are usually performed at a fixed amount of salt ions in the simulation box, reproducing macroscopic concentration. Although this statement is valid in the bulk, the concentration of an electrolyte confined in nanoporous materials such as MOFs or zeolites is greatly affected and remains a priori unknown. The nanoporous material in equilibrium with the bulk electrolyte exchange water and ions at a given chemical potential Δμ in the semi-grand-canonical ensemble, that must be calibrated in order to determine the concentration in the nanoporous material. In this work, we propose an algorithm based on nonequilibrium candidate Monte Carlo (NCMC) moves to ultimately perform MC simulations in contact with a saline reservoir. First, we adapt the Widom insertion technique to calibrate the chemical potential by alchemically transmuting water molecules into ions by using NCMC moves. The chemical potential defines a Monte Carlo osmostat in the semi-grand-constant volume and temperature ensemble (Δμ, N, V, T) to be added in a Monte Carlo simulation where the number of ions fluctuates. In order to validate the method, we adapted the NCMC move to determine the free energy of water solvation and subsequently explore thermodynamics of electrolyte solvation at infinite dilution in water. Finally, we implemented the osmostat in MC simulations initialized with bulk water that are driven toward electrolyte solutions of similar concentration as the saline reservoir. Our results demonstrate that alchemical osmostat for MC simulation is a promising tool for use to sample electrolyte insertion in nanoporous materials.
Collapse
Affiliation(s)
- Ambroise de Izarra
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris75005, France
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris75005, France
| | - Alain H Fuchs
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris75005, France
| | - Anne Boutin
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
40
|
Landorfa-Svalbe Z, Andersone-Ozola U, Ievinsh G. Type of Anion Largely Determines Salinity Tolerance in Four Rumex Species. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010092. [PMID: 36616221 PMCID: PMC9823408 DOI: 10.3390/plants12010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to compare the effect of various salts composed of different cations (Na+, K+) and anions (chloride, nitrate, nitrite) on growth, development and ion accumulation in three Rumex species with accessions from sea coast habitats (Rumex hydrolapathum, Rumex longifolius and Rumex maritimus) and Rumex confertus from an inland habitat. Plants were cultivated in soil in an experimental automated greenhouse during the autumn-winter season. Nitrite salts strongly inhibited growth of all Rumex species, but R. maritimus was the least sensitive. Negative effects of chloride salts were rather little-pronounced, but nitrates resulted in significant growth stimulation, plant growth and development. Effects of Na+ and K+ at the morphological level were relatively similar, but treatment with K+ salts resulted in both higher tissue electrolyte levels and proportion of senescent leaves, especially for chloride salts. Increases in tissue water content in leaves were associated with anion type, and were most pronounced in nitrate-treated plants, resulting in dilution of electrolyte concentration. At the morphological level, salinity responses of R. confertus and R. hydrolapathum were similar, but at the developmental and physiological level, R. hydrolapathum and R. maritimus showed more similar salinity effects. In conclusion, the salinity tolerance of all coastal Rumex species was high, but the inland species R. confertus was the least tolerant to salinity. Similarity in effects between Na+ and K+ could be related to the fact that surplus Na+ and K+ has similar fate (including mechanisms of uptake, translocation and compartmentation) in relatively salt-tolerant species. However, differences between various anions are most likely related to differences in physiological functions and metabolic fate of particular ions.
Collapse
|
41
|
Miranda-Quintana RA, Smiatek J. Application of Fundamental Chemical Principles for Solvation Effects: A Unified Perspective for Interaction Patterns in Solution. J Phys Chem B 2022; 126:8864-8872. [PMID: 36269164 DOI: 10.1021/acs.jpcb.2c06315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We demonstrate the utility of basic chemical principles like the "|Δμ| big is good" (DMB) rule for the study of solvation interactions between distinct solutes such as ions and solvents. The corresponding approach allows us to define relevant criteria for maximum solvation energies of ion pairs in different solvents in terms of electronegativities and chemical hardnesses. Our findings reveal that the DMB principle culminates into the strong and weak acids and bases concept as recently derived for specific ion effects in various solvents. The further application of the DMB approach highlights a similar condition for the chemical hardnesses with a reminiscence to the hard/soft acids and bases principle. Comparable conclusions can also be drawn with regard to the change of the solvent. We show that favorable solvent interactions are mainly driven by low chemical hardnesses as well as high electronegativity differences between the ions and the solvent. Our findings highlight that solvation interactions are governed by basic chemical principles, which demonstrates the close similarity between solvation mechanisms and chemical reactions.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, StuttgartD-70569, Germany
| |
Collapse
|
42
|
Narvaez WA, Wu EC, Park SJ, Gomez M, Schwartz BJ. Trap-Seeking or Trap-Digging? Photoinjection of Hydrated Electrons into Aqueous NaCl Solutions. J Phys Chem Lett 2022; 13:8653-8659. [PMID: 36083839 DOI: 10.1021/acs.jpclett.2c02243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is well-known that when excess electrons are injected into an aqueous solution, they localize and solvate in ∼1 ps. Still debated is whether localization occurs via "trap-digging", in which the electron carves out a suitable localization site, or by "trap-seeking", where the electron prefers to localize at pre-existing low-energy trap sites in solution. To distinguish between these two possible mechanisms, we study the localization dynamics of excess electrons in aqueous NaCl solutions using both ultrafast spectroscopy and mixed quantum-classical molecular dynamics simulations. By introducing pre-existing traps in the form of Na+ ions, we can use the cation-induced blue-shift of the hydrated electron's absorption spectrum to directly monitor the site of electron localization. Our experimental and computational results show that the electron prefers to localize directly at the sites of Na+ traps; the presence of concentrated electrolytes otherwise has little impact on the way trap-seeking hydrated electrons relax following injection.
Collapse
Affiliation(s)
- Wilberth A Narvaez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Eric C Wu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Sanghyun J Park
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Mariah Gomez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
43
|
Wang G, Zhou Y, Jing Z, Wang Y, Chai K, Liu H, Zhu F, Wu Z. Anomalous ion hydration and association in confined aqueous CaCl2 solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Wang Y, Wei H, Li Z, Zhang X, Wei Z, Sun K, Li H. Optimization Strategies of Electrolytes for Low-temperature Aqueous Batteries. CHEM REC 2022; 22:e202200132. [PMID: 35896955 DOI: 10.1002/tcr.202200132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022]
Abstract
Aqueous rechargeable batteries (ARBs) are considered promising electrochemical energy storage systems for grid-scale applications due to their low cost, high safety, and environmental benignity. With the demand for a wide range of application scenarios, batteries are required to work in various harsh conditions, especially the cold weather. Nevertheless, electrolytes would freeze at extremely low temperatures, resulting in dramatically sluggish kinetics and severe performance degradation. Here, we discuss the behaviors of hydrogen bonds and basic principles of anti-freezing mechanisms in aqueous electrolytes. Then, we present a systematical review of the optimization strategies of electrolytes for low-temperature aqueous batteries. Finally, the challenges and promising routes for further development of aqueous low-temperature electrolytes are provided. This review can serve as a comprehensive reference to boost the further development and practical applications of advanced ARBs operated at low temperatures.
Collapse
Affiliation(s)
- Yao Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Hua Wei
- Songshan Lake Materials Laboratory, Dongguan, 523808, China.,College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Zhengtai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiangyong Zhang
- Songshan Lake Materials Laboratory, Dongguan, 523808, China.,College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Zhiquan Wei
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| |
Collapse
|
45
|
Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This study presents the equilibrium surface tension (ST), critical micelle concentration (CMC) and the dilational viscoelasticity of sodium dodecylbenzene sulfonate (SDBS)-adsorbed layers in the presence of NaCl, KCl, LiCl, CaCl2 and MgCl2 at 0.001–0.1 M salt concentration. The ST and surface dilational viscoelasticity were determined using bubble-shape analysis technique. To capture the complete profile of dilational viscoelastic properties of SDBS-adsorbed layers, experiments were conducted within a wide range of SDBS concentrations at a fixed oscillating frequency of 0.01 Hz. Salts were found to lower the ST and induce micellar formation at all concentrations. However, the addition of salts increased dilational viscoelastic modulus only at a certain range of SDBS concentration (below 0.01–0.02 mM SDBS). Above this concentration range, salts decreased dilational viscoelasticity due to the domination of the induced molecular exchange dampening the ST gradient. The dilational viscoelasticity of the salts of interest were in the order CaCl2 > MgCl2 > KCl > NaCl > LiCl. The charge density of ions was found as the corresponding factor for the higher impact of divalent ions compared to monovalent ions, while the impact of monovalent ions was assigned to the degree of matching in water affinities, and thereby the tendency for ion-pairing between SDBS head groups and monovalent ions.
Collapse
|
46
|
Dib N, Silber JJ, Correa NM, Falcone RD. Amphiphilic Ionic Liquids Capable to Formulate Organized Systems in an Aqueous Solution, Designed by a Combination of Traditional Surfactants and Commercial Drugs. Pharm Res 2022; 39:2379-2390. [PMID: 35854078 DOI: 10.1007/s11095-022-03342-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
The present review describes the state of the art in the conversion of pharmaceutically active ingredients (API) in amphiphilic Ionic Liquids (ILs) as alternative drug delivery systems. In particular, we focus our attention on the compounds generated by ionic exchange and without original counterions which generate different systems in comparison with the simple mixtures. In water, these new amphiphiles show similar or even better properties as surfactants in comparison with their precursors. Cations such as 1-alkyl-3-methyl-imidazolium and anions such as dioctyl sulfosuccinate or sodium dodecyl sulfate appear as the amphiphilic components most studied. In conclusion, this work shows interesting information on several promissory compounds and they appear as an interesting challenge to extend the application of ILs in the medical field.
Collapse
Affiliation(s)
- Nahir Dib
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - Juana J Silber
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina.
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
47
|
Sun Q, Fu Y, Wang W. Temperature effects on hydrophobic interactions: Implications for protein unfolding. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Comparative Removal of Cr(VI) and F− Ions from Water by Freezing Technology. J CHEM-NY 2022. [DOI: 10.1155/2022/9143182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trace element ions, such as Cr(VI) and F−, are of particular interest due to their environmental impact. Both ions exhibit an anionic nature in water that can show similar removal tendencies except for their significant differences in ionic radius, speciation forms, and kosmotropic-chaotropic behaviors. Accordingly, partial freezing was performed to examine the comparative freeze separation efficiencies of Cr(VI) and F– from aqueous solutions. Freeze desalination influencing parameters such as initial ion concentration, salt addition, and freeze duration were explored. Under optimal operating conditions, freeze separation efficiencies of 90 ± 0.12 to 95 ± 0.54% and 58 ± 0.23% to 60 ± 0.34% from 5 mg/L of Cr(VI) and F–, respectively, were demonstrated. The salt addition into the F–-containing solutions revealed more F– ion intercalation into the ice, initiating the decrement of freeze separation efficiency. The influences of structuring-destructuring (kosmotropicity-chaotropicity) and the size-exclusion nature of ice crystals were used to explain the plausible mechanism for the difference in freeze separation efficiency between Cr(VI) and F– ions.
Collapse
|
49
|
Balos V, Kaliannan NK, Elgabarty H, Wolf M, Kühne TD, Sajadi M. Time-resolved terahertz-Raman spectroscopy reveals that cations and anions distinctly modify intermolecular interactions of water. Nat Chem 2022; 14:1031-1037. [PMID: 35773490 PMCID: PMC9417992 DOI: 10.1038/s41557-022-00977-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
The solvation of ions changes the physical, chemical and thermodynamic properties of water, and the microscopic origin of this behaviour is believed to be ion-induced perturbation of water's hydrogen-bonding network. Here we provide microscopic insights into this process by monitoring the dissipation of energy in salt solutions using time-resolved terahertz-Raman spectroscopy. We resonantly drive the low-frequency rotational dynamics of water molecules using intense terahertz pulses and probe the Raman response of their intermolecular translational motions. We find that the intermolecular rotational-to-translational energy transfer is enhanced by highly charged cations and is drastically reduced by highly charged anions, scaling with the ion surface charge density and ion concentration. Our molecular dynamics simulations reveal that the water-water hydrogen-bond strength between the first and second solvation shells of cations increases, while it decreases around anions. The opposite effects of cations and anions on the intermolecular interactions of water resemble the effects of ions on the stabilization and denaturation of proteins.
Collapse
Affiliation(s)
- Vasileios Balos
- Fritz Haber Institute of the Max-Planck Society, Berlin, Germany. .,IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid, Spain.
| | - Naveen Kumar Kaliannan
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
| | - Hossam Elgabarty
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany.
| | - Martin Wolf
- Fritz Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
| | - Mohsen Sajadi
- Fritz Haber Institute of the Max-Planck Society, Berlin, Germany. .,Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany.
| |
Collapse
|
50
|
Müller E, Drechsler M, Klein R, Heilmann J, Estrine B, Kunz W. Physical-Chemical and Toxicological Properties of Osmolyte-Based Cationic Surfactants and Spontaneously Formed Low-Toxic Catanionic Vesicles out of them. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|