1
|
Napolitano E, Criscuolo A, Riccardi C, Platella C, Gaglione R, Arciello A, Musumeci D, Montesarchio D. When annealing is detrimental: The case of HMGB1-targeting G-quadruplex aptamers. Int J Biol Macromol 2024; 283:137148. [PMID: 39505169 DOI: 10.1016/j.ijbiomac.2024.137148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
In this work, we present the case of the G-quadruplex(G4)-forming aptamers we recently identified for the recognition of HMGB1, protein involved in inflammation, autoimmune diseases and cancer. These aptamers were previously analyzed, without annealing them, after proper dilution of the stock solution in a pseudo-physiological buffer mimicking the extracellular environment where the protein exerts its pathological activity, and showed high thermal stability and nuclease resistance, good protein affinity and remarkable in vitro activity. These features were more marked for the aptamers forming dimeric, parallel G4 structures in solution. Herein, we fully characterized the same anti-HMGB1 aptamers after a standard annealing procedure performed on diluted samples. Notably, upon a thermal unfolding/folding cycle, these aptamers, and particularly the best ones in the not-annealed form, showed significant conformational switches compared to the same systems analyzed without annealing, forming exclusively monomeric G4 structures, featured by poor thermal and enzymatic stabilities, along with lower protein affinities. These results prove that, for these aptamers, analyzed in the chosen conditions, annealing at low concentration does not produce a beneficial effect in terms of favouring the most bioactive species.
Collapse
Affiliation(s)
- Ettore Napolitano
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; Institute of Biostructure and Bioimaging (IBB) - CNR, 80145 Napoli, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy.
| |
Collapse
|
2
|
Somkuti J, Molnár OR, Grád A, Smeller L. Pressure Perturbation Studies of Noncanonical Viral Nucleic Acid Structures. BIOLOGY 2021; 10:1173. [PMID: 34827166 PMCID: PMC8615049 DOI: 10.3390/biology10111173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
G-quadruplexes are noncanonical structures formed by guanine-rich sequences of the genome. They are found in crucial loci of the human genome, they take part in the regulation of important processes like cell proliferation and cell death. Much less is known about the subjects of this work, the viral G-quadruplexes. We have chosen three potentially G-quadruplex-forming sequences of hepatitis B. We measured the stability and the thermodynamic parameters of these quadruplexes. We also investigated the potential stabilization of these G-quadruplexes by binding a special ligand that was originally developed for cancer therapy. Fluorescence and infrared spectroscopic measurements were performed over wide temperature and pressure ranges. Our experiments indicate the small unfolding volume change of all three oligos. We found a difference between the unfolding of the 2-quartet and the 3-quartet G-quadruplexes. All three G-quadruplexes were stabilized by TMPyP4, which is a cationic porphyrin developed for stabilizing the human telomere.
Collapse
Affiliation(s)
| | | | | | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (J.S.); (O.R.M.); (A.G.)
| |
Collapse
|
3
|
Molnár OR, Somkuti J, Smeller L. Negative volume changes of human G-quadruplexes at unfolding. Heliyon 2020; 6:e05702. [PMID: 33354631 PMCID: PMC7744710 DOI: 10.1016/j.heliyon.2020.e05702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes are tetrahelical structures. They are important targets for anti-cancer drugs, since they are situated at crucial positions within the genome. We studied the volumetric properties of the unfolding of three G-quadruplexes in the presence of potassium ion. The unfolding volume changes were determined using high-pressure fluorescence spectroscopy. The c-MYC, KIT, and VEGF sequences unfold with the transition volume of -17, -6 and -18 cm3/mol, respectively. The small magnitude of the unfolding volume of KIT could be explained by its unique structure and the lower amount of void volume. Since the cell interior is highly crowded, the available volume is restricted. Therefore the volumetric changes during the conformational transformations gain biological importance.
Collapse
Affiliation(s)
- Orsolya Réka Molnár
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules 2020; 25:molecules25163686. [PMID: 32823549 PMCID: PMC7464828 DOI: 10.3390/molecules25163686] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Somkuti J, Adányi M, Smeller L. Self-crowding influences the temperature - pressure stability of the human telomere G-quadruplex. Biophys Chem 2019; 254:106248. [PMID: 31470349 DOI: 10.1016/j.bpc.2019.106248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023]
Abstract
We measured the effect of crowded environment on G-quadruplex structures, formed by guanine rich DNA sequences. Fluorescence and infrared spectroscopy were used to determine the temperature stability of G-quadruplex structure formed by the human telomere sequence. We determined the T-p phase diagram of Htel aptamer up to 1 GPa at different self-crowding conditions. The unfolding volume change was determined from the pressure induced shift of the unfolding temperature of the quadruplex form. The unfolding volume change decreased in magnitude, and even its sign changed from negative (-19 ml/mol) to positive (7 ml/mol) under self-crowded conditions. The possible explanations are the appearance of the parallel GQ structure at high concentration or the fact that the volume decrease caused by the released central K+ ion during the unfolding is less significant in crowded environment.
Collapse
Affiliation(s)
- J Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - M Adányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - L Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
7
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
8
|
Li YY, Dubins DN, Le DMNT, Leung K, Macgregor RB. The role of loops and cation on the volume of unfolding of G-quadruplexes related to HTel. Biophys Chem 2017; 231:55-63. [PMID: 28162829 DOI: 10.1016/j.bpc.2016.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
Abstract
In aqueous solutions containing sodium or potassium cations, oligodeoxyribonucleotides (ODNs) rich in guanine form four-stranded DNA structures called G-quadruplexes (G4s). These structures are destabilized by elevated hydrostatic pressure. Here, we use pressure to investigate the volumetric changes arising from the formation of G4 structures. G4s display a great deal of structural heterogeneity that depends on the stabilizing cation as well as the oligonucleotide sequence. Using UV thermal unfolding at different pressures, we have investigated the volume change of the helix-coil equilibrium of a series of ODNs whose sequences are related to the G-rich ODN HTel (d[A(GGGTTA)3GGG]), which contains four repeats of the human telomeric sequence. The experiments are conducted in aqueous buffers containing either 100mM NaCl or KCl at pH7.4. The G4s stabilized by Na+ are less sensitive to pressure perturbation than those stabilized by K+. The overall molar volume changes (ΔVtot) of the unfolding transition for all of the G4s are large and negative. A large fraction of the measured ΔVtot value arises from the re-hydration of the cations released from the interior of the folded structure. However, the differences in the measured ΔVtot values demonstrate that variations in the structure of G4s formed by each ODN, arising from differences in the sequence of the loops, contribute significantly to ΔVtot and presumably the hydration of the folded structures. Depending on the sequence of the loops, the magnitude of the measured ΔVtot can be larger or smaller than that of HTel in solutions containing sodium. However, the magnitude of ΔVtot is smaller than HTel for the unfolding of all G4s that are stabilized by potassium ions.
Collapse
Affiliation(s)
- Yang Yun Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Dianna My Nhi Thi Le
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Karen Leung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
9
|
Beniaminov AD, Novikov RA, Mamaeva OK, Mitkevich VA, Smirnov IP, Livshits MA, Shchyolkina AK, Kaluzhny DN. Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin. Nucleic Acids Res 2016; 44:10031-10041. [PMID: 27915287 PMCID: PMC5137456 DOI: 10.1093/nar/gkw947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022] Open
Abstract
Structure-specific ligands are convenient tools for the recognition, targeting or probing of non-canonical DNA structures. Porphyrin derivatives exhibit a preference for interaction with G-quadruplex (G4) structures over canonical duplex DNA and are able to cause photoinducible damage to nucleic acids. Here, we show that Zn(II) 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (ZnP1) interacts with different conformations of the telomeric sequence d(TAGGG(TTAGGG)3) at submicromolar concentrations without any detectible disturbance of the particular fold. Among different folds, potassium (3+1) hybrid G4-structure. reveal the highest affinity to ZnP1. The pattern of guanine oxidation is specific for each telomeric DNA conformation and may serve as an additional tool for probing the G4 topology. The potassium (3+1) and parallel G4 conformations are more susceptible to light-induced oxidation than the sodium G4 conformation or double helix of the telomeric DNA. The major products of the guanine modifications are spiroiminodihydantoin (Sp) and 8-oxoguanine (8-oxoG). ZnP1-induced oxidation of guanines results in the structural rearrangement of parallel and (3+1) G4 conformations yielding an antiparallel-like G4 conformation. The mechanism of the observed light-induced conformational changes is discussed.
Collapse
Affiliation(s)
- Artemy D Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia
| | - Olga K Mamaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia
| | - Igor P Smirnov
- Institute for Physical-Chemical Medicine of Ministry of Public Health, Malaya Pirogovskaya str. 1a, 119435 Moscow, Russia
| | - Mikhail A Livshits
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia
| | - Anna K Shchyolkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia
| |
Collapse
|
10
|
Li YY, Macgregor RB. A Thermodynamic Study of Adenine and Thymine Substitutions in the Loops of the Oligodeoxyribonucleotide HTel. J Phys Chem B 2016; 120:8830-6. [PMID: 27487080 DOI: 10.1021/acs.jpcb.6b05601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Guanine-rich DNA oligodeoxyribonucleotides (ODN) can form four-stranded structures named quadruplexes (G4s), which are stabilized via the association of four guanine bases. Quadruplexes have a high level of conformational diversity depending on the molecularity, sequence, and the cation conditions of the G4 formation. Monomolecular G4 structures have nonguanine loops that usually consist of between one and four adenine and thymine residues. In the work reported here, we systematically modified the nucleotides in the loops of the 22 nucleotide ODN, HTel, which contains four repeats of the human telomeric sequence, GGGTTA. We studied the effect of different types of bases in the loops on the stability and topology of the G4s formed. We show that lower steric hindrance of pyrimidine residues increases the stability of G4s with a major enthalpic contribution. Stacking of the loop bases onto tetrads could compensate for the loss of rotational freedom. In addition, in the presence of sodium, the stabilities of the G4s are loop dependent. In the presence of potassium, the stability of G4 depend on the sequences of each loop. Lastly, in the presence of potassium ions, the modified HTel ODNs may exist in equilibrium of the two types of the hybrid topology, and these structures are stabilized by the second loop. Modifications of the bases in this loop change the topology and stability of the folded structures.
Collapse
Affiliation(s)
- Yang Yun Li
- Department of Pharmaceutical Sciences University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences University of Toronto , 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|