1
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
2
|
Niu L, Gao M, Ren H, De X, Jiang Z, Zhou X, Liu R, Li H, Duan H, Zhang C, Wang F, Ge J. A novel bacterium-like particles platform displaying antigens by new anchoring proteins induces efficacious immune responses. Front Microbiol 2024; 15:1395837. [PMID: 38841059 PMCID: PMC11150769 DOI: 10.3389/fmicb.2024.1395837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterium-like particles (BLP) are the peptidoglycan skeleton particles of lactic acid bacteria, which have high safety, mucosal delivery efficiency, and adjuvant effect. It has been widely used in recent years in the development of vaccines. Existing anchoring proteins for BLP surfaces are few in number, so screening and characterization of new anchoring proteins are necessary. In this research, we created the OACD (C-terminal domain of Escherichia coli outer membrane protein A) to serve as an anchoring protein on the surface of BLP produced by the immunomodulatory bacteria Levilactobacillus brevis 23017. We used red fluorescent protein (RFP) to demonstrate the novel surface display system's effectiveness, stability, and ability to be adapted to a wide range of lactic acid bacteria. Furthermore, this study employed this surface display method to develop a novel vaccine (called COB17) by using the multi-epitope antigen of Clostridium perfringens as the model antigen. The vaccine can induce more than 50% protection rate against C. perfringens type A challenge in mice immunized with a single dose and has been tested through three routes. The vaccine yields protection rates of 75% for subcutaneous, 50% for intranasal, and 75% for oral immunization. Additionally, it elicits a strong mucosal immune response, markedly increasing levels of specific IgG, high-affinity IgG, specific IgA, and SIgA antibodies. Additionally, we used protein anchors (PA) and OACD simultaneous to show several antigens on the BLP surface. The discovery of novel BLP anchoring proteins may expand the possibilities for creating mucosal immunity subunit vaccines. Additionally, it may work in concert with PA to provide concepts for the creation of multivalent or multiple vaccines that may be used in clinical practice to treat complex illnesses.
Collapse
Affiliation(s)
- Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongkun Ren
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinqi De
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Jiang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyao Zhou
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Runhang Liu
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Machin JM, Kalli AC, Ranson NA, Radford SE. Protein-lipid charge interactions control the folding of outer membrane proteins into asymmetric membranes. Nat Chem 2023; 15:1754-1764. [PMID: 37710048 PMCID: PMC10695831 DOI: 10.1038/s41557-023-01319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Biological membranes consist of two leaflets of phospholipid molecules that form a bilayer, each leaflet comprising a distinct lipid composition. This asymmetry is created and maintained in vivo by dedicated biochemical pathways, but difficulties in creating stable asymmetric membranes in vitro have restricted our understanding of how bilayer asymmetry modulates the folding, stability and function of membrane proteins. In this study, we used cyclodextrin-mediated lipid exchange to generate liposomes with asymmetric bilayers and characterize the stability and folding kinetics of two bacterial outer membrane proteins (OMPs), OmpA and BamA. We found that excess negative charge in the outer leaflet of a liposome impedes their insertion and folding, while excess negative charge in the inner leaflet accelerates their folding relative to symmetric liposomes with the same membrane composition. Using molecular dynamics, mutational analysis and bioinformatics, we identified a positively charged patch critical for folding and stability. These results rationalize the well-known 'positive-outside' rule of OMPs and suggest insights into the mechanisms that drive OMP folding and assembly in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan M Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
4
|
Devlin T, Fleming PJ, Loza N, Fleming KG. Generation of unfolded outer membrane protein ensembles defined by hydrodynamic properties. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:415-425. [PMID: 36899114 DOI: 10.1007/s00249-023-01639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Outer membrane proteins (OMPs) must exist as an unfolded ensemble while interacting with a chaperone network in the periplasm of Gram-negative bacteria. Here, we developed a method to model unfolded OMP (uOMP) conformational ensembles using the experimental properties of two well-studied OMPs. The overall sizes and shapes of the unfolded ensembles in the absence of a denaturant were experimentally defined by measuring the sedimentation coefficient as a function of urea concentration. We used these data to model a full range of unfolded conformations by parameterizing a targeted coarse-grained simulation protocol. The ensemble members were further refined by short molecular dynamics simulations to reflect proper torsion angles. The final conformational ensembles have polymer properties different from unfolded soluble and intrinsically disordered proteins and reveal inherent differences in the unfolded states that necessitate further investigation. Building these uOMP ensembles advances the understanding of OMP biogenesis and provides essential information for interpreting structures of uOMP-chaperone complexes.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Nicole Loza
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Guan J, Yao L, Chung CR, Chiang YC, Lee TY. StackTHPred: Identifying Tumor-Homing Peptides through GBDT-Based Feature Selection with Stacking Ensemble Architecture. Int J Mol Sci 2023; 24:10348. [PMID: 37373494 DOI: 10.3390/ijms241210348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
One of the major challenges in cancer therapy lies in the limited targeting specificity exhibited by existing anti-cancer drugs. Tumor-homing peptides (THPs) have emerged as a promising solution to this issue, due to their capability to specifically bind to and accumulate in tumor tissues while minimally impacting healthy tissues. THPs are short oligopeptides that offer a superior biological safety profile, with minimal antigenicity, and faster incorporation rates into target cells/tissues. However, identifying THPs experimentally, using methods such as phage display or in vivo screening, is a complex, time-consuming task, hence the need for computational methods. In this study, we proposed StackTHPred, a novel machine learning-based framework that predicts THPs using optimal features and a stacking architecture. With an effective feature selection algorithm and three tree-based machine learning algorithms, StackTHPred has demonstrated advanced performance, surpassing existing THP prediction methods. It achieved an accuracy of 0.915 and a 0.831 Matthews Correlation Coefficient (MCC) score on the main dataset, and an accuracy of 0.883 and a 0.767 MCC score on the small dataset. StackTHPred also offers favorable interpretability, enabling researchers to better understand the intrinsic characteristics of THPs. Overall, StackTHPred is beneficial for both the exploration and identification of THPs and facilitates the development of innovative cancer therapies.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong (Shenzhen) 2001 Longxiang Road, Shenzhen 518172, China
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Shenzhen 518172, China
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Shenzhen 518172, China
| | - Chia-Ru Chung
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong (Shenzhen) 2001 Longxiang Road, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Cifuentes J, Cifuentes-Almanza S, Ruiz Puentes P, Quezada V, González Barrios AF, Calderón-Peláez MA, Velandia-Romero ML, Rafat M, Muñoz-Camargo C, Albarracín SL, Cruz JC. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson's disease. Front Bioeng Biotechnol 2023; 11:1181842. [PMID: 37214285 PMCID: PMC10196638 DOI: 10.3389/fbioe.2023.1181842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.
Collapse
Affiliation(s)
- Javier Cifuentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
7
|
Devlin T, Marx DC, Roskopf MA, Bubb QR, Plummer AM, Fleming KG. FkpA enhances membrane protein folding using an extensive interaction surface. Protein Sci 2023; 32:e4592. [PMID: 36775935 PMCID: PMC10031210 DOI: 10.1002/pro.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
Outer membrane protein (OMP) biogenesis in gram-negative bacteria is managed by a network of periplasmic chaperones that includes SurA, Skp, and FkpA. These chaperones bind unfolded OMPs (uOMPs) in dynamic conformational ensembles to suppress aggregation, facilitate diffusion across the periplasm, and enhance folding. FkpA primarily responds to heat-shock stress, but its mechanism is comparatively understudied. To determine FkpA chaperone function in the context of OMP folding, we monitored the folding of three OMPs and found that FkpA, unlike other periplasmic chaperones, increases the folded yield but decreases the folding rate of OMPs. The results indicate that FkpA behaves as a chaperone and not as a folding catalyst to influence the OMP folding trajectory. Consistent with the folding assay results, FkpA binds all three uOMPs as determined by sedimentation velocity (SV) and photo-crosslinking experiments. We determine the binding affinity between FkpA and uOmpA171 by globally fitting SV titrations and find it to be intermediate between the known affinities of Skp and SurA for uOMP clients. Notably, complex formation steeply depends on the urea concentration, suggesting an extensive binding interface. Initial characterizations of the complex using photo-crosslinking indicate that the binding interface spans the entire FkpA molecule. In contrast to prior findings, folding and binding experiments performed using subdomain constructs of FkpA demonstrate that the full-length chaperone is required for full activity. Together these results support that FkpA has a distinct and direct effect on OMP folding that it achieves by utilizing an extensive chaperone-client interface to tightly bind clients.
Collapse
Affiliation(s)
- Taylor Devlin
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dagan C. Marx
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michaela A. Roskopf
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Quenton R. Bubb
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ashlee M. Plummer
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Karen G. Fleming
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
8
|
Asamoto DK, Kozachenko IA, López-Peña I, Kim JE. Bimolecular quenching of tryptophan fluorescence in a membrane protein: Evolution of local solvation and environment during folding into a bilayer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119919. [PMID: 34004426 DOI: 10.1016/j.saa.2021.119919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Fluorescence spectroscopy, including Stern-Volmer quenching, is a valuable tool for the study of protein dynamics. Changes in protein solvation during the folding reaction of a membrane protein, Outer membrane protein A (OmpA), into lipid bilayers was probed with bimolecular fluorescence quenching with acrylamide quencher. Six single-tryptophan OmpA mutants (W7, W15, W57, W102, W129, and W143) allowed for site-specific investigations at varying locations within the transmembrane β-barrel domain. A sphere-of-action quenching model that combines both static and dynamic components gave rise to Stern-Volmer quenching constants, KD, for OmpA denatured in 8.0 M urea, aggregated in 0.5 M urea, adsorbed onto small unilamellar vesicles (SUVs), and folded in SUVs (t = 6 hrs). The average KD values were KDdenatured(6.4M-1)>KDaggregated5.9M-1>KDadsorbed(1.9M-1)>KDfolded(0.6M-1). With knowledge of the fluorescence lifetimes in the absence of quencher, the bimolecular quenching constants, kq, were derived; the evolution of kq (and therefore KD)during the folding reaction into SUVs (t = 0 hr to t = 6 hrs) revealed desolvation timescales, τdesolv of 41-46 min (W7, W15, W57, W102), 27 min (W129), and 15 min (W143). The evolution of λmax during folding revealed fast and slow components, τenvironmentfast and τenvironmentslow of 7-13 min and 25-84 min, respectively, for all mutants. For the five lipid- facing mutants (W7, W15, W57, W129, and W143), the general trend was τenvironmentfast7-13min<τdesolv15-46min≤τenvironmentslow(25-84min). These results suggest that there is an initial fast step in which there is a large change in polarity to a hydrophobic environment, followed by a slower desolvation process during evolution within the hydrophobic environment. These results complement previous mechanisms of concerted folding and provide insights into site-specific changes in solvation during formation of native β-barrel structure.
Collapse
Affiliation(s)
- DeeAnn K Asamoto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Ivan A Kozachenko
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Ignacio López-Peña
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
9
|
Vorobieva AA, White P, Liang B, Horne JE, Bera AK, Chow CM, Gerben S, Marx S, Kang A, Stiving AQ, Harvey SR, Marx DC, Khan GN, Fleming KG, Wysocki VH, Brockwell DJ, Tamm LK, Radford SE, Baker D. De novo design of transmembrane β barrels. Science 2021; 371:eabc8182. [PMID: 33602829 PMCID: PMC8064278 DOI: 10.1126/science.abc8182] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Transmembrane β-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow β-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.
Collapse
Affiliation(s)
- Anastassia A Vorobieva
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sinduja Marx
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Q Stiving
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Dagan C Marx
- TC Jenkins Department of Biophysics Johns Hopkins University, Baltimore, MD 21218, USA
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Karen G Fleming
- TC Jenkins Department of Biophysics Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Comparison of Single and Multiple Turnovers of SecYEG in Escherichia coli. J Bacteriol 2020; 202:JB.00462-20. [PMID: 32989086 DOI: 10.1128/jb.00462-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Precursor proteins are translocated across the cytoplasmic membrane in Escherichia coli by the general secretory, or Sec, pathway. The main components of the pathway are the integral membrane heterotrimeric SecYEG complex and the peripheral membrane ATPase, SecA. In this study, we have applied an in vitro assay using inverted cytoplasmic membrane vesicles to investigate the complex cycle that leads to translocation. We compared the apparent rate constants for nine precursors under two experimental conditions, single turnover and multiple turnovers. For each precursor, the rate constant for a single turnover was higher than for multiple turnovers, indicating that a different step limits the rate under the two conditions. We conclude that the rate-limiting step for a single turnover is an early step in the initial phase of transit through the channel, whereas the rate of multiple turnovers is limited by the resetting of the translocon. The presence of the chaperone SecB during multiple turnovers increased the maximal amplitude translocated for the three precursor species tested, pGBP, pPhoA, and proOmpA, and also increased the apparent rate constants for both pGBP and pPhoA. The rate constant for proOmpA was decreased by the presence of SecB.IMPORTANCE Vastly different experimental techniques and conditions have been used to study export in E. coli We demonstrated that altering experimental conditions can change the step that is observed during study. Investigators should consider specific experimental conditions when comparing data from different laboratories, as well as when comparing data from different experiments within a laboratory. We have shown that each precursor species has inherent properties that determine the translocation rate; thus generalizations from studies of a single species must be made with caution. A summary of advantages and disadvantages in use of nine precursors is presented.
Collapse
|
11
|
Marx DC, Plummer AM, Faustino AM, Devlin T, Roskopf MA, Leblanc MJ, Lessen HJ, Amann BT, Fleming PJ, Krueger S, Fried SD, Fleming KG. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. Proc Natl Acad Sci U S A 2020; 117:28026-28035. [PMID: 33093201 PMCID: PMC7668074 DOI: 10.1073/pnas.2008175117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
The periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic interaction with the β-barrel assembly machinery complex as well as its ability to prevent unfolded OMP (uOMP) aggregation. Using only binding energy, the mechanism by which SurA carries out these two functions is not well-understood. Here, we use a combination of photo-crosslinking, mass spectrometry, solution scattering, and molecular modeling techniques to elucidate the key structural features that define how SurA solubilizes uOMPs. Our experimental data support a model in which SurA binds uOMPs in a groove formed between the core and P1 domains. This binding event results in a drastic expansion of the rest of the uOMP, which has many biological implications. Using these experimental data as restraints, we adopted an integrative modeling approach to create a sparse ensemble of models of a SurA•uOMP complex. We validated key structural features of the SurA•uOMP ensemble using independent scattering and chemical crosslinking data. Our data suggest that SurA utilizes three distinct binding modes to interact with uOMPs and that more than one SurA can bind a uOMP at a time. This work demonstrates that SurA operates in a distinct fashion compared to other chaperones in the OMP biogenesis network.
Collapse
Affiliation(s)
- Dagan C Marx
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | | | - Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Michaela A Roskopf
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Mathis J Leblanc
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Henry J Lessen
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Barbara T Amann
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Susan Krueger
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218;
| |
Collapse
|
12
|
Calabrese AN, Schiffrin B, Watson M, Karamanos TK, Walko M, Humes JR, Horne JE, White P, Wilson AJ, Kalli AC, Tuma R, Ashcroft AE, Brockwell DJ, Radford SE. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat Commun 2020; 11:2155. [PMID: 32358557 PMCID: PMC7195389 DOI: 10.1038/s41467-020-15702-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
The periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but its mechanisms of client binding and chaperone function have remained unclear. Here, we use chemical cross-linking, hydrogen-deuterium exchange mass spectrometry, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and interrogate the role of conformational dynamics in OMP recognition. We demonstrate that SurA samples an array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested in the SurA crystal structure. OMP binding sites are located primarily in the core domain, and OMP binding results in conformational changes between the core/P1 domains. Together, the results suggest that unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between domains assisting OMP recognition, binding and release.
Collapse
Affiliation(s)
- Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Watson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Julia R Humes
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology and School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
13
|
Degp degrades a wide range of substrate proteins in Escherichia coli under stress conditions. Biochem J 2019; 476:3549-3564. [DOI: 10.1042/bcj20190446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022]
Abstract
DegP, a periplasmic dual-functional protease and chaperone in Gram-negative bacteria, is critical for bacterial stress resistance, but the precise underlying mechanisms are not fully understood. Here, we show that the protease function of DegP is critical for Escherichia coli cells to maintain membrane integrity, particularly under heat shock conditions (42°C). Site-directed photo-cross-linking, mass spectrometry and immunoblotting analyses reveal that both periplasmic proteins (e.g. OppA and MalE) and β-barrel outer membrane proteins (OMPs) are DegP-interacting proteins and that OppA is degraded by DegP in vitro and in vivo at 42°C. In addition, OmpA and BamA, chimeric β-barrel OMPs containing a soluble periplasmic domain, are bound to DegP in both unfolded and folded forms, whereas only the unfolded forms are degradable by DegP. The presence of folded OmpA as a substrate of DegP is attributed to its periplasmic domain, which is resistant to DegP degradation and even generally protects pure β-barrel OMPs from degradation in an intra-molecular way. Furthermore, a pair of residues (R262 and V328) in the PDZ domain-1 of DegP play important roles for binding unfolded and folded β-barrel OMPs, with R262 being critical. Our study, together with earlier reports, indicates that DegP plays a critical role in protein quality control in the bacterial periplasm by degrading both periplasmic proteins and β-barrel OMPs under stress conditions and likely also by participating in the folding of chimeric β-barrel OMPs. A working model is proposed to illustrate the finely tuned functions of DegP with respect to different substrate proteins.
Collapse
|
14
|
Chum AP, Shoemaker SR, Fleming PJ, Fleming KG. Plasticity and transient binding are key ingredients of the periplasmic chaperone network. Protein Sci 2019; 28:1340-1349. [PMID: 31074917 DOI: 10.1002/pro.3641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/29/2023]
Abstract
SurA, Skp, FkpA, and DegP constitute a chaperone network that ensures biogenesis of outer membrane proteins (OMPs) in Gram-negative bacteria. Both Skp and FkpA are holdases that prevent the self-aggregation of unfolded OMPs, whereas SurA accelerates folding and DegP is a protease. None of these chaperones is essential, and we address here how functional plasticity is manifested in nine known null strains. Using a comprehensive computational model of this network termed OMPBioM, our results suggest that a threshold level of steady state holdase occupancy by chaperones is required, but the cell is agnostic to the specific holdase molecule fulfilling this function. In addition to its foldase activity, SurA moonlights as a holdase when there is no expression of Skp and FkpA. We further interrogate the importance of chaperone-client complex lifetime by conducting simulations using lifetime values for Skp complexes that range in length by six orders of magnitude. This analysis suggests that transient occupancy of durations much shorter than the Escherichia coli doubling time is required. We suggest that fleeting chaperone occupancy facilitates rapid sampling of the periplasmic conditions, which ensures that the cell can be adept at responding to environmental changes. Finally, we calculated the network effects of adding multivalency by computing populations that include two Skp trimers per unfolded OMP. We observe only modest perturbations to the system. Overall, this quantitative framework of chaperone-protein interactions in the periplasm demonstrates robust plasticity due to its dynamic binding and unbinding behavior.
Collapse
Affiliation(s)
- Aaron P Chum
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sophie R Shoemaker
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Patrick J Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Karen G Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
15
|
Humes JR, Schiffrin B, Calabrese AN, Higgins AJ, Westhead DR, Brockwell DJ, Radford SE. The Role of SurA PPIase Domains in Preventing Aggregation of the Outer-Membrane Proteins tOmpA and OmpT. J Mol Biol 2019; 431:1267-1283. [PMID: 30716334 DOI: 10.1016/j.jmb.2019.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
SurA is a conserved ATP-independent periplasmic chaperone involved in the biogenesis of outer-membrane proteins (OMPs). Escherichia coli SurA has a core domain and two peptidylprolyl isomerase (PPIase) domains, the role(s) of which remain unresolved. Here we show that while SurA homologues in early proteobacteria typically contain one or no PPIase domains, the presence of two PPIase domains is common in SurA in later proteobacteria, implying an evolutionary advantage for this domain architecture. Bioinformatics analysis of >350,000 OMP sequences showed that their length, hydrophobicity and aggregation propensity are similar across the proteobacterial classes, ruling out a simple correlation between SurA domain architecture and these properties of OMP sequences. To investigate the role of the PPIase domains in SurA activity, we deleted one or both PPIase domains from E.coli SurA and investigated the ability of the resulting proteins to bind and prevent the aggregation of tOmpA (19 kDa) and OmpT (33 kDa). The results show that wild-type SurA inhibits the aggregation of both OMPs, as do the cytoplasmic OMP chaperones trigger factor and SecB. However, while the ability of SurA to bind and prevent tOmpA aggregation does not depend on its PPIase domains, deletion of even a single PPIase domain ablates the ability of SurA to prevent OmpT aggregation. The results demonstrate that the core domain of SurA endows its generic chaperone ability, while the presence of PPIase domains enhances its chaperone activity for specific OMPs, suggesting one reason for the conservation of multiple PPIase domains in SurA in proteobacteria.
Collapse
Affiliation(s)
- Julia R Humes
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anna J Higgins
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David R Westhead
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
16
|
Coassembly of SecYEG and SecA Fully Restores the Properties of the Native Translocon. J Bacteriol 2018; 201:JB.00493-18. [PMID: 30275279 DOI: 10.1128/jb.00493-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023] Open
Abstract
In all cells, a highly conserved channel transports proteins across membranes. In Escherichia coli, that channel is SecYEG. Many investigations of this protein complex have used purified SecYEG reconstituted into proteoliposomes. How faithfully do activities of reconstituted systems reflect the properties of SecYEG in the native membrane environment? We investigated by comparing three in vitro systems: the native membrane environment of inner membrane vesicles and two methods of reconstitution. One method was the widely used reconstitution of SecYEG alone into lipid bilayers. The other was our method of coassembly of SecYEG with SecA, the ATPase of the translocase. For nine different precursor species we assessed parameters that characterize translocation: maximal amplitude of competent precursor translocated, coupling of energy to transfer, and apparent rate constant. In addition, we investigated translocation in the presence and absence of chaperone SecB. For all nine precursors, SecYEG coassembled with SecA was as active as SecYEG in native membrane for each of the parameters studied. Effects of SecB on transport of precursors faithfully mimicked observations made in vivo From investigation of the nine different precursors, we conclude that the apparent rate constant, which reflects the step that limits the rate of translocation, is dependent on interactions with the translocon of portions of the precursors other than the leader. In addition, in some cases the rate-limiting step is altered by the presence of SecB. Candidates for the rate-limiting step that are consistent with our data are discussed.IMPORTANCE This work presents a comprehensive quantification of the parameters of transport by the Sec general secretory system in the three in vitro systems. The standard reconstitution used by most investigators can be enhanced to yield six times as many active translocons simply by adding SecA to SecYEG during reconstitution. This robust system faithfully reflects the properties of translocation in native membrane vesicles. We have expanded the number of precursors studied to nine. This has allowed us to conclude that the rate constant for translocation varies with precursor species.
Collapse
|
17
|
Hussain S, Bernstein HD. The Bam complex catalyzes efficient insertion of bacterial outer membrane proteins into membrane vesicles of variable lipid composition. J Biol Chem 2018; 293:2959-2973. [PMID: 29311257 DOI: 10.1074/jbc.ra117.000349] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/06/2017] [Indexed: 12/29/2022] Open
Abstract
Most proteins that reside in the bacterial outer membrane (OM) have a distinctive "β-barrel" architecture, but the assembly of these proteins is poorly understood. The spontaneous assembly of OM proteins (OMPs) into pure lipid vesicles has been studied extensively but often requires non-physiological conditions and time scales and is strongly influenced by properties of the lipid bilayer, including surface charge, thickness, and fluidity. Furthermore, the membrane insertion of OMPs in vivo is catalyzed by a heterooligomer called the β-barrel assembly machinery (Bam) complex. To determine the role of lipids in the assembly of OMPs under more physiological conditions, we exploited an assay in which the Bam complex mediates their insertion into membrane vesicles. After reconstituting the Bam complex into vesicles that contain a variety of different synthetic lipids, we found that two model OMPs, EspP and OmpA, folded efficiently regardless of the lipid composition. Most notably, both proteins folded into membranes composed of a gel-phase lipid that mimics the rigid bacterial OM. Interestingly, we found that EspP, OmpA, and another model protein (OmpG) folded at significantly different rates and that an α-helix embedded inside the EspP β-barrel accelerates folding. Our results show that the Bam complex largely overcomes effects that lipids exert on OMP assembly and suggest that specific interactions between the Bam complex and an OMP influence its rate of folding.
Collapse
Affiliation(s)
- Sunyia Hussain
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0538
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0538.
| |
Collapse
|
18
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Danoff EJ, Fleming KG. Novel Kinetic Intermediates Populated along the Folding Pathway of the Transmembrane β-Barrel OmpA. Biochemistry 2016; 56:47-60. [PMID: 28001375 DOI: 10.1021/acs.biochem.6b00809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the folding of the β-barrel membrane protein OmpA from Escherichia coli. Although previous studies identified several intermediate states followed by a concerted translocation mechanism across the bilayer, some aspects of the pathway were still unclear, including the extent of secondary structure formation in the intermediate states and how the mechanism gave rise to multiple exponential phases in the folding kinetics. We addressed these questions by investigating the folding kinetics of the OmpA transmembrane β-barrel domain over a range of bilayer thicknesses, allowing us to observe different regions of the folding pathway. The fastest folding into the thinnest bilayers provided information about the later stages of the process, and the slowest folding into thicker bilayers revealed early kinetic steps. Folding was monitored using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and circular dichroism spectroscopy, which provide complementary information about tertiary and secondary structure formation. We globally fit the folding data to kinetic schemes and found that the same core pathway was followed under all lipid conditions. We propose a multistep folding mechanism for OmpA that includes unstructured surface-adsorbed states converting through a partially inserted state with substantial β-sheet structure to the final natively inserted barrel. Kinetic models show that all steps of the main folding pathway are accelerated by membrane defects that occur as a result of thinning the bilayer or incubation of lipids at the phase transition temperature. In addition to suppressing off-pathway states, β-barrel assembly machinery-catalyzed folding in vivo could accelerate any or all of these main folding steps to ensure efficient outer membrane protein biogenesis in vivo.
Collapse
Affiliation(s)
- Emily J Danoff
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Alves NJ, Turner KB, Walper SA. Directed Protein Packaging within Outer Membrane Vesicles from Escherichia coli: Design, Production and Purification. J Vis Exp 2016. [PMID: 27911359 DOI: 10.3791/54458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An increasing interest in applying synthetic biology techniques to program outer membrane vesicles (OMV) are leading to some very interesting and unique applications for OMV where traditional nanoparticles are proving too difficult to synthesize. To date, all Gram-negative bacteria have been shown to produce OMV demonstrating packaging of a variety of cargo that includes small molecules, peptides, proteins and genetic material. Based on their diverse cargo, OMV are implicated in many biological processes ranging from cell-cell communication to gene transfer and delivery of virulence factors depending upon which bacteria are producing the OMV. Only recently have bacterial OMV become accessible for use across a wide range of applications through the development of techniques to control and direct packaging of recombinant proteins into OMV. This protocol describes a method for the production, purification, and use of enzyme packaged OMV providing for improved overall production of recombinant enzyme, increased vesiculation, and enhanced enzyme stability. Successful utilization of this protocol will result in the creation of a bacterial strain that simultaneously produces a recombinant protein and directs it for OMV encapsulation through creating a synthetic linkage between the recombinant protein and an outer membrane anchor protein. This protocol also details methods for isolating OMV from bacterial cultures as well as proper handling techniques and things to consider when adapting this protocol for use for other unique applications such as: pharmaceutical drug delivery, medical diagnostics, and environmental remediation.
Collapse
Affiliation(s)
- Nathan J Alves
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory; Department of Emergency Medicine, Indiana University of School of Medicine
| | - Kendrick B Turner
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory
| | - Scott A Walper
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory;
| |
Collapse
|
21
|
Alves NJ, Turner KB, DiVito KA, Daniele MA, Walper SA. Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant. Res Microbiol 2016; 168:139-146. [PMID: 27773766 DOI: 10.1016/j.resmic.2016.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Abstract
To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function.
Collapse
Affiliation(s)
- Nathan J Alves
- National Research Council, 500 Fifth Street NW, Keck 576, Washington, DC 20001, USA; Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kendrick B Turner
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | - Kyle A DiVito
- American Society for Engineering Education (ASEE), 1818 N Street NW, Suite 600, Washington, DC 20036, USA
| | - Michael A Daniele
- North Carolina State University, Joint Department of Biomedical Engineering, UNC-Chapel Hill/NC State University, 2068 Engineering Building 2, Campus Box 7911, Raleigh, NC 27695, USA
| | - Scott A Walper
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
22
|
Scribano D, Damico R, Ambrosi C, Superti F, Marazzato M, Conte MP, Longhi C, Palamara AT, Zagaglia C, Nicoletti M. The Shigella flexneri OmpA amino acid residues 188EVQ 190 are essential for the interaction with the virulence factor PhoN2. Biochem Biophys Rep 2016; 8:168-173. [PMID: 28955953 PMCID: PMC5613738 DOI: 10.1016/j.bbrep.2016.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 01/07/2023] Open
Abstract
Shigella flexneri is an intracellular pathogen that deploys an arsenal of virulence factors promoting host cell invasion, intracellular multiplication and intra- and inter-cellular dissemination. We have previously reported that the interaction between apyrase (PhoN2), a periplasmic ATP-diphosphohydrolase, and the C-terminal domain of the outer membrane (OM) protein OmpA is likely required for proper IcsA exposition at the old bacterial pole and thus for full virulence expression of Shigella flexneri (Scribano et al., 2014). OmpA, that is the major OM protein of Gram-negative bacteria, is a multifaceted protein that plays many different roles both in the OM structural integrity and in the virulence of several pathogens. Here, by using yeast two-hybrid technology and by constructing an in silico 3D model of OmpA from S. flexneri 5a strain M90T, we observed that the OmpA residues 188EVQ190 are likely essential for PhoN2-OmpA interaction. The 188EVQ190 amino acids are located within a flexible region of the OmpA protein that could represent a scaffold for protein-protein interaction.
Collapse
Affiliation(s)
- Daniela Scribano
- Dip. Scienze Mediche, Orali e Biotecnologiche, Università "G. D'Annunzio" di Chieti, Chieti, Italy.,Dip. di Sanità Pubblica e Malattie Infettive, Università "Sapienza" di Roma, Rome, Italy
| | - Rosanna Damico
- Dip. di Sanità Pubblica e Malattie Infettive, Università "Sapienza" di Roma, Rome, Italy
| | - Cecilia Ambrosi
- Dip. di Sanità Pubblica e Malattie Infettive, Università "Sapienza" di Roma, Rome, Italy
| | - Fabiana Superti
- Reparto Patologia Infettiva Ultrastrutturale, Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, Rome, Italy
| | - Massimiliano Marazzato
- Dip. di Sanità Pubblica e Malattie Infettive, Università "Sapienza" di Roma, Rome, Italy
| | - Maria Pia Conte
- Dip. di Sanità Pubblica e Malattie Infettive, Università "Sapienza" di Roma, Rome, Italy
| | - Catia Longhi
- Dip. di Sanità Pubblica e Malattie Infettive, Università "Sapienza" di Roma, Rome, Italy
| | - Anna Teresa Palamara
- Dip. di Sanità Pubblica e Malattie Infettive, Università "Sapienza" di Roma, Rome, Italy
| | - Carlo Zagaglia
- Dip. di Sanità Pubblica e Malattie Infettive, Università "Sapienza" di Roma, Rome, Italy
| | - Mauro Nicoletti
- Dip. Scienze Mediche, Orali e Biotecnologiche, Università "G. D'Annunzio" di Chieti, Chieti, Italy
| |
Collapse
|
23
|
Fleming KG. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0026. [PMID: 26370938 DOI: 10.1098/rstb.2015.0026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro folding studies of outer membrane beta-barrels have been invaluable in revealing the lipid effects on folding rates and efficiencies as well as folding free energies. Here, the biophysical results are summarized, and these kinetic and thermodynamic findings are considered in terms of the requirements for folding in the context of the cellular environment. Because the periplasm lacks an external energy source the only driving forces for sorting and folding available within this compartment are binding or folding free energies and their associated rates. These values define functions for periplasmic chaperones and suggest a biophysical mechanism for the BAM complex.
Collapse
Affiliation(s)
- Karen G Fleming
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Sci Rep 2016; 6:24866. [PMID: 27117743 PMCID: PMC4846811 DOI: 10.1038/srep24866] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins, and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (>100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles), and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas.
Collapse
|
25
|
Liu X, Hu W, An Z, Bai Z, Dai X, Yang Y. Exploration of cell lysis in a bioreactor using Escherichia coli expressing single-chain variable-domain antibody fragments. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Alves NJ, Turner KB, Daniele MA, Oh E, Medintz IL, Walper SA. Bacterial Nanobioreactors--Directing Enzyme Packaging into Bacterial Outer Membrane Vesicles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24963-24972. [PMID: 26479678 DOI: 10.1021/acsami.5b08811] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
All bacteria shed outer membrane vesicles (OMVs) loaded with a diverse array of small molecules, proteins, and genetic cargo. In this study we sought to hijack the bacterial cell export pathway to simultaneously produce, package, and release an active enzyme, phosphotriesterase (PTE). To accomplish this goal the SpyCatcher/SpyTag (SC/ST) bioconjugation system was utilized to produce a PTE-SpyCatcher (PTE-SC) fusion protein and a SpyTagged transmembrane porin protein (OmpA-ST), known to be abundant in OMVs. Under a range of physiological conditions the SpyTag and SpyCatcher domains interact with one another and form a covalent isopeptide bond driving packaging of PTE into forming OMVs. The PTE-SC loaded OMVs are characterized for size distribution, number of vesicles produced, cell viability, packaged PTE enzyme kinetics, OMV loading efficiency, and enzyme stability following iterative cycles of freezing and thawing. The PTE-loaded OMVs exhibit native-like enzyme kinetics when assayed with paraoxon as a substrate. PTE is often toxic to expression cultures and has a tendency to lose activity with improper handling. The coexpression of OmpA-ST with PTE-SC, however, greatly improved the overall PTE production levels by mitigating toxicity through exporting of the PTE-SC and greatly enhanced packaged enzyme stability against iterative cycles of freezing and thawing.
Collapse
Affiliation(s)
- Nathan J Alves
- National Research Council, 500 Fifth Street NW (Keck 576), Washington, DC 20001, United States
| | | | | | - Eunkeu Oh
- Sotera Defense Solution, Inc. 7230 Lee DeForest Drive, Columbia, Maryland 21046, United States
| | | | | |
Collapse
|
27
|
Zaccai NR, Sandlin CW, Hoopes JT, Curtis JE, Fleming PJ, Fleming KG, Krueger S. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins. Methods Enzymol 2015; 566:159-210. [PMID: 26791979 PMCID: PMC4913355 DOI: 10.1016/bs.mie.2015.06.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling.
Collapse
Affiliation(s)
- Nathan R Zaccai
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clifford W Sandlin
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - James T Hoopes
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Joseph E Curtis
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Patrick J Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karen G Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Susan Krueger
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
| |
Collapse
|
28
|
Abstract
Unfolded outer membrane beta-barrel proteins have been shown to self-associate in the absence of lipid bilayers. We previously investigated the formation of high molecular weight species by OmpA, with both the transmembrane domain alone and the full-length protein, and discovered that the oligomeric form contains non-native β-sheet structure. We have further probed the conformation of self-associated OmpA by monitoring binding to Thioflavin T, a dye that is known to bind the cross-β a structure inherent in amyloid fibrils, and by observing the species by electron microscopy. The significant increase in fluorescence indicative of Thioflavin T binding and the appearance of fibrillar species by electron microscopy verify that the protein forms amyloid-like fibril structures upon oligomerization. These results are also consistent with our previous kinetic analysis of OmpA self-association that revealed a nucleated growth polymerization mechanism, which is frequently observed in amyloid formation. The discovery of OmpA’s ability to form amyloid-like fibrils provides a new model protein with which to study fibrillization, and implicates periplasmic chaperone proteins as capable of inhibiting fibril formation.
Collapse
Affiliation(s)
- Emily J. Danoff
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Karen G. Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Kleinschmidt JH. Folding of β-barrel membrane proteins in lipid bilayers - Unassisted and assisted folding and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1927-43. [PMID: 25983306 DOI: 10.1016/j.bbamem.2015.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023]
Abstract
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid-protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Jörg H Kleinschmidt
- Abteilung Biophysik, Institut für Biologie, FB 10, Universität Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| |
Collapse
|
30
|
Abstract
![]()
Outer membrane β-barrel proteins
spontaneously fold into
lipid bilayers with rates of folding that are strongly influenced
by the physical properties of the membrane. We show that folding is
accelerated when the bilayer is at the phase transition temperature,
because of the coexistence of lipid phase domains and the high degree
of defects present at domain boundaries. These results are consistent
with previous observations of faster folding into thin and highly
curved membranes, which also contain a higher prevalence of defects.
The importance of defects in β-barrel folding provides insight
into the intrinsic folding process and the biological assembly pathway.
Collapse
Affiliation(s)
- Emily J Danoff
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | |
Collapse
|
31
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
32
|
Døvling Kaspersen J, Moestrup Jessen C, Stougaard Vad B, Skipper Sørensen E, Kleiner Andersen K, Glasius M, Pinto Oliveira CL, Otzen DE, Pedersen JS. Low-Resolution Structures of OmpA⋅DDM Protein-Detergent Complexes. Chembiochem 2014; 15:2113-24. [DOI: 10.1002/cbic.201402162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 11/07/2022]
|
33
|
Ishida H, Garcia-Herrero A, Vogel HJ. The periplasmic domain of Escherichia coli outer membrane protein A can undergo a localized temperature dependent structural transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3014-24. [PMID: 25135663 DOI: 10.1016/j.bbamem.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/21/2023]
Abstract
Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1-171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180-325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA(180-325)). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA(180-325) with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA(1-325)) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the periplasmic domain of OmpA above physiological temperatures, which may induce dimerization and play a role in triggering the previously reported larger pore formation.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Alicia Garcia-Herrero
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
34
|
Affiliation(s)
- Karen G. Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218;
| |
Collapse
|
35
|
Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc Natl Acad Sci U S A 2014; 111:5878-83. [PMID: 24715731 DOI: 10.1073/pnas.1322473111] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.
Collapse
|
36
|
Abe Y, Haruta I, Yanagisawa N, Yagi J. Mouse monoclonal antibody specific for outer membrane protein A of Escherichia coli. Monoclon Antib Immunodiagn Immunother 2013; 32:32-5. [PMID: 23600503 DOI: 10.1089/mab.2012.0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Outer membrane protein A (OmpA) is a major outer membrane protein of Escherichia coli and other Enterobacteriaeae. Although the structural features of OmpA have been well studied, its roles in the pathogenesis of various bacterial infections have not been fully elucidated. Here, we report the generation of mouse monoclonal antibody (MAb) 49.4-15, which specifically recognizes OmpA of E. coli, using immunoblot and confocal microscopic examinations. MAb 49.4-15 might be a useful tool for studying the expression and function of E. coli OmpA.
Collapse
Affiliation(s)
- Yoshihiro Abe
- Department of Microbiology and Immunology, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
38
|
The role of short-chain conjugated poly-(R)-3-hydroxybutyrate (cPHB) in protein folding. Int J Mol Sci 2013; 14:10727-48. [PMID: 23702844 PMCID: PMC3709699 DOI: 10.3390/ijms140610727] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 01/25/2023] Open
Abstract
Poly-(R)-3-hydroxybutyrate (PHB), a linear polymer of R-3-hydroxybutyrate (R-3HB), is a fundamental constituent of biological cells. Certain prokaryotes accumulate PHB of very high molecular weight (10,000 to >1,000,000 residues), which is segregated within granular deposits in the cytoplasm; however, all prokaryotes and all eukaryotes synthesize PHB of medium-chain length (~100-200 residues) which resides within lipid bilayers or lipid vesicles, and PHB of short-chain length (<12 residues) which is conjugated to proteins (cPHB), primarily proteins in membranes and organelles. The physical properties of cPHB indicate it plays important roles in the targeting and folding of cPHB-proteins. Here we review the occurrence, physical properties and molecular characteristics of cPHB, and discuss its influence on the folding and structure of outer membrane protein A (OmpA) of Escherichia coli.
Collapse
|
39
|
Confer AW, Ayalew S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Vet Microbiol 2013; 163:207-22. [DOI: 10.1016/j.vetmic.2012.08.019] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
40
|
Top-Down Characterization of the Post-Translationally Modified Intact Periplasmic Proteome from the Bacterium Novosphingobium aromaticivorans. INTERNATIONAL JOURNAL OF PROTEOMICS 2013; 2013:279590. [PMID: 23555055 PMCID: PMC3608174 DOI: 10.1155/2013/279590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
The periplasm of Gram-negative bacteria is a dynamic and physiologically important subcellular compartment where the constant exposure to potential environmental insults amplifies the need for proper protein folding and modifications. Top-down proteomics analysis of the periplasmic fraction at the intact protein level provides unrestricted characterization and annotation of the periplasmic proteome, including the post-translational modifications (PTMs) on these proteins. Here, we used single-dimension ultra-high pressure liquid chromatography coupled with the Fourier transform mass spectrometry (FTMS) to investigate the intact periplasmic proteome of Novosphingobium aromaticivorans. Our top-down analysis provided the confident identification of 55 proteins in the periplasm and characterized their PTMs including signal peptide removal, N-terminal methionine excision, acetylation, glutathionylation, pyroglutamate, and disulfide bond formation. This study provides the first experimental evidence for the expression and periplasmic localization of many hypothetical and uncharacterized proteins and the first unrestrictive, large-scale data on PTMs in the bacterial periplasm.
Collapse
|
41
|
Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc Natl Acad Sci U S A 2013; 110:4285-90. [PMID: 23440211 DOI: 10.1073/pnas.1212527110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermodynamic stabilities are pivotal for understanding structure-function relationships of proteins, and yet such determinations are rare for membrane proteins. Moreover, the few measurements that are available have been conducted under very different experimental conditions, which compromises a straightforward extraction of physical principles underlying stability differences. Here, we have overcome this obstacle and provided structure-stability comparisons for multiple membrane proteins. This was enabled by measurements of the free energies of folding and the m values for the transmembrane proteins PhoP/PhoQ-activated gene product (PagP) and outer membrane protein W (OmpW) from Escherichia coli. Our data were collected in the same lipid bilayer and buffer system we previously used to determine those parameters for E. coli outer membrane phospholipase A (OmpLA). Biophysically, our results suggest that the stabilities of these proteins are strongly correlated to the water-to-bilayer transfer free energy of the lipid-facing residues in their transmembrane regions. We further discovered that the sensitivities of these membrane proteins to chemical denaturation, as judged by their m values, was consistent with that previously observed for water-soluble proteins having comparable differences in solvent exposure between their folded and unfolded states. From a biological perspective, our findings suggest that the folding free energies for these membrane proteins may be the thermodynamic sink that establishes an energy gradient across the periplasm, thus driving their sorting by chaperones to the outer membranes in living bacteria. Binding free energies of these outer membrane proteins with periplasmic chaperones support this energy sink hypothesis.
Collapse
|
42
|
Ye C, Chai Q, Zhong M, Wei Y. Effect of crowding by Ficolls on OmpA and OmpT refolding and membrane insertion. Protein Sci 2012; 22:239-45. [PMID: 23225740 DOI: 10.1002/pro.2205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/07/2022]
Abstract
Folding of outer membrane proteins (OMPs) has been studied extensively in vitro. However, most of these studies have been conducted in dilute buffer solution, which is different from the crowded environment in the cell periplasm, where the folding and membrane insertion of OMPs actually occur. Using OmpA and OmpT as model proteins and Ficoll 70 as the crowding agent, here we investigated the effect of the macromolecular crowding condition on OMP membrane insertion. We found that the presence of Ficoll 70 significantly slowed down the rate of membrane insertion of OmpA while had little effect on those of OmpT. To investigate if the soluble domain of OmpA slowed down membrane insertion in the presence of the crowding agent, we created a truncated OmpA construct that contains only the transmembrane domain (OmpA171). In the absence of crowding agent, OmpA171 refolded at a similar rate as OmpA, although with decreased efficiency. However, under the crowding condition, OmpA171 refolded significantly faster than OmpA. Our results suggest that the periplasmic domain slows down the rate, while improves the efficiency, of OmpA folding and membrane insertion under the crowding condition. Such an effect was not obvious when refolding was studied in buffer solution in the absence of crowding.
Collapse
Affiliation(s)
- Cui Ye
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|
43
|
Naveed H, Jimenez-Morales D, Tian J, Pasupuleti V, Kenney LJ, Liang J. Engineered oligomerization state of OmpF protein through computational design decouples oligomer dissociation from unfolding. J Mol Biol 2012; 419:89-101. [PMID: 22391420 DOI: 10.1016/j.jmb.2012.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 12/14/2022]
Abstract
Biogenesis of β-barrel membrane proteins is a complex, multistep, and as yet incompletely characterized process. The bacterial porin family is perhaps the best-studied protein family among β-barrel membrane proteins that allows diffusion of small solutes across the bacterial outer membrane. In this study, we have identified residues that contribute significantly to the protein-protein interaction (PPI) interface between the chains of outer membrane protein F (OmpF), a trimeric porin, using an empirical energy function in conjunction with an evolutionary analysis. By replacing these residues through site-directed mutagenesis either with energetically favorable residues or substitutions that do not occur in natural bacterial outer membrane proteins, we succeeded in engineering OmpF mutants with dimeric and monomeric oligomerization states instead of a trimeric oligomerization state. Moreover, our results suggest that the oligomerization of OmpF proceeds through a series of interactions involving two distinct regions of the extensive PPI interface: two monomers interact to form a dimer through the PPI interface near G19. This dimer then interacts with another monomer through the PPI interface near G135 to form a trimer. We have found that perturbing the PPI interface near G19 results in the formation of the monomeric OmpF only. Thermal denaturation of the designed dimeric OmpF mutant suggests that oligomer dissociation can be separated from the process of protein unfolding. Furthermore, the conserved site near G57 and G59 is important for the PPI interface and might provide the essential scaffold for PPIs.
Collapse
Affiliation(s)
- Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
44
|
Shea MA, Correia JJ, Brenowitz MD. Introduction: twenty five years of the Gibbs Conference on Biothermodynamics. Biophys Chem 2011; 159:1-5. [PMID: 21840113 DOI: 10.1016/j.bpc.2011.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 11/16/2022]
Abstract
In 2011, the Gibbs Conference on Biothermodynamics will celebrate its 25th anniversary. Since the inaugural meeting in 1987, it has brought together laboratories that lived, breathed and argued about the molecular logic of macromolecular machines. The participants have a deep commitment to understanding the nature of physico-chemical forces that govern regulation of biological systems, and share a passion for applying linkage theory. The collective goal is to understand how ligand binding, subunit assembly and conformational change drive what we observe as physiological processes such as regulated transport, enzyme cascades, gene regulation, membrane permeability, viral infection, intracellular trafficking and folding of macromolecules. In this special issue, articles by former organizers of the Gibbs Conference showcase the current breadth and depth of the field of biothermodynamics, and how thoroughly it is integrated with the study of macromolecular structures, computational modeling and physiological studies of human health and disease.
Collapse
|