1
|
Mardešić I, Boban Z, Raguz M. Electroformation of Giant Unilamellar Vesicles from Damp Films in Conditions Involving High Cholesterol Contents, Charged Lipids, and Saline Solutions. MEMBRANES 2024; 14:215. [PMID: 39452827 PMCID: PMC11510074 DOI: 10.3390/membranes14100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Giant unilamellar vesicles (GUVs) are frequently used as membrane models in studies of membrane properties. They are most often produced using the electroformation method. However, there are a number of parameters that can influence the success of the procedure. Some of the most common conditions that have been shown to have a negative effect on GUV electroformation are the presence of high cholesterol (Chol) concentrations, the use of mixtures containing charged lipids, and the solutions with an elevated ionic strength. High Chol concentrations are problematic for the traditional electroformation protocol as it involves the formation of a dry lipid film by complete evaporation of the organic solvent from the lipid mixture. During drying, anhydrous Chol crystals form. They are not involved in the formation of the lipid bilayer, resulting in a lower Chol concentration in the vesicle bilayer compared to the original lipid mixture. Motivated primarily by the issue of artifactual Chol demixing, we have modified the electroformation protocol by incorporating the techniques of rapid solvent exchange (RSE), ultrasonication, plasma cleaning, and spin-coating for reproducible production of GUVs from damp lipid films. Aside from decreasing Chol demixing, we have shown that the method can also be used to produce GUVs from lipid mixtures with charged lipids and in ionic solutions used as internal solutions. A high yield of GUVs was obtained for Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) samples with mixing ratios ranging from 0 to 2.5. We also succeeded in preparing GUVs from mixtures containing up to 60 mol% of the charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and in NaCl solutions with low ionic strength (<25 mM).
Collapse
Affiliation(s)
- Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| |
Collapse
|
2
|
Pazzi J, Subramaniam AB. Dynamics of giant vesicle assembly from thin lipid films. J Colloid Interface Sci 2024; 661:1033-1045. [PMID: 38335788 DOI: 10.1016/j.jcis.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
MOTIVATION Giant unilamellar vesicles (GUVs), cell-like synthetic micrometer size structures, assemble when thin lipid films are hydrated in aqueous solutions. Quantitative measurements of static yields and distribution of sizes of GUVs obtained from thin film hydration methods were recently reported. Dynamic data such as the time evolution of yields and distribution of sizes, however, is not known. Dynamic data can provide insights into the assembly pathway of GUVs and guidelines for choosing conditions to obtain populations with desired size distributions. APPROACH We develop the 'stopped-time' technique to characterize the time evolution of the distribution of sizes and molar yields of populations of free-floating GUVs. We additionally capture high resolution time-lapse images of surface-attached GUV buds on the lipid films. We systematically study the dynamics of assembly of GUVs from three widely used thin film hydration methods, PAPYRUS (Paper-Abetted amPhiphile hYdRation in aqUeous Solutions), gentle hydration, and electroformation. FINDINGS We find that the molar yield versus time curves of GUVs demonstrate a characteristic sigmoidal shape, with an initial yield, a transient, and then a steady state plateau for all three methods. The population of GUVs showed a right-skewed distribution of diameters. The variance of the distributions increased with time. The systems reached steady state within 120 min. We rationalize the dynamics using the thermodynamically motivated budding and merging (BNM) model. These results further the understanding of lipid dynamics and provide for the first-time practical parameters to tailor the production of GUVs of specific sizes for applications.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering, University of California, Merced, CA 95343, United States
| | - Anand Bala Subramaniam
- Department of Bioengineering, University of California, Merced, CA 95343, United States.
| |
Collapse
|
3
|
Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Anomalous Colloidal Motion under Strong Confinement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302115. [PMID: 37116105 DOI: 10.1002/smll.202302115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Diffusion of biological macromolecules in the cytoplasm is a paradigm of colloidal diffusion in an environment characterized by a strong restriction of the accessible volume. This makes of the understanding of the physical rules governing colloidal diffusion under conditions mimicking the reduction in accessible volume occurring in the cell cytoplasm, a problem of a paramount importance. This work aims to study how the thermal motion of spherical colloidal beads in the inner cavity of giant unilamellar vesicles (GUVs) is modified by strong confinement conditions, and the viscoelastic character of the medium. Using single particle tracking, it is found that both the confinement and the environmental viscoelasticity lead to the emergence of anomalous motion pathways for colloidal microbeads encapsulated in the aqueous inner cavity of GUVs. This anomalous diffusion is strongly dependent on the ratio between the volume of the colloidal particle and that of the GUV under consideration as well as on the viscosity of the particle's liquid environment. Therefore, the results evidence that the reduction of the free volume accessible to colloidal motion pushes the diffusion far from a standard Brownian pathway as a result of the change in the hydrodynamic boundary conditions driving the particle motion.
Collapse
Affiliation(s)
- Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
- Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
- Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain
| |
Collapse
|
4
|
Zhu H, Hu L, Qu B, Liao Q, Tian C, Song X, Fang X, Zhang X. Optimization of key parameters for continuous and precise nitrogen injection in goaf based on response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40189-40205. [PMID: 36607573 DOI: 10.1007/s11356-022-25037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023]
Abstract
In order to solve the problems of coal spontaneous combustion, poor inerting effect of traditional nitrogen injection, and waste of resources in goaf, based on the response surface methodology and Box-Behnken combination test principle, the self-developed continuous and precise nitrogen injection and fire-fighting equipment was used to study the best possible combination of nitrogen injection position (20-90 m), nitrogen injection amount (10-70 m3/min), and air supply volume (2100-2500 m3/min), aiming to minimize the width of the oxidation zone and CO concentration in goaf. The optimal key parameters of continuous precise nitrogen injection were determined as follows: nitrogen injection position 54.17 m, nitrogen injection amount 31.04 m3/min, and air supply 2484.81 m3/min. Under this condition, the width of the oxidation zone was 29.21 ± 0.3 m and the CO concentration was 28.1 ± 4.4 ppm, which were similar to the predicted results of the model (the width of the oxidation zone was 29.41 m; CO concentration was 27.28 ppm). The reliability of the model was verified. These preliminary studies have achieved the purpose of rapid control of the fire in the whole region of the goaf and provided valuable lessons for similar nitrogen injection fire prevention and extinguishing technologies in goaf.
Collapse
Affiliation(s)
- Hongqing Zhu
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Lintao Hu
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Baolin Qu
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qi Liao
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chang Tian
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xiaozhen Song
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xiyang Fang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xuedong Zhang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
5
|
Ghellab SE, Han X. Micrometer-size double-helical structures from phospholipid-modified carbon nanotubes. SOFT MATTER 2022; 18:2726-2730. [PMID: 35333275 DOI: 10.1039/d2sm00198e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomolecular self-assembly plays a key role in the life system. Herein, double-helical phospholipid-modified carbon nanotube structures were constructed via the self-assembly of phospholipids on carbon nanotubes. These micrometer size spring structures may find potential applications in biocompatible microrobots.
Collapse
Affiliation(s)
- Salah Eddine Ghellab
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China.
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China.
| |
Collapse
|
6
|
Zhang M, Zhang Y, Mu W, Dong M, Han X. In Situ Synthesis of Lipid Analogues Leading to Artificial Cell Growth and Division. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingrui Zhang
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ying Zhang
- Heilongjiang Institute of Technology College of Materials and Chemical Engineering CHINA
| | - Wei Mu
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Mingdong Dong
- Aarhus Universitet Interdisciplinary Nanosci Ctr iNANO DENMARK
| | - Xiaojun Han
- Harbin Institute of Technology School of Chemical Engineering and Technology No.92, West Da-Zhi Street, Harbin, 150001, China 150001 harbin CHINA
| |
Collapse
|
7
|
Boban Z, Mardešić I, Subczynski WK, Raguz M. Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results. MEMBRANES 2021; 11:membranes11110860. [PMID: 34832088 PMCID: PMC8622294 DOI: 10.3390/membranes11110860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Since its inception more than thirty years ago, electroformation has become the most commonly used method for growing giant unilamellar vesicles (GUVs). Although the method seems quite straightforward at first, researchers must consider the interplay of a large number of parameters, different lipid compositions, and internal solutions in order to avoid artifactual results or reproducibility problems. These issues motivated us to write a short review of the most recent methodological developments and possible pitfalls. Additionally, since traditional manual analysis can lead to biased results, we have included a discussion on methods for automatic analysis of GUVs. Finally, we discuss possible improvements in the preparation of GUVs containing high cholesterol contents in order to avoid the formation of artifactual cholesterol crystals. We intend this review to be a reference for those trying to decide what parameters to use as well as an overview providing insight into problems not yet addressed or solved.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Correspondence: ; Tel.: +385-98-768-819
| |
Collapse
|