1
|
Pandidan S, Mechler A. Nano-viscosimetry analysis of membrane disrupting peptide magainin2 interactions with model membranes. Biophys Chem 2025; 318:107390. [PMID: 39798207 DOI: 10.1016/j.bpc.2025.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The rapid spread of antibiotic-resistant strains of bacteria has created an urgent need for new alternative antibiotic agents. Membrane disrupting antimicrobial peptides (AMPs): short amino acid sequences with bactericidal and fungicidal activity that kill pathogens by permeabilizing their plasma membrane may offer a solution for this global health crisis. Magainin 2 is an AMP secreted by the African clawed frog (Xenopus laevis) that is described as a toroidal pore former membrane disrupting AMP. Magainin 2 is one of the most thoroughly studied AMPs, yet its mechanism of action is still largely hypothetical: visual evidence of the pore formation is lacking, and the molecular mechanism leading to pore formation is still debated. In the present study, quartz crystal microbalance (QCM) based viscoelastic fingerprinting analysis supported by dye leakage experiments and atomic force microscopy (AFM) imaging was used to glean deeper insights into the mechanism of action. The effect of membrane charge, acyl chain unsaturation and cholesterol concentration were also investigated. The results show lipid specific disruptive mechanism of magainin 2. QCM nano-viscometry measurements revealed the presence of distinct stages in the mechanism of magainin 2 action that, with dye leakage data, confirm the existence of an initial transient pore stage that may result in peptide flip-flop between the outer and inner membrane leaflets. There is evidence of a further mechanistic stage at high peptide concentrations that is consistent with membrane collapse into a peptide-lipid mixed phase that is distinct from the transient pore formation. The results confirm some of the earliest hypotheses about magainin 2 action, while also highlighting the membrane modulating effect of this peptide.
Collapse
Affiliation(s)
- Sara Pandidan
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Adam Mechler
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
| |
Collapse
|
2
|
Xie YY, Qin XT, Zhang J, Sun MY, Wang FP, Huang M, Jia SR, Qi W, Wang Y, Zhong C. Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity. J Colloid Interface Sci 2022; 622:135-146. [DOI: 10.1016/j.jcis.2022.04.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/12/2022]
|
3
|
Bonet NF, Cava DG, Vélez M. Quartz crystal microbalance and atomic force microscopy to characterize mimetic systems based on supported lipids bilayer. Front Mol Biosci 2022; 9:935376. [PMID: 35992275 PMCID: PMC9382308 DOI: 10.3389/fmolb.2022.935376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Quartz Crystal Microbalance (QCM) with dissipation and Atomic Force Microscopy (AFM) are two characterization techniques that allow describing processes taking place at solid-liquid interfaces. Both are label-free and, when used in combination, provide kinetic, thermodynamic and structural information at the nanometer scale of events taking place at surfaces. Here we describe the basic operation principles of both techniques, addressing a non-specialized audience, and provide some examples of their use for describing biological events taking place at supported lipid bilayers (SLBs). The aim is to illustrate current strengths and limitations of the techniques and to show their potential as biophysical characterization techniques.
Collapse
|
4
|
Kaji T, Yano Y, Matsuzaki K. In-Cell FRET Indicates Magainin Peptide Induced Permeabilization of Bacterial Cell Membranes at Lower Peptide-to-Lipid Ratios Relevant to Liposomal Studies. ACS Infect Dis 2021; 7:2941-2945. [PMID: 34514779 DOI: 10.1021/acsinfecdis.1c00423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) are promising candidates for anti-infective drugs. The majority of AMPs are considered to disrupt the lipid matrix of bacterial membranes, exerting bactericidal activity. A number of biophysical studies have been carried out to elucidate the underlying molecular mechanisms. However, the fact that the number of peptide molecules bound to a bacterial cell under bactericidal conditions is much larger than that expected from liposomal studies raises the question of whether membrane permeabilization mechanisms proposed by liposomal studies are relevant to bacteria. In this study, the peptide-to-lipid molar ratio needed for an antimicrobial magainin peptide to permeabilize the cell membrane of the Gram-positive bacterium Bacillus megaterium was estimated by random fluorescence resonance energy transfer from a BODIPY FL-labeled lipid to a Texas Red-labeled peptide. The comparison of the observed energy transfer efficiency with the two-dimensional energy transfer theory estimated that the leakage of the calcein dye from bacterial cells occurred at a peptide-to-lipid molar ratio of 0.025. At this ratio, the peptide induced dye leakage from liposomes mimicking the bacterial membrane, indicating that the lipid matrix is a target of membrane-acting AMPs and that liposomes are a useful model system to investigate their mechanisms of action. Furthermore, a binding assay suggested that most peptide molecules were bound to cellular components other than cell membranes.
Collapse
Affiliation(s)
- Takumi Kaji
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Zhang L. Interaction of Human β Defensin Type 3 (hBD-3) with Different PIP2-Containing Membranes, a Molecular Dynamics Simulation Study. J Chem Inf Model 2021; 61:4670-4686. [PMID: 34473496 DOI: 10.1021/acs.jcim.1c00805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human β defensin type 3 (hBD-3) is a cysteine-rich small antibacterial peptide. It belongs to the human innate immune system. hBD-3 has six cysteine residues, which form three pairs of disulfide bonds, and those bonds break in the reducing condition. It is known that hBD-3 can interact with bacterial membrane, and even eukaryotic cell membrane, which has a low concentration of phosphatidylinositol 4,5-bisphosphate (PIP2) lipids. PIP2 is a vital component in cell membranes and has been found to play important roles during antimicrobial peptide (AMP) interaction with membranes. To understand the functional mechanism of hBD-3 interacting with PIP2-containing membranes, the binding structures of hBD-3 on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers mixed with 10% of PIP2 were predicted using two kinds of methods. The first one is by placing the hBD-3 monomer in different orientations above the POPC + 10%PIP2 membrane to set up five different initial simulation systems and performing long-term simulations on each to predict the most stable binding structure. It was found that hBD-3 analogue binds on the mixed lipid membrane on the two loop regions. The second method is by running long-term simulations on one or nine hBD-3 dimers binding on POPC mixed with 10%PIP2 lipid bilayer starting from the solid-state NMR (ssNMR)-suggested orientation. The dimer dissociated, and the most stable binding of hBD-3 in wild-type on the mixed membrane is also through the two loop regions, which agrees with the prediction from both the first method and the lipid self-assembly result. The PIP2 lipids can form long-lasting hydrogen bonds with positively charged residues such as Arg and Lys on hBD-3, thus forming clusters with hBD-3. As a comparison, hBD-3 dimers binding with a combined bilayer having 1,2-palmitoyl-oleoyl-sn-glycero-3-phosphoserine (POPS) on the upper and POPC on the lower leaflets and the combined POPS + POPC bilayer mixing with 10%PIP2 were also studied. The long-term simulation result shows that hBD-3 can bind with the heads of negatively charged POPS and PIP2 lipids and form hydrogen bonds. The stable binding sites of hBD-3 on PIP2 or POPS mixed bilayers are still on the two loop regions. On the combined POPS + POPC mixed with 10%PIP2 bilayer, the binding of hBD-3 with PIP2 lipids became less stable and fewer because of the competition of binding with the POPS lipids. Besides that, binding with hBD-3 can decrease the membrane thickness of the POPC + PIP2, POPS + POPC, and POPS + POPC + PIP2 bilayers and make POPS and PIP2 lipids more flexible based on the order parameter calculations. Our results supply molecular insight on AMP binding with different membranes and can help understand the functional mechanism of hBD-3 disrupting PIP2-containing membranes.
Collapse
Affiliation(s)
- Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
6
|
Elnaggar M, Hasan ML, Bhang SH, Joung YK. Endothelial Cell-Derived Tethered Lipid Bilayers Generating Nitric Oxide for Endovascular Implantation. ACS APPLIED BIO MATERIALS 2021; 4:6381-6393. [DOI: 10.1021/acsabm.1c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mahmoud Elnaggar
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoungbuk-gu, Seoul 02792, Republic of Korea
| | - Md. Lemon Hasan
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoungbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305−333, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoungbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305−333, Republic of Korea
| |
Collapse
|
7
|
Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochim Biophys Acta Gen Subj 2021; 1865:129989. [PMID: 34389467 DOI: 10.1016/j.bbagen.2021.129989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Here we describe a new class of cryptides (peptides encrypted within a larger protein) with antimicrobial properties, named schistocins, derived from SmKI-1, a key protein in Shistosoma mansoni survival. This is a multi-functional protein with biotechnological potential usage as a therapeutic molecule in inflammatory diseases and to control schistosomiasis. METHODS We used our algorithm enCrypted, to perform an in silico proteolysis of SmKI-1 and a screening for potential antimicrobial activity. The selected peptides were chemically synthesized, tested in vitro and evaluated by both structural (CD, NMR) and biophysical (ITC) studies to access their structure-function relationship. RESULTS EnCrypted was capable of predicting AMPs in SmKI-1. Our biophysical analyses described a membrane-induced conformational change from random coil-to-α-helix and a peptide-membrane equilibrium for all schistocins. Our structural data allowed us to suggest a well-known mode of peptide-membrane interaction in which electrostatic attraction between the cationic peptides and anionic membranes results in the bilayer disordering. Moreover, the NMR exchange H/D data with the higher entropic contribution observed for the peptide-membrane interaction showed that shistocins have different orientations upon the membrane. CONCLUSIONS This work demonstrate the robustness for using the physicochemical features of predicted peptides in the identification of new bioactive cryptides besides the relevance of combining these analyses with biophysical methods to understand the peptide-membrane affinity and improve further algorithms. GENERAL SIGNIFICANCE Bioprospecting cryptides can be conducted through data mining of protein databases demonstrating the success of our strategy. The peptides-based agents derived from SmKI-1 might have high impact for system-biology and biotechnology.
Collapse
|
8
|
Quemé-Peña M, Juhász T, Kohut G, Ricci M, Singh P, Szigyártó IC, Papp ZI, Fülöp L, Beke-Somfai T. Membrane Association Modes of Natural Anticancer Peptides: Mechanistic Details on Helicity, Orientation, and Surface Coverage. Int J Mol Sci 2021; 22:ijms22168613. [PMID: 34445319 PMCID: PMC8395313 DOI: 10.3390/ijms22168613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anticancer peptides (ACPs) could potentially offer many advantages over other cancer therapies. ACPs often target cell membranes, where their surface mechanism is coupled to a conformational change into helical structures. However, details on their binding are still unclear, which would be crucial to reach progress in connecting structural aspects to ACP action and to therapeutic developments. Here we investigated natural helical ACPs, Lasioglossin LL-III, Macropin 1, Temporin-La, FK-16, and LL-37, on model liposomes, and also on extracellular vesicles (EVs), with an outer leaflet composition similar to cancer cells. The combined simulations and experiments identified three distinct binding modes to the membranes. Firstly, a highly helical structure, lying mainly on the membrane surface; secondly, a similar, yet only partially helical structure with disordered regions; and thirdly, a helical monomeric form with a non-inserted perpendicular orientation relative to the membrane surface. The latter allows large swings of the helix while the N-terminal is anchored to the headgroup region. These results indicate that subtle differences in sequence and charge can result in altered binding modes. The first two modes could be part of the well-known carpet model mechanism, whereas the newly identified third mode could be an intermediate state, existing prior to membrane insertion.
Collapse
Affiliation(s)
- Mayra Quemé-Peña
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Tünde Juhász
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Correspondence: (T.J.); (T.B.-S.)
| | - Gergely Kohut
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Maria Ricci
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
| | - Priyanka Singh
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Imola Cs. Szigyártó
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
| | - Zita I. Papp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.I.P.); (L.F.)
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.I.P.); (L.F.)
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Correspondence: (T.J.); (T.B.-S.)
| |
Collapse
|
9
|
Sun SC, Huang HW, Lo YT, Chuang MC, Hsu YHH. Unraveling cardiolipin-induced conformational change of cytochrome c through H/D exchange mass spectrometry and quartz crystal microbalance. Sci Rep 2021; 11:1090. [PMID: 33441668 PMCID: PMC7806790 DOI: 10.1038/s41598-020-79905-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cardiolipin (CL), a crucial component in inner mitochondrial membranes, interacts with cytochrome c (cyt c) to form a peroxidase complex for the catalysis of CL oxidation. Such interaction is pivotal to the mitochondrial regulation of apoptosis and is affected by the redox state of cyt c. In the present study, the redox-dependent interaction of cyt c with CL was investigated through amide hydrogen/deuterium exchange coupled with mass spectrometry (HDXMS) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ferrous cyt c exhibited a more compact conformation compared with its ferric form, which was supported by the lower number of deuterons accumulated and the greater amplitude reduction on dissipation. Upon association with CL, ferrous cyt c resulted in a moderate increase in deuteration, whereas the ferric form caused a drastic increase of deuteration, which indicated that CL-bound ferric cyt c formed an extended conformation. These results were consistent with those of the frequency (f) − dissipation (D) experiments, which revealed that ferric cyt c yielded greater values of |ΔD/Δf| within the first minute. Further fragmentation analysis based on HDXMS indicated that the effect of CL binding was considerably different on ferric and ferrous cyt c in the C-helix and the Loop 9–24. In ferric cyt c, CL binding affected Met80 and destabilized His18 interaction with heme, which was not observed with ferrous cyt c. An interaction model was proposed to explain the aforementioned results.
Collapse
Affiliation(s)
- Sin-Cih Sun
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hung-Wei Huang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yi-Ting Lo
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Department of Environmental Science and Engineering, Taichung, Taiwan.
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Biological Science Center, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
10
|
Karanth S, Meesaragandla B, Delcea M. Changing surface properties of artificial lipid membranes at the interface with biopolymer coated gold nanoparticles under normal and redox conditions. Biophys Chem 2020; 267:106465. [DOI: 10.1016/j.bpc.2020.106465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022]
|
11
|
Liu Y, Shi J, Tong Z, Jia Y, Yang K, Wang Z. Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:microorganisms8091398. [PMID: 32932906 PMCID: PMC7564829 DOI: 10.3390/microorganisms8091398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence and prevalence of multidrug-resistant (MDR) bacteria particularly Gram-negative bacteria presents a global crisis for human health. Colistin and tigecycline were recognized as the last resort of defenses against MDR Gram-negative pathogens. However, the emergence and prevalence of MCR or Tet(X)-mediated acquired drug resistance drastically impaired their clinical efficacy. It has been suggested that antimicrobial peptides might act a crucial role in combating antibiotic resistant bacteria owing to their multiple modes of action and characteristics that are not prone to developing drug resistance. Herein, we report a safe and stable tryptophan-rich amphiphilic peptide termed WRK-12 with broad-spectrum antibacterial activity against various MDR bacteria, including MRSA, colistin and tigecycline-resistant Escherichia coli. Mechanistical studies showed that WRK-12 killed resistant E. coli through permeabilizing the bacterial membrane, dissipating membrane potential and triggering the production of reactive oxygen species (ROS). Meanwhile, WRK-12 significantly inhibited the formation of an E. coli biofilm in a dose-dependent manner. These findings revealed that amphiphilic peptide WRK-12 is a promising drug candidate in the fight against MDR bacteria.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|