1
|
Zhao N, Li S, Wu H, Wei D, Pu N, Wang K, Liu Y, Tao Y, Song Z. Ferroptosis: An Energetic Villain of Age-Related Macular Degeneration. Biomedicines 2025; 13:986. [PMID: 40299661 PMCID: PMC12024642 DOI: 10.3390/biomedicines13040986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Iron homeostasis plays an important role in maintaining cellular homeostasis; however, excessive iron can promote the production of reactive oxygen species (ROS). Ferroptosis is iron-dependent programmed cell death that is characterized by excessive iron accumulation, elevated lipid peroxides, and the overproduction of ROS. The maintenance of iron homeostasis is contingent upon the activity of the transferrin receptor (TfR), ferritin (Ft), and ferroportin (FPn). In the retina, iron accumulation and lipid peroxidation can contribute to the development of age-related macular degeneration (AMD). This phenomenon can be explained by the occurrence of the Fenton reaction, in which the interaction between divalent iron and hydrogen peroxide leads to the generation of highly reactive hydroxyl radicals. The hydroxyl radicals exhibit a propensity to attack proteins, lipids, nucleic acids, and carbohydrates, thereby instigating oxidative damage and promoting lipid peroxidation. Ultimately, these processes culminate in cell death and retinal degeneration. In this context, a comprehensive understanding of the exact mechanisms underlying ferroptosis may hold significant importance for developing therapeutic interventions. This review summarizes recent findings on iron metabolism, cellular ferroptosis, and lipid metabolism in the aging retina. We also introduce developments in the therapeutic strategies using iron chelating agents. Further refinements of these knowledges would deepen our comprehension of the pathophysiology of AMD and advance the clinical management of degenerative retinopathy. A comprehensive search strategy was employed to identify relevant studies on the role of ferroptosis in AMD. We performed systematic searches of the PubMed and Web of Science electronic databases from inception to the current date. The keywords used in the search included "ferroptosis", "AMD", "age-related macular degeneration", "iron metabolism", "oxidative stress", and "ferroptosis pathways". Peer-reviewed articles, including original research, reviews, meta-analyses, and clinical studies, were included in this paper, with a focus on the molecular mechanisms of ferroptosis in AMDs. Studies not directly related to ferroptosis, iron metabolism, or oxidative stress in the context of AMD were excluded. Furthermore, articles that lacked sufficient data or were not peer-reviewed (e.g., conference abstracts, editorials, or opinion pieces) were not considered.
Collapse
Affiliation(s)
- Na Zhao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Hao Wu
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Ning Pu
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Kexin Wang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Yashuang Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| |
Collapse
|
2
|
Cordeiro Josino LP, da Penha Valente RP, de Souza da Silva ML, Alves CN, Lima AH. Molecular dynamics of transferrin receptor binder peptides: unlocking blood-brain barrier for enhanced CNS drug delivery. J Biomol Struct Dyn 2025:1-10. [PMID: 39743789 DOI: 10.1080/07391102.2024.2446676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/27/2024] [Indexed: 01/04/2025]
Abstract
A cystine-dense peptide (CDP) named TfRB1 was identified for its ability to bind to the transferrin receptor (TfR). CDPs are stabilized by their disulfide bonds, and variants of TfRB1 - specifically TfRB1G1, TfRB1G2, and TfRB1G3 - are explored for their potential to transport molecules across the blood-brain barrier (BBB) into the central nervous system (CNS). This study employed molecular modeling and dynamics simulations to characterize the interactions between these TfRB1 variants and TfR. Binding free energy calculations showed a strong correlation with experimental binding affinities of -10.99 kcal/mol for TfRB1G2 and -13.18 kcal/mol for TfRB1G3, with a relative error of 1.98%. The key forces driving these interactions include electrostatic and van der Waals forces, with mutations in TfRB1G3 (T9M and A13D) enhancing its binding affinity through improved interactions with residues such as Arg633. The free energy landscape analysis revealed that TfRB1G3 maintains the N-terminal residues of TfR in an α-helical conformation, unlike TfRB1G2. Per-residue free energy decomposition identified key residues - Leu619, Arg629, Tyr643, and Phe650 - as crucial for TfR binding, underscoring their competitive nature with transferrin. Additionally, Glu612, which is favorable for binding in TfRB1G2, becomes unfavorable in TfRB1G3. Conversely, Arg633 shifts from unfavorable in TfRB1G2 to favorable in TfRB1G3, compensating for the loss of favorable interaction with Glu612. These findings provide valuable molecular insights into the TfRB1 peptides' potential as drug carriers, highlighting their capability to deliver molecules to the CNS and compete with transferrin for BBB transport.
Collapse
Affiliation(s)
- Luiz Patrick Cordeiro Josino
- Programa de Pós-Graduação em Química Medicinal e Modelagem Molecular, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belem, Brazil
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
| | - Renan Patrick da Penha Valente
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Brazil
| | - Maria Luane de Souza da Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Brazil
| | - Anderson H Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Belem, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Brazil
| |
Collapse
|
3
|
Xia X, Li H, Zang J, Cheng S, Du M. Advancements of the Molecular Directed Design and Structure-Activity Relationship of Ferritin Nanocage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7629-7654. [PMID: 38518374 DOI: 10.1021/acs.jafc.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Ferritin nanocages possess remarkable structural properties and biological functions, making them highly attractive for applications in functional materials and biomedicine. This comprehensive review presents an overview of the molecular characteristics, extraction and identification of ferritin, ferritin receptors, as well as the advancements in the directional design of high-order assemblies of ferritin and the applications based on its unique structural properties. Specifically, this Review focuses on the regulation of ferritin assembly from one to three dimensions, leveraging the symmetry of ferritin and modifications on key interfaces. Furthermore, it discusses targeted delivery of nutrition and drugs through facile loading and functional modification of ferritin. The aim of this Review is to inspire the design of micro/nano functional materials using ferritin and the development of nanodelivery vehicles for nutritional fortification and disease treatment.
Collapse
Affiliation(s)
- Xiaoyu Xia
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Han Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Yuan M, He Q, Xiang W, Deng Y, Lin S, Zhang R. Natural compounds efficacy in Ophthalmic Diseases: A new twist impacting ferroptosis. Biomed Pharmacother 2024; 172:116230. [PMID: 38350366 DOI: 10.1016/j.biopha.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Ferroptosis, a distinct form of cell death, is characterized by the iron-mediated oxidation of lipids and is finely controlled by multiple cellular metabolic pathways. These pathways encompass redox balance, iron regulation, mitochondrial function, as well as amino acid, lipid, and sugar metabolism. Additionally, various disease-related signaling pathways also play a role in the regulation of ferroptosis. In recent years, with the introduction of the concept of ferroptosis and the deepening of research on its mechanism, ferroptosis is closely related to various biological conditions of eye diseases, including eye organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanism of ferroptosis, and its latest research progress in ophthalmic diseases and reviews the research on ferroptosis in ocular diseases within the framework of metabolism, active oxygen biology, and iron biology. Key regulators and mechanisms of ferroptosis in ocular diseases introduce important concepts and major open questions in the field of ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs will be made in the regulation mechanism of ferroptosis and the use of ferroptosis to promote the treatment of eye diseases. At the same time, natural compounds may be the direction of new drug development for the potential treatment of ferroptosis in the future. Open up a new way for clinical ophthalmologists to research and prevent diseases.
Collapse
Affiliation(s)
- Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shibin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Riping Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
5
|
Sjöström DJ, Grill B, Ambrosetti E, Veetil AA, Mohlin C, Teixeira AI, Oberdofer G, Bjelic S. Affinity Maturated Transferrin Receptor Apical Domain Blocks Machupo Virus Glycoprotein Binding. J Mol Biol 2023; 435:168262. [PMID: 37678707 DOI: 10.1016/j.jmb.2023.168262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Transferrin receptor 1 (TfR) delivers iron across cellular membranes by shuttling the ion carrier protein transferrin. This ability to deliver large protein ligands inside cells is taken advantage of by pathogens to infiltrate human cells. Notably, the receptor's outermost ectodomain, the apical domain, is used as a point of attachment for several viruses including hemorrhagic arenaviruses. To better understand interactions with the receptor it would be advantageous to probe sequence determinants in the apical domain with viral spike proteins. Here, we carried out affinity maturation of our computationally designed apical domain from human TfR to identify underlying driving forces that lead to better binding. The improved variants were confirmed by in vitro surface plasmon resonance measurements with dissociation constants obtained in the lower nanomolar range. It was found that the strong binding affinities for the optimized variants matched the strength of interactions with the native receptor. The structure of the best variant was determined experimentally indicating that the conformational change in the hairpin binding motif at the protein-protein interface plays a crucial role. The experimental methodology can be straightforwardly applied to other arenavirus or pathogens that use the apical domain. It can further be useful to probe host-virus compatibility or therapeutic strategies based on the transferrin receptor decoys.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Birgit Grill
- Department of Biochemistry, Graz University of Technology, Graz, Austria
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | | | - Camilla Mohlin
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Gustav Oberdofer
- Department of Biochemistry, Graz University of Technology, Graz, Austria
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
6
|
Mazel-Sanchez B, Niu C, Williams N, Bachmann M, Choltus H, Silva F, Serre-Beinier V, Karenovics W, Iwaszkiewicz J, Zoete V, Kaiser L, Hartley O, Wehrle-Haller B, Schmolke M. Influenza A virus exploits transferrin receptor recycling to enter host cells. Proc Natl Acad Sci U S A 2023; 120:e2214936120. [PMID: 37192162 PMCID: PMC10214170 DOI: 10.1073/pnas.2214936120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/07/2023] [Indexed: 05/18/2023] Open
Abstract
Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in trans. TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.
Collapse
Affiliation(s)
- Beryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Chengyue Niu
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Michael Bachmann
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Hélèna Choltus
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Filo Silva
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | | | | | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015Lausanne, Switzerland
- Computer-Aided Molecular Engineering Group, Department of Oncology (University of Lausanne and the Lausanne University Hospital), Ludwig Institute for Cancer Research Lausanne, 1066Épalinges, Switzerland
| | - Laurent Kaiser
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1205Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
- Geneva Center of Inflammation Research, University of Geneva, 1211Geneva, Switzerland
| |
Collapse
|
7
|
Sjöström DJ, Mohlin C, Ambrosetti E, Garforth SJ, Teixeira AI, Bjelic S. Motif-driven protein binder design towards transferrin receptor helical domain. FEBS J 2021; 289:2935-2947. [PMID: 34862739 DOI: 10.1111/febs.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Human transferrin receptor 1 (TfR) is necessary for the delivery of the iron carrier protein transferrin into cells and can be utilized for targeted delivery across cellular membranes. Binding of transferrin to the receptor is regulated by hereditary hemochromatosis protein (HFE), an iron regulatory protein that partly shares a binding site with transferrin on TfR. Here, we derived essential binding interactions from HFE and computationally grafted these into a library of small protein scaffolds. One of the designed proteins, TB08, was further optimized computationally and experimentally to identify variants with improved binding to TfR. The optimized variant, TB08 S3.1, expressed well in the E. coli expression system and had an affinity to TfR in the low micromolar range, Kd ≈ 1 μm, as determined by surface plasmon resonance. A binding competition assay with transferrin further confirmed the interaction of the evolved variant to TfR at the shared binding surface. Additionally, the GFP-tagged evolved variant of TB08 demonstrated cellular internalization as determined by fluorescent and confocal microscopy in HeLa cells. The designed protein is small, allows for robust cargo tagging, and interacts specifically with TfR, thus making it a valuable tool for the characterization of TfR-mediated cellular transport mechanisms and for the assessment of engineering strategies for cargo delivery across cell membranes.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Camilla Mohlin
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
8
|
Silva AM, Moniz T, de Castro B, Rangel M. Human transferrin: An inorganic biochemistry perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Anti-Malarial and Anti-Lipid Peroxidation Activities of Deferiprone-Resveratrol Hybrid in Plasmodium berghei-Infected Mice. BIOLOGY 2021; 10:biology10090911. [PMID: 34571788 PMCID: PMC8468766 DOI: 10.3390/biology10090911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Malaria remains a public health problem in tropical and subtropical countries. The emergence of malaria parasite resistance to antimalarial drugs has been recently considered a serious issue. Alternative compounds have become an important therapeutic strategy to achieve malaria treatment. Iron chelators are widely used for the treatment of iron overload patients. The iron chelators also reveal an inhibitory effect on malaria parasite growth by depriving the parasite intracellular iron. This study presented the potential of the novel hybrid iron chelator, deferiprone-resveratrol hybrid on the inhibition of malaria parasite growth, the improvement of hematological parameters and the alleviatation of oxidative tissue damage in malaria-infected mice. Deferiprone-resveratrol hybrid would be used as a therapeutic/preventive compound to increase the efficacy of treatment and eliminate an antimalarial drug resistance. Abstract Iron is essential for all organisms including fast-dividing malarial parasites. Inversely, iron chelators can inhibit parasite growth through the inhibition of DNA synthesis and can ameliorate oxidative cell damage. Deferiprone (DFP)-resveratrol (RVT) hybrid (DFP-RVT) is a lipophilic anti-oxidative, iron-chelating agent that has displayed potent neuroprotective and anti-plasmodium activities in vitro. The goal of this work was to investigate the inhibitory effects of DFP-RVT on parasite growth and oxidative stress levels during malaria infections. Mice were intraperitoneally infected with P. berghei and orally administered with DFP, DFP-RVT and pyrimethamine for 4 d. The percentage of parasitemia was determined using Giemsa’s staining/microscopic examination. Amounts of the lipid-peroxidation product, thiobarbituric acid-reactive substance (TBARS), were determined in both plasma and liver tissue. In our findings, DFP-RVT exhibited a greater potent inhibitory effect and revealed an improvement in anemia and liver damage in infected mice than DFP. To this point, the anti-malarial activity was found to be associated with anti-RBC hemolysis and the liver weight index. In addition, plasma and liver TBARS levels in the DFP-RVT-treated mice were lower than those in DFP-treated mice. Thus, DFP-RVT could exert anti-plasmodium, anti-hemolysis and anti-lipid peroxidation activities to a better degree than DFP in P. berghei-infected mice.
Collapse
|
10
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
11
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
12
|
The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:133-162. [PMID: 33485481 DOI: 10.1016/bs.apcsb.2020.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron transport in the central nervous system (CNS) is a highly regulated process in which several important proteins participate to ensure this important metal reaches its sites of action. However, iron accumulation has been shown to be a common factor in different neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple Sclerosis, and Sanfilippo syndrome. This review is divided into four parts. The first part describes brain iron transport in homeostasis, mentioning the main proteins involved, whereas the second part contrasts the consequences of iron dysregulation, elaborating on its role in the aforementioned neurodegenerative diseases. The third part details the functions of the main proteins involved in brain iron homeostasis and their role in neurodegeneration. In the fourth part, in order to highlight the importance of transport proteins, the focus is set on human serum transferrin, the main iron transport protein. This final part describes perspectives about the mechanisms and chemical properties of human transferrin for the development of potential targeted drug delivery systems across the blood-brain barrier (BBB) or enhancers for the treatment of neurological diseases.
Collapse
|
13
|
Sjöström DJ, Berger SA, Oberdorfer G, Bjelic S. Computational backbone design enables soluble engineering of transferrin receptor apical domain. Proteins 2020; 88:1569-1577. [PMID: 32592192 DOI: 10.1002/prot.25974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 06/22/2020] [Indexed: 02/03/2023]
Abstract
Supply of iron into human cells is achieved by iron carrier protein transferrin and its receptor that upon complex formation get internalized by endocytosis. Similarly, the iron needs to be delivered into the brain, and necessitates the transport across the blood-brain barrier. While there are still unanswered questions about these mechanisms, extensive efforts have been made to use the system for delivery of therapeutics into biological compartments. The dimeric form of the receptor, where each subunit consists of three domains, further complicates the detailed investigation of molecular determinants responsible for guiding the receptor interactions with other proteins. Especially the apical domain's biological function has been elusive. To further the study of transferrin receptor, we have computationally decoupled the apical domain for soluble expression, and validated the design strategy by structure determination. Besides presenting a methodology for solubilizing domains, the results will allow for study of apical domain's function.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Sarah A Berger
- Department of Biochemistry, Graz University of Technology, Graz, Austria
| | - Gustav Oberdorfer
- Department of Biochemistry, Graz University of Technology, Graz, Austria
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
14
|
Sjöström DJ, Lundgren A, Garforth SJ, Bjelic S. Tuning the binding interface between Machupo virus glycoprotein and human transferrin receptor. Proteins 2020; 89:311-321. [PMID: 33068039 PMCID: PMC7894301 DOI: 10.1002/prot.26016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Machupo virus, known to cause hemorrhagic fevers, enters human cells via binding with its envelope glycoprotein to transferrin receptor 1 (TfR). Similarly, the receptor interactions have been explored in biotechnological applications as a molecular system to ferry therapeutics across the cellular membranes and through the impenetrable blood-brain barrier that effectively blocks any such delivery into the brain. Study of the experimental structure of Machupo virus glycoprotein 1 (MGP1) in complex with TfR and glycoprotein sequence homology has identified some residues at the interface that influence binding. There are, however, no studies that have attempted to optimize the binding potential between MGP1 and TfR. In pursuits for finding therapeutic solutions for the New World arenaviruses, and to gain a greater understanding of MGP1 interactions with TfR, it is crucial to understand the structure-sequence relationship driving the interface formation. By displaying MGP1 on yeast surface we have examined the contributions of individual residues to the binding of solubilized ectodomain of TfR. We identified MGP1 binding hot spot residues, assessed the importance of posttranslational N-glycan modifications, and used a selection with random mutagenesis for affinity maturation. We show that the optimized MGP1 variants can bind more strongly to TfR than the native MGP1, and there is an MGP1 sequence that retains binding in the absence of glycosylation, but with the addition of further amino acid substitutions. The engineered variants can be used to probe cellular internalization or the blood-brain barrier crossing to achieve greater understanding of TfR mediated internalization.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
15
|
Di Rienzo L, Milanetti E, Testi C, Montemiglio LC, Baiocco P, Boffi A, Ruocco G. A novel strategy for molecular interfaces optimization: The case of Ferritin-Transferrin receptor interaction. Comput Struct Biotechnol J 2020; 18:2678-2686. [PMID: 33101606 PMCID: PMC7548301 DOI: 10.1016/j.csbj.2020.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Protein-protein interactions regulate almost all cellular functions and rely on a fine tune of surface amino acids properties involved on both molecular partners. The disruption of a molecular association can be caused even by a single residue mutation, often leading to a pathological modification of a biochemical pathway. Therefore the evaluation of the effects of amino acid substitutions on binding, and the ad hoc design of protein-protein interfaces, is one of the biggest challenges in computational biology. Here, we present a novel strategy for computational mutation and optimization of protein-protein interfaces. Modeling the interaction surface properties using the Zernike polynomials, we describe the shape and electrostatics of binding sites with an ordered set of descriptors, making possible the evaluation of complementarity between interacting surfaces. With a Monte Carlo approach, we obtain protein mutants with controlled molecular complementarities. Applying this strategy to the relevant case of the interaction between Ferritin and Transferrin Receptor, we obtain a set of Ferritin mutants with increased or decreased complementarity. The extensive molecular dynamics validation of the method results confirms its efficacy, showing that this strategy represents a very promising approach in designing correct molecular interfaces.
Collapse
Affiliation(s)
- Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | | | - Paola Baiocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Biochemical Sciences ‘A. Rossi Fanelli’ Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences ‘A. Rossi Fanelli’ Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Rosito M, Testi C, Parisi G, Cortese B, Baiocco P, Di Angelantonio S. Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants (Basel) 2020; 9:antiox9080700. [PMID: 32756501 PMCID: PMC7465338 DOI: 10.3390/antiox9080700] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
The maintenance of redox homeostasis in the brain is critical for the prevention of the development of neurodegenerative diseases. Drugs acting on brain redox balance can be promising for the treatment of neurodegeneration. For more than four decades, dimethyl fumarate (DMF) and other derivatives of fumaric acid ester compounds have been shown to mitigate a number of pathological mechanisms associated with psoriasis and relapsing forms of multiple sclerosis (MS). Recently, DMF has been shown to exert a neuroprotective effect on the central nervous system (CNS), possibly through the modulation of microglia detrimental actions, observed also in multiple brain injuries. In addition to the hypothesis that DMF is linked to the activation of NRF2 and NF-kB transcription factors, the neuroprotective action of DMF may be mediated by the activation of the glutathione (GSH) antioxidant pathway and the regulation of brain iron homeostasis. This review will focus on the role of DMF as an antioxidant modulator in microglia processes and on its mechanisms of action in the modulation of different pathways to attenuate neurodegenerative disease progression.
Collapse
Affiliation(s)
- Maria Rosito
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-Nanotechnology Institute, Sapienza University, 00185 Rome, Italy;
| | - Paola Baiocco
- Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| |
Collapse
|
17
|
Pagani F, Testi C, Grimaldi A, Corsi G, Cortese B, Basilico B, Baiocco P, De Panfilis S, Ragozzino D, Di Angelantonio S. Dimethyl Fumarate Reduces Microglia Functional Response to Tissue Damage and Favors Brain Iron Homeostasis. Neuroscience 2020; 439:241-254. [DOI: 10.1016/j.neuroscience.2019.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023]
|
18
|
Giacomazza D, Viappiani C, Di Cera E, Musio C. SIBPA on the crest of the Adriatic Sea wave: Introduction to the SIBPA XXIV (2018 congress) special issue. Biophys Chem 2019; 255:106273. [PMID: 31670200 DOI: 10.1016/j.bpc.2019.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
The Italian Society for Pure and Applied Biophysics (SIBPA) held its XXIV National Congress in the beautiful seaside town of Ancona, Italy, on September 10-13, 2018. This special issue features a selection of contributions from the Congress in all areas of modern biophysics including molecular, cellular, applied, computational and nanoscale biophysics. SIBPA pursues its institutional tasks and carries on its successful promotion of biophysical disciplines at the national and international levels, also trough the consolidation of its partnership with Biophysical Chemistry and Elsevier.
Collapse
Affiliation(s)
- Daniela Giacomazza
- CNR Institute of Biophysics, Palermo Unit, Via U. La Malfa 153, Palermo, Italy.
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy.
| | - Enrico Di Cera
- Edward A. Doisy Dept. of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Carlo Musio
- CNR Institute of Biophysics, Trento Unit, Via alla Cascata 56/C, 38123 Trento, Italy.
| |
Collapse
|