1
|
Kurbatova MS, Tarasova GN, Tyunina EY, Giricheva NI. Investigation of Interactions between Sodium Dodecyl Sulfate and L-Tryptophan Through Densimetry and Computer Modeling. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421080161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Sawyer L. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front Physiol 2021; 12:678080. [PMID: 34093238 PMCID: PMC8173191 DOI: 10.3389/fphys.2021.678080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
The two lipocalins, β-lactoglobulin (βLg) and glycodelin (Gd), are possibly the most closely related members of the large and widely distributed lipocalin family, yet their functions appear to be substantially different. Indeed, the function of β-lactoglobulin, a major component of ruminant milk, is still unclear although neonatal nutrition is clearly important. On the other hand, glycodelin has several specific functions in reproduction conferred through distinct, tissue specific glycosylation of the polypeptide backbone. It is also associated with some cancer outcomes. The glycodelin gene, PAEP, reflecting one of its names, progestagen-associated endometrial protein, is expressed in many though not all primates, but the name has now also been adopted for the β-lactoglobulin gene (HGNC, www.genenames.org). After a general overview of the two proteins in the context of the lipocalin family, this review considers the properties of each in the light of their physiological functional significance, supplementing earlier reviews to include studies from the past decade. While the biological function of glycodelin is reasonably well defined, that of β-lactoglobulin remains elusive.
Collapse
Affiliation(s)
- Lindsay Sawyer
- School of Biological Sciences, IQB3, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Energetic and structural effects of the Tanford transition on ligand recognition of bovine β-lactoglobulin. Arch Biochem Biophys 2021; 699:108750. [PMID: 33421379 DOI: 10.1016/j.abb.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/14/2023]
Abstract
Bovine β-lactoglobulin, an abundant protein in whey, is a promising nanocarrier for peroral administration of drug-like hydrophobic molecules, a process that involves transit through the different acidic conditions of the human digestive tract. Among the several pH-induced conformational rearrangements that this lipocalin undergoes, the Tanford transition is particularly relevant. This transition, which occurs with a midpoint around neutral pH, involves a conformational change of the E-F loop that regulates accessibility to the primary binding site. The effect of this transition on the ligand binding properties of this protein has scarcely been explored. In this study, we carried out an energetic and structural characterization of β-lactoglobulin molecular recognition at pH values above and below the zone in which the Tanford transition occurs. The combined analysis of crystallographic, calorimetric, and molecular dynamics data sheds new light on the interplay between self-association, ligand binding, and the Tanford pre- and post-transition conformational states, revealing novel aspects underlying the molecular recognition mechanism of this enigmatic lipocalin.
Collapse
|
4
|
Bello M. Structural mechanism of the Tanford transition of bovine β-lactoglobulin through microsecond molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:3011-3023. [PMID: 33155532 DOI: 10.1080/07391102.2020.1844062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
X-ray analysis has provided structural data about a pH-driven conformational change in β-lactoglobulin (BLG) known as the Tanford transition, which occurs at around pH 7 and involves the EF loop, which acts as a lid closing the internal cavity of the protein below pH 7 and opening it above pH 7. NMR studies using wild-type BLG have encountered problems trying to explain the Tanford transition, however, they have provided important insight using a dimeric BLG mutant, revealing that the opening and closure of the EF loop consists of two types of motions in the microsecond and milliseconds timescales. This provides valuable information indicating that the dimeric state is a good model to study the Tanford transition, although the understanding of this structural change is still lacking at the atomic level. We performed microsecond molecular dynamics (MD) simulations starting from different conformations of BLG in the monomeric and dimeric state, with protonated and deprotonated E89, in order to explore the Tanford transition. Our results provide structural information for the transition from the closed to the open conformation in BLG and show it occurs in the dimeric state in the microsecond timescale, in line with the fast motion observed through NMR experiments. In addition, MD simulations coupled to MMGBSA approach indicated that the most populated conformer of BLG in the open state is able to bind ligands with similar affinity to that of BLG at neutral pH obtained through crystallographic experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
5
|
Rizzuti B, Bartucci R, Guzzi R. Effects of Polar Head Nature and Tail Length of Single-Chain Lipids on the Conformational Stability of β-Lactoglobulin. J Phys Chem B 2020; 124:944-952. [PMID: 31968169 DOI: 10.1021/acs.jpcb.9b09925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interaction between β-lactoglobulin and single-chain lipids, differing for either the length of the aliphatic chain or the molecular properties of the headgroup, was investigated at neutral and acidic pH to determine the impact on the thermal stability of the protein. Differential scanning calorimetry results with different fatty acids (from C10:0 to C18:0) show a correlation of both melting temperature and unfolding enthalpy of the protein with the ligand binding affinity, and the maximum effect was found for palmitic acid (PLM). The influence of the lipid polar head was investigated by comparing PLM with lyso-palmitoylphosphatidylcholine (LPC), which possesses the same aliphatic chain. At neutral pH, the stabilizing effect of LPC is less favorable compared to PLM. However, fluorescence results revealed that LPC can bind into the protein calyx even at acidic pH, at variance with fatty acids. Molecular dynamics simulations indicated that this difference is due to the ability of the polar head of LPC to interact with the protein loop that regulates the shift (Tanford transition) between open and closed state of the binding site of β-lactoglobulin. The results provide a rationale for how a ligand has the ability to access the protein active site at acidic conditions by overcoming the Tanford transition, and they demonstrate that β-lactoglobulin can deliver ligands with tailored properties of the polar head in a wide pH range.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics , University of Calabria , 87036 Rende , Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies and Molecular Biophysics Laboratory , University of Calabria , 87036 Rende , Italy
| | - Rita Guzzi
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics , University of Calabria , 87036 Rende , Italy.,Department of Physics, Molecular Biophysics Laboratory , University of Calabria , 87036 Rende , Italy
| |
Collapse
|
6
|
Gómez-Velasco H, Rojo-Domínguez A, García-Hernández E. Enthalpically-driven ligand recognition and cavity solvation of bovine odorant binding protein. Biophys Chem 2020; 257:106315. [DOI: 10.1016/j.bpc.2019.106315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 11/29/2022]
|
7
|
Nnyigide OS, Lee SG, Hyun K. In Silico Characterization of the Binding Modes of Surfactants with Bovine Serum Albumin. Sci Rep 2019; 9:10643. [PMID: 31337814 PMCID: PMC6650617 DOI: 10.1038/s41598-019-47135-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/09/2019] [Indexed: 01/10/2023] Open
Abstract
The binding interactions of the surfactants: anionic sodium dodecyl sulphate (SDS), cationic cetyltrimethylammonium bromide (CTAB), non-ionic octyl glucoside (OG), and zwitterionic 3-[Hexadecyl(dimethyl)ammonio]-1-propanesulfonate (HPS), with bovine serum albumin (BSA) were investigated by computer simulation. The results disclosed that the surfactants bound stably between hydrophobic subdomain IIA and IIIA where tryptophan-213 residue, an important intrinsic fluorophore in BSA is housed. The interactions of the surfactants with the BSA were electrostatic and hydrophobic interactions. The head-groups of SDS, HPS and OG formed hydrogen bonds with the BSA, while that of CTAB was shielded from intermolecular hydrogen-bonding due to intervening methyl groups. Subsequently, molecular dynamics (MD) simulation of the protein-surfactant complexes revealed that hydrogen bonds formed by OG were stronger than those of SDS and HPS. However, the decomposed force-field energies showed that OG had the least interaction energy with the BSA. In addition to MD simulation, it was found by density functional theory (DFT) that the differences in the coulomb interaction energies can be attributed to charge distribution in the surfactants. Overall, free energies calculated by linear interaction energy (LIE) proved that the binding of each surfactant was dominated by differences between van der Waals interactions in bound and free states.
Collapse
Affiliation(s)
- Osita Sunday Nnyigide
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Korea
| | - Sun-Gu Lee
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Korea.
| | - Kyu Hyun
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Korea.
| |
Collapse
|
8
|
Świątek S, Komorek P, Turner G, Jachimska B. β-Lactoglobulin as a potential carrier for bioactive molecules. Bioelectrochemistry 2018; 126:137-145. [PMID: 30590224 DOI: 10.1016/j.bioelechem.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
In this study, the interaction and binding behavior of anesthetic tetracaine (TET) with bovine β-lactoglobulin (LGB) isoform A and a mixture of isoforms A and B were investigated under varying environmental conditions (pH, ionic strength, concentration, LGB-TET complex molar ratio). A wide range of analytical techniques (dynamic light scattering (DLS), electrophoretic mobility, UV-Vis spectroscopy, circular dichroism (CD), quartz crystal microbalance (QCM-D) were used to analyze the physicochemical properties of the complexes in bulk solution and on the surface of gold. The experiments revealed that TET, which is amphiphilic, could bind with LGB not only in the β-barrel but also onto the surface. The zeta potential of the LGB becomes more positively charged upon interaction with TET due to electrostatic interaction of the amino group present in the TET structure. Changes in the zeta potential values are mostly visible above pH 6 for all tested systems. CD spectra show that interaction with the ligand does not change the secondary structure of the protein. The physicochemical properties of LGB-TET complex were examined in an adsorbed state on a gold surface using the QCM-D method. Additionally, molecular docking was used to evaluate the most likely binding site for TET with LGB.
Collapse
Affiliation(s)
- S Świątek
- Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, Niezapominajek 8, Cracow 30-239, Poland
| | - P Komorek
- Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, Niezapominajek 8, Cracow 30-239, Poland
| | - G Turner
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, UK
| | - B Jachimska
- Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry, Niezapominajek 8, Cracow 30-239, Poland.
| |
Collapse
|
9
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|
10
|
Mezhevoi IN, Badelin VG, Tyunina EY, Kamkina SV. Effect of Tryptophan and Asparagine Structure on the Enthalpic Characteristics of Their Dissolution in Aqueous Solutions of Sodium Dodecyl Sulfate. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418030202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Shafaei Z, Ghalandari B, Vaseghi A, Divsalar A, Haertlé T, Saboury AA, Sawyer L. β-Lactoglobulin: An efficient nanocarrier for advanced delivery systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1685-1692. [PMID: 28343017 DOI: 10.1016/j.nano.2017.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/18/2017] [Accepted: 03/14/2017] [Indexed: 01/10/2023]
Abstract
Thanks to the progress of nanotechnology there are several agent-delivery systems that can be selected to achieve rapid and specific delivery of a wide variety of biologically active agents. Consequently, the manipulation and engineering of biopolymers has become one of the most exciting subjects for those who study delivery systems on the nanoscale. In this regard, both nanoparticle formation and a carrier role have been observed in the case of the globular milk whey protein, β-lactoglobulin (β-LG), setting it apart from many other proteins. To date, many efforts adopting different approaches have created β-LG nanoparticles useful in forming delivery systems for various agents with specific targets. In this review, the potential of β-LG to play the role of an efficient and diverse carrier protein, as well as its ability to form a well-targeted nano-scale delivery system is discussed.
Collapse
Affiliation(s)
- Zahra Shafaei
- Department of Cell and Molecular Biology' Faculty of Biological Sciences' Kharazmi University, Tehran, Iran
| | - Behafarid Ghalandari
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Biology' Faculty of Biological Sciences' Kharazmi University, Tehran, Iran.
| | - Thomas Haertlé
- FIP, BIA UR1268, Institut National de la Recherche Agronomique, Nantes, France
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics' University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Lindsay Sawyer
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Zacarías-Lara OJ, Correa-Basurto J, Bello M. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations. Biopolymers 2017; 105:393-413. [PMID: 27016043 DOI: 10.1002/bip.22839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/23/2016] [Accepted: 03/23/2016] [Indexed: 11/06/2022]
Abstract
B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016.
Collapse
Affiliation(s)
- Oscar J Zacarías-Lara
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México
| | - Martiniano Bello
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México
| |
Collapse
|
13
|
Sixto-López Y, Bello M, Rodríguez-Fonseca RA, Rosales-Hernández MC, Martínez-Archundia M, Gómez-Vidal JA, Correa-Basurto J. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations. J Biomol Struct Dyn 2016; 35:2794-2814. [PMID: 27589363 DOI: 10.1080/07391102.2016.1231084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martiniano Bello
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico.,b Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340 , Mexico
| | - Rolando Alberto Rodríguez-Fonseca
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martha Cecilia Rosales-Hernández
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico.,b Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340 , Mexico
| | - Marlet Martínez-Archundia
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - José Antonio Gómez-Vidal
- c Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica , Universidad de Granada , Granada 18071 , Spain
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| |
Collapse
|
14
|
Bello M, Fragoso-Vázquez MJ, Correa Basurto J. Energetic and conformational features linked to the monomeric and dimeric states of bovine BLG. Int J Biol Macromol 2016; 92:625-636. [PMID: 27456117 DOI: 10.1016/j.ijbiomac.2016.07.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
Bovine β-lactoglobulin (BLG) belong to the lipocalin family. This is a group of proteins involved in the binding and transporting of hydrophobic molecules. Experimental and theoretical reports have stated its complex structural behavior in solution, with coupled effects between homodimerization and ligand recognition. Nonetheless, structural evidence at the atomic level about the cause of this coupled effect has not been reported to date. To address this issue microsecond molecular dynamics (MD) simulations were combined with the molecular mechanics generalized Born surface area (MM/GBSA) approach, clustering analysis and principal component analysis (PCA), to explore the conformational complexity of BLG protein-protein self-association and palmitic acid (PLM) or dodecyl sulfate (SDS) ligand recognition in the monomeric and dimeric state. MD simulations, coupled to the MM/GBSA method, revealed that dimerization exerts contrasting effects on the ligand-binding capacity of BLG. Protein dimerization decreases PLM affinity, promoting dimer association. For SDS the dimeric state increases affinity, enhancing dimer dissociation. MD simulations based on PCA revealed that while few differences in the conformational subspace are observed between the free and bound monomer and dimer coupling for PLM, substantial changes are observed between the free and bound monomer and dimer coupling for SDS.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico.
| | - M Jonathan Fragoso-Vázquez
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico
| | - José Correa Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP: 11340, Mexico
| |
Collapse
|
15
|
Méndez-Luna D, Bello M, Correa-Basurto J. Understanding the molecular basis of agonist/antagonist mechanism of GPER1/GPR30 through structural and energetic analyses. J Steroid Biochem Mol Biol 2016; 158:104-116. [PMID: 26772481 DOI: 10.1016/j.jsbmb.2016.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Abstract
The G-protein coupled receptors (GPCRs) represent the largest superfamily of membrane proteins in charge to pass the cell signaling after binding with their cognate ligands to the cell interior. In breast cancer, a GPCR named GPER1 plays a key role in the process of growth and the proliferation of cancer cells. In a previous study, theoretical methods were applied to construct a model of GPER1, which later was submitted to molecular dynamics (MD) simulations to perform a docking calculation. Based on this preceding work, it is known that GPER1 is sensitive to structural differences in its binding site. However, due to the nature of that past study, conformational changes linked to the ligand binding were not observed. Therefore, in this study, in order to explore the conformational changes coupled to the agonist/antagonist binding, MD simulations of about 0.25μs were performed for the free and bound states, summarizing 0.75μs of MD simulation in total. For the bound states, one agonist (G-1) and antagonist (G-15) were chosen since is widely known that these two molecules cause an impact on GPER1 mobility. Based on the conformational ensemble generated through MD simulations, we found that despite G-1 and G-15 being stabilized by similar map of residues, the structural differences between both ligands impact the hydrogen bond pattern not only at the GPER1 binding site but also along the seven-helix bundle, causing significant differences in the conformational mobility along the extracellular and cytoplasmic domain, and to a lesser degree in the curvatures of helix 2, helix 3 and helix 7 between the free and bound states, which is in agreement with reported literature, and might be linked to microscopic characteristics of the activated-inactivated transition. Furthermore, binding free energy calculations using the MM/GBSA method for the bound states, followed by an alanine scanning analysis allowed us to identify some important residues for the complex stabilization.
Collapse
Affiliation(s)
- David Méndez-Luna
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico.
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico
| |
Collapse
|
16
|
β-Lactoglobulin as nanotransporter – Part I: Binding of organosulfur compounds. Food Chem 2016; 197:1015-21. [DOI: 10.1016/j.foodchem.2015.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/10/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
|
17
|
Bello M, Correa-Basurto J. Energetic and flexibility properties captured by long molecular dynamics simulations of a membrane-embedded pMHCII-TCR complex. MOLECULAR BIOSYSTEMS 2016; 12:1350-66. [PMID: 26926952 DOI: 10.1039/c6mb00058d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although crystallographic data have provided important molecular insight into the interactions in the pMHC-TCR complex, the inherent features of this structural approach cause it to only provide a static picture of the interactions. While unbiased molecular dynamics simulations (UMDSs) have provided important information about the dynamic structural behavior of the pMHC-TCR complex, most of them have modeled the pMHC-TCR complex as soluble, when in physiological conditions, this complex is membrane bound; therefore, following this latter UMDS protocol might hamper important dynamic results. In this contribution, we performed three independent 300 ns-long UMDSs of the pMHCII-TCR complex anchored in two opposing membranes to explore the structural and energetic properties of the recognition of pMHCII by the TCR. The conformational ensemble generated through UMDSs was subjected to clustering and Cartesian principal component analyses (cPCA) to explore the dynamical behavior of the pMHCII-TCR association. Furthermore, based on the conformational population sampled through UMDSs, the effective binding free energy, per-residue free energy decomposition, and alanine scanning mutations were explored for the native pMHCII-TCR complex, as well as for 12 mutations (p1-p12MHCII-TCR) introduced in the native peptide. Clustering analyses and cPCA provide insight into the rocking motion of the TCR onto pMHCII, together with the presence of new electrostatic interactions not observed through crystallographic methods. Energetic results provide evidence of the main contributors to the pMHC-TCR complex formation as well as the key residues involved in this molecular recognition process.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City, CP: 11340, Mexico.
| | | |
Collapse
|
18
|
Simulations of flow induced structural transition of the β-switch region of glycoprotein Ibα. Biophys Chem 2016; 209:9-20. [DOI: 10.1016/j.bpc.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 12/14/2022]
|
19
|
Bello M. Structural and energetic requirements for a second binding site at the dimeric β-lactoglobulin interface. J Biomol Struct Dyn 2016; 34:1884-902. [DOI: 10.1080/07391102.2015.1094413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, CP 11340 México, D. F., Mexico
| |
Collapse
|
20
|
Yi C, Wambo TO. Factors affecting the interactions between beta-lactoglobulin and fatty acids as revealed in molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:23074-80. [PMID: 26272099 PMCID: PMC4554325 DOI: 10.1039/c5cp02312b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beta-lactoglobulin (BLG), a bovine dairy protein, is a promiscuously interacting protein that can bind multiple hydrophobic ligands. Fatty acids (FAs), common hydrophobic molecules bound to BLG, are important sources of fuel for life because they yield large quantities of ATP when metabolized. The binding affinity increases with the length of the ligands, indicating the importance of the van der Waals (vdW) interactions between the hydrocarbon tail and the hydrophobic calyx of BLG. An exception to this rule is caprylic acid (OCA) which is two-carbon shorter but has a stronger binding affinity than capric acid. Theoretical calculations in the current literature are not accurate enough to shed light on the underlying physics of this exception. The computed affinity values are greater for longer fatty acids without respect for the caprylic exception and those values are generally several orders of magnitude away from the experimental data. In this work, we used hybrid steered molecular dynamics to accurately compute the binding free energies between BLG and the five saturated FAs of 8 to 16 carbon atoms. The computed binding free energies agree well with experimental data not only in rank but also in absolute values. We gained insights into the exceptional behavior of caprylic acid in the computed values of entropy and electrostatic interactions. We found that the electrostatic interaction between the carboxyl group of caprylic acid and the two amino groups of K60/69 in BLG is much stronger than the vdW force between the OCA's hydrophobic tail and the BLG calyx. This pulls OCA to the top of the beta barrel where it is easier to fluctuate, giving rise to greater entropy of OCA at the binding site.
Collapse
Affiliation(s)
- Changhong Yi
- School of Mathematics and Physics, Shandong Jiaotong University, 5001 Haitang Road, Jinan, Shandong Province 250357, P. R. China.
| | | |
Collapse
|
21
|
Bello M. Binding free energy calculations between bovine β-lactoglobulin and four fatty acids using the MMGBSA method. Biopolymers 2014; 101:1010-8. [DOI: 10.1002/bip.22483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/02/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis Y Diaz Mirón S/N; Col. Casco de Santo Tomas; 11340 México, D. F. México
| |
Collapse
|
22
|
Evoli S, Guzzi R, Rizzuti B. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites. Proteins 2014; 82:2609-19. [DOI: 10.1002/prot.24625] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Stefania Evoli
- Department of Physics; University of Calabria; Ponte P. Bucci, Cubo 31C 87036 Rende (CS) Italy
- CNR-IPCF UOS of Cosenza, LiCryL and CEMIF.Cal; University of Calabria; Ponte P. Bucci, Cubo 33B 87036 Rende (CS) Italy
| | - Rita Guzzi
- Department of Physics; University of Calabria; Ponte P. Bucci, Cubo 31C 87036 Rende (CS) Italy
- CNISM Unit; University of Calabria; Ponte P. Bucci, Cubo 31C 87036 Rende (CS) Italy
| | - Bruno Rizzuti
- CNR-IPCF UOS of Cosenza, LiCryL and CEMIF.Cal; University of Calabria; Ponte P. Bucci, Cubo 33B 87036 Rende (CS) Italy
| |
Collapse
|
23
|
Loch JI, Bonarek P, Polit A, Swiątek Ś, Dziedzicka-Wasylewska M, Lewiński K. The differences in binding 12-carbon aliphatic ligands by bovine β-lactoglobulin isoform A and B studied by isothermal titration calorimetry and X-ray crystallography. J Mol Recognit 2014; 26:357-67. [PMID: 23784992 DOI: 10.1002/jmr.2280] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 01/23/2023]
Abstract
Isoforms A (LGB-A) and B (LGB-B) of bovine lactoglobulin, the milk protein, differ in positions 64 (D↔G) and 118 (V↔A). Interactions of LGB-A and LGB-B with sodium dodecyl sulfate (SDS), dodecyltrimethylammonium chloride (DTAC) and lauric acid (LA), 12-carbon ligands possessing differently charged polar groups, were investigated using isothermal titration calorimetry and X-ray crystallography, to study the proton linkage phenomenon and to distinguish between effects related to different isoforms and different ligand properties. The determined values of ΔS and ΔH revealed that for all ligands, binding is entropically driven. The contribution from enthalpy change is lower and shows strong dependence on type of buffer that indicates proton release from the protein varying with protein isoform and ligand type and involvement of LA and Asp64 (in isoform A) in this process. The ligand affinities for both isoforms were arranged in the same order, DTAC < LA < SDS, and were systematically lower for variant B. The entropy change of the complexation process was always higher for isoform A, but these values were compensated by changes in enthalpy, resulting in almost identical ΔG for complexes of both isoforms. The determined crystal structures showed that substitution in positions 64 and 118 did not influence the overall structure of LGB complexes. The chemical character of the ligand polar group did not affect the position of its aliphatic chain in protein β-barrel, indicating a major role of hydrophobic interactions in ligand binding that prevailed even with the repulsion between positively charged DTAC and lysine residues located at binding site entrance.
Collapse
Affiliation(s)
- Joanna I Loch
- Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Ingardena 3, 30-060 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Ghalandari B, Divsalar A, Saboury AA, Haertlé T, Parivar K, Bazl R, Eslami-Moghadam M, Amanlou M. Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:1038-1046. [PMID: 24161866 DOI: 10.1016/j.saa.2013.09.126] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/19/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
The possibility of using a small cheap dairy protein, β-lactoglobulin (β-LG), as a carrier for oxali-palladium for drug delivery was studied. Their binding in an aqueous solution at two temperatures of 25 and 37°C was investigated using spectroscopic techniques in combination with a molecular docking study. Fluorescence intensity changes showed combined static and dynamic quenching during β-LG oxali-palladium binding, with the static mode being predominant in the quenching mechanism. The binding and thermodynamic parameters were determined by analyzing the results of quenching and those of the van't Hoff equation. According to obtained results the binding constants at two temperatures of 25 and 37°C are 3.3×10(9) M(-1) and 18.4×10(6) M(-1) respectively. Fluorescence resonance energy transfer (FRET) showed that the experimental results and the molecular docking results were coherent. An absence change of β-LG secondary structure was confirmed by the CD results. Molecular docking results agreed fully with the experimental results since the fluorescence studies also revealed the presence of two binding sites with a negative value for the Gibbs free energy of binding of oxali-palladium to β-LG. Furthermore, molecular docking and experimental results suggest that the hydrophobic effect plays a critical role in the formation of the oxali-palladium complex with β-LG. This agreement between molecular docking and experimental results implies that docking studies may be a suitable method for predicting and confirming experimental results, as shown in this study. Hence, the combination of molecular docking and spectroscopy methods is an effective innovative approach for binding studies, particularly for pharmacophores.
Collapse
Affiliation(s)
- Behafarid Ghalandari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Motivation: Gaussian network model (GNM) is widely adopted to analyze and understand protein dynamics, function and conformational changes. The existing GNM-based approaches require atomic coordinates of the corresponding protein and cannot be used when only the sequence is known. Results: We report, first of its kind, GNM model that allows modeling using the sequence. Our linear regression-based, parameter-free, sequence-derived GNM (L-pfSeqGNM) uses contact maps predicted from the sequence and models local, in the sequence, contact neighborhoods with the linear regression. Empirical benchmarking shows relatively high correlations between the native and the predicted with L-pfSeqGNM B-factors and between the cross-correlations of residue fluctuations derived from the structure- and the sequence-based GNM models. Our results demonstrate that L-pfSeqGNM is an attractive platform to explore protein dynamics. In contrast to the highly used GNMs that require protein structures that number in thousands, our model can be used to study motions for the millions of the readily available sequences, which finds applications in modeling conformational changes, protein–protein interactions and protein functions. Contact:zerozhua@126.com Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hua Zhang
- School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P.R. China and Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | | |
Collapse
|
26
|
Gutiérrez-Magdaleno G, Bello M, Portillo-Téllez MC, Rodríguez-Romero A, García-Hernández E. Ligand binding and self-association cooperativity of β-lactoglobulin. J Mol Recognit 2013; 26:67-75. [PMID: 23334914 DOI: 10.1002/jmr.2249] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Unlike most small globular proteins, lipocalins lack a compact hydrophobic core. Instead, they present a large central cavity that functions as the primary binding site for hydrophobic molecules. Not surprisingly, these proteins typically exhibit complex structural dynamics in solution, which is intricately modified by intermolecular recognition events. Although many lipocalins are monomeric, an increasing number of them have been proven to form oligomers. The coupling effects between self-association and ligand binding in these proteins are largely unknown. To address this issue, we have calorimetrically characterized the recognition of dodecyl sulfate by bovine β-lactoglobulin, which forms weak homodimers at neutral pH. A thermodynamic analysis based on coupled-equilibria revealed that dimerization exerts disparate effects on the ligand-binding capacity of β-lactoglobulin. Protein dimerization decreases ligand affinity (or, reciprocally, ligand binding promotes dimer dissociation). The two subunits in the dimer exhibit a positive, entropically driven cooperativity. To investigate the structural determinants of the interaction, the crystal structure of β-lactoglobulin bound to dodecyl sulfate was solved at 1.64 Å resolution.
Collapse
Affiliation(s)
- Gabriel Gutiérrez-Magdaleno
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, DF 04630, México
| | | | | | | | | |
Collapse
|
27
|
Domínguez-Ramírez L, Del Moral-Ramírez E, Cortes-Hernández P, García-Garibay M, Jiménez-Guzmán J. β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study. PLoS One 2013; 8:e79530. [PMID: 24255705 PMCID: PMC3821863 DOI: 10.1371/journal.pone.0079530] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/02/2013] [Indexed: 01/10/2023] Open
Abstract
β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i) 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii) Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii) Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv) lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control binding.
Collapse
Affiliation(s)
- Lenin Domínguez-Ramírez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada, Lerma, México
- * E-mail:
| | - Elizabeth Del Moral-Ramírez
- Departamento de Ciencias de la Alimentación, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada, México
| | - Paulina Cortes-Hernández
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada, Lerma, México
| | - Mariano García-Garibay
- Departamento de Ciencias de la Alimentación, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada, México
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico
| | - Judith Jiménez-Guzmán
- Departamento de Ciencias de la Alimentación, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada, México
| |
Collapse
|
28
|
Bello M, Correa-Basurto J, Rudiño-Piñera E. Simulation of the cavity-binding site of three bacterial multicopper oxidases upon complex stabilization: interactional profile and electron transference pathways. J Biomol Struct Dyn 2013; 32:1303-17. [DOI: 10.1080/07391102.2013.817954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Bello M, Martínez-Archundia M, Correa-Basurto J. Automated docking for novel drug discovery. Expert Opin Drug Discov 2013; 8:821-34. [DOI: 10.1517/17460441.2013.794780] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Bello M, Valderrama B, Serrano-Posada H, Rudiño-Piñera E. Molecular dynamics of a thermostable multicopper oxidase from Thermus thermophilus HB27: structural differences between the apo and holo forms. PLoS One 2012; 7:e40700. [PMID: 22808237 PMCID: PMC3393687 DOI: 10.1371/journal.pone.0040700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Molecular dynamic (MD) simulations have been performed on Tth-MCO, a hyperthermophilic multicopper oxidase from thermus thermophilus HB27, in the apo as well as the holo form, with the aim of exploring the structural dynamic properties common to the two conformational states. According to structural comparison between this enzyme and other MCOs, the substrate in process to electron transfer in an outer-sphere event seems to transiently occupy a shallow and overall hydrophobic cavity near the Cu type 1 (T1Cu). The linker connecting the β-strands 21 and 24 of the second domain (loop (β21–β24)D2) has the same conformation in both states, forming a flexible lid at the entrance of the electron-transfer cavity. Loop (β21–β24)D2 has been tentatively assigned a role occluding the access to the electron-transfer site. The dynamic of the loop (β21–β24)D2 has been investigated by MD simulation, and results show that the structures of both species have the same secondary and tertiary structure during almost all the MD simulations. In the simulation, loop (β21–β24)D2 of the holo form undergoes a higher mobility than in the apo form. In fact, loop (β21–β24)D2 of the holo form experiences a conformational change which enables exposure to the electron-transfer site (open conformation), while in the apo form the opposite effect takes place (closed conformation). To confirm the hypothesis that the open conformation might facilitate the transient electron-donor molecule occupation of the site, the simulation was extended another 40 ns with the electron-donor molecule docked into the protein cavity. Upon electron-donor molecule stabilization, loops near the cavity reduce their mobility. These findings show that coordination between the copper and the protein might play an important role in the general mobility of the enzyme, and that the open conformation seems to be required for the electron transfer process to T1Cu.
Collapse
Affiliation(s)
- Martiniano Bello
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (MB); (ERP)
| | - Brenda Valderrama
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Hugo Serrano-Posada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (MB); (ERP)
| |
Collapse
|